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Abstract: Virtual analog modeling of audio effects consists of emulating the sound of an audio
processor reference device. This digital simulation is normally done by designing mathematical
models of these systems. It is often difficult because it seeks to accurately model all components
within the effect unit, which usually contains various nonlinearities and time-varying components.
Most existing methods for audio effects modeling are either simplified or optimized to a very specific
circuit or type of audio effect and cannot be efficiently translated to other types of audio effects.
Recently, deep neural networks have been explored as black-box modeling strategies to solve this
task, i.e., by using only input–output measurements. We analyse different state-of-the-art deep
learning models based on convolutional and recurrent neural networks, feedforward WaveNet
architectures and we also introduce a new model based on the combination of the aforementioned
models. Through objective perceptual-based metrics and subjective listening tests we explore the
performance of these models when modeling various analog audio effects. Thus, we show virtual
analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such
as a transistor-based limiter and nonlinear time-varying effects, such as the rotating horn and rotating
woofer of a Leslie speaker cabinet.

Keywords: black-box modeling; nonlinear; time-varying; audio effects; deep learning; tube amplifier;
transistor-based limiter; Leslie speaker

1. Introduction

Modeling of virtual analog audio effects is the process of emulating an audio effect unit and seeks
to recreate the sound, behaviour and main perceptual features of an analog reference device [1]. Audio
effect units are analog or digital signal processing systems that transform certain characteristics of
the sound source. These transformations can be linear or nonlinear, time-invariant or time-varying
and with short-term and long-term memory. Most typical audio effect transformations are based on
dynamics, such as compression, tone such as distortion, frequency such as equalization, and time such
as artificial reverberation or modulation based audio effects.

Nonlinear audio effects: These effects are widely used by musicians and sound engineers and
can be classified into two main types of effects: dynamic processors such as compressors or limiters;
and distortion effects such as tube amplifiers [2]. Distortion effects are mainly used for aesthetic reasons
and are usually applied to electric musical instruments such as electric guitar, bass guitar, electric piano
or synthesizers. The main sonic characteristic of these effects is due to their nonlinearities and the most
common processors are overdrive, distortion pedals, tube amplifiers and guitar pickup emulators.
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Dynamic range processors are nonlinear time-invariant audio effects with long temporal
dependencies, and their main purpose is to alter the variation in volume of the incoming audio.
This is achieved with a varying amplification gain factor, which depends on an envelope follower
along with a waveshaping nonlinearity. These effects tend to introduce a low amount of harmonic
distortion, while for tube amplifiers a strong distortion is desired [2].

Thus, distortion effects and dynamic range processors are based on the alteration of the waveform
which leads to various degrees of amplitude and harmonic distortion. The nonlinear behavior of
certain components of the effects’ circuit performs this alteration, which can be seen as a waveshaping
nonlinearity applied to the amplitude of the incoming audio signal in order to add harmonic and
inharmonic overtones. For example, a waveshaping transformation depends on the amplitude of the
input signal and consists in using a nonlinear function, such as an hyperbolic tangent, to distort the
shape of the incoming waveform [3].

Modulation based audio effects: Modulation based or time-varying audio effects involve audio
processors that include a modulator signal within their analog or digital implementation [4].
These modulator signals are in the low frequency range (usually below 20 Hz). Their waveforms are
based on common periodic signals such as sinusoidal, squarewave or sawtooth oscillators and are often
referred to as a Low Frequency Oscillator (LFO). The LFO periodically modulates certain parameters
of the audio processors altering the timbre, frequency, loudness or spatialization characteristics of the
audio. Based on how the LFO is employed and the underlying signal processing techniques used
when designing the effect units, we can classify modulation based audio effects into time-varying filters
such as phaser or wah-wah; delay-line based effects such as flanger or chorus; and amplitude modulation
effects such as tremolo or ring modulator [2].

The Leslie speaker cabinet is a type of modulation based effect that combines amplitude, frequency
and spatial modulation. It consists of a vacuum-tube amplifier and crossover filter followed by
a rotating horn and rotating woofer inside a wooden cabinet. This effect can be interpreted as a
combination of tremolo, Doppler effect and reverberation [5].

Audio effects modeling: Modeling these types of effect units or analog circuits has been heavily
researched and remains an active field, see Section 2 for more details. Virtual analog methods for
modeling nonlinear and time-varying audio effects mainly involve circuit modeling and optimization
for specific analog components such as vacuum-tubes, operational amplifiers or transistors. This often
requires models that are too specific for a certain circuit or making certain assumptions when modeling
specific nonlinearities. Therefore such models are not easily transferable to different effects units since
expert knowledge of the type of circuit being modeled is always required. Also, musicians tend to
prefer analog counterparts because their digital implementations may lack the broad behaviour of the
analog reference devices.

Recently, deep learning architectures have been explored for black-box modeling of audio effects.
In previous works, we explored convolutional neural networks (CNN) to model linear effect units,
such as equalization [6]; nonlinear effects with short-term memory, such as distortion, overdrive and
amplifier emulation [7]. Furthermore, in [8], the later architecture was extended with recurrent neural
networks (RNN) in order to model linear and nonlinear, time-varying and time-invariant audio effects
with long temporal dependencies, such ring modulation or multiband compression. Also, in [9],
Damskägg et al. explored variants of the WaveNet architecture [10] in order to model nonlinear effects
such as a tube amplifier.

In this work, we analyse and compare the deep learning architectures from [7–9] and we propose
a new model based on the combination of the convolutional and dense architectures from [8] with the
feedforward WaveNet from [9]. Therefore, we explore whether a latent-space based on WaveNet can
learn long temporal dependencies such as those learned by the Bidirectional Long-Short Term Memory
(Bi-LSTM) layers from [8].

We show the models performing virtual analog modeling of the Universal Audio vacuum-tube
preamplifier 610-B, the Universal Audio transistor-based limiter amplifier 1176LN and the rotating horn
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and rotating woofer of a 145 Leslie speaker cabinet. We measure the performance of the models
via perceptually-based objective metrics and through a subjective listening test. We report that
convolutional and feedforward WaveNet architectures perform similarly when modeling nonlinear
audio effects without memory and with long temporal dependencies, but fail to model time-varying
tasks such as the Leslie speaker. On the other hand, and across all tasks, the models that incorporate
RNNs or WaveNet architectures to explicitly learn long temporal dependencies, tend to outperform
(objectively and subjectively) the rest of the models.

The paper is structured as follows. In Section 2 we present the relevant literature related to
modeling nonlinear and time-varying audio effects and Table 1 summarizes the different approaches.
Section 3 provides the description of the different deep learning models and Section 4 the experimental
procedures. Sections 5–7, respectively show the obtained results, discussion and conclusions.

Table 1. Summary of approaches for virtual analog modeling of audio effects.

Type Audio Effect Approach Reference

tube amplifier static waveshaping [11]

tube amplifier dynamic nonlinear filters [12]

distortion static waveshaping & numerical methods [13]

distortion circuit simulation K-method & WDF [14]

distortion circuit simulation Nodal DK [15]

speaker, amplifier analytical method Volterra series [16]

Moog ladder filter analytical method Volterra series [17]

nonlinear power amplifier black-box Wiener & Hammerstein [18]

with short-term memory distortion black-box Wiener [19]

tube amplifer black-box Wiener-Hammerstein [20]

equalization black-box end-to-end DNN [6]

tube amplifier black-box end-to-end DNN [21]

tube amplifier black-box end-to-end DNN [22]

equalization & distortion black-box end-to-end DNN [7]

tube amplifier black-box end-to-end DNN [9]

tube amplifier, distortion black-box end-to-end DNN [23]

distortion circuit simulation & DNN [24]

compressor circuit simulation state-space [25]

time-dependent nonlinear compressor black-box system-identification [26]

compressor gray-box system-identification [27]

compressor gray-box end-to-end DNN [28]

ring modulator static waveshaping [29]

phaser circuit simulation numerical methods [30]

phaser circuit simulation Nodal DK [31]

modulation based with OTAs circuit simulation WDF [32]

flanger with BBDs circuit simulation Nodal DK [33]

modulation based with BBDs circuit simulation & system-identification [32]

time-varying Leslie speaker horn digital filter-based & system identification [34]

Leslie speaker horn & woofer digital filter-based [35]

Leslie speaker horn & woofer digital filter-based [36]

flanger, chorus digital filter-based [30]

modulation based with BBDs digital filter-based [37]

modulation based gray-box system-identification [38]

modulation based & compressor black-box end-to-end DNN [8]
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2. Background

2.1. Modeling of Nonlinear Audio Effects

Since a nonlinear system cannot be characterized by its impulse response, frequency response
or transfer function [1], digital emulation of distortion effects have been extensively researched [39].
Different methods have been proposed such as memoryless static waveshaping [11], where system-
identification methods are used to approximate the nonlinearity; dynamic nonlinear filters [12],
where the waveshaping curve changes its shape as a function of the input signal or system-state
variables; circuit simulation techniques [13–15], where a complete study of the analog circuitry is
performed and nonlinear filters are derived from the differential equations that describe the circuit;
and analytical methods [16,17], where the nonlinearity is modeled via Volterra series theory or nonlinear
black-box approaches such as Wiener and Hammerstein models [18–20].

Modeling of dynamic range processors, such as compressors, has been based on white-box
methods such as circuit simulation, where a complete study of the internal circuit is carried out;
and black-box methods such as system identification techniques, where a model is structured using only
the measurements of the input and output signals. In [25], state-space models are used to simulate
the circuit of an specific analog guitar compressor. Black-box [26] and gray-box [27] modeling of
general-purpose dynamic range compressors has been investigated via input–output measurements
and optimization routines. The latter differs from black-box modeling, since gray-box approaches use
some information about the circuit together with input–output signals.

Generalization among different audio effect units is usually difficult since these methods are often
either simplified or optimized to a very specific circuit. This lack of generalization is accentuated when
we consider that each audio processor is also composed of components other than the nonlinearity.
These components also need to be modeled and often involve filtering before and after the nonlinearity,
as well as short and long temporal dependencies such as hysteresis or attack and release gates.

2.2. Modeling of Time-Varying Audio Effects

Most research for modeling time-varying audio effects has been explored via white-box methods.
In order to model the various analog components that characterize the circuitry of this type of
effects, circuit simulation approaches are based on diodes [29], transistors [30,31], operational
transconductance amplifiers (OTAs) [32] or integrated circuits such as Bucket Brigade Delay (BBD)
chips [33,37,40]. Common methods for circuit simulation include the nodal DK-method [41] and Wave
Digital Filters (WDF) [42]. By assuming linear behaviour or by omitting certain nonlinear circuit
components, most of these effects can be implemented directly in the digital domain through the use of
digital filters and delay lines. In [38], based on all-pass filters and multiple measurements of impulse
responses, a gray-box modeling method for linear time-varying audio effects is proposed.

The Leslie speaker cabinet represents a special case of modulation based audio effects,
since amplitude and frequency modulation occur along with the reverberation and structural resonance
of the wooden cabinet. In [34], the rotating horn of the Leslie speaker is modeled via varying delay-lines,
artificial reverberation and physical measurements from the rotating loudspeaker. Likewise, [35,36]
modeled the Leslie speaker horn and woofer through time-varying spectral delay filters and time-varying
FIR filters, respectively. In these Leslie speaker emulations, various physical characteristics of the effect
are not taken into account, such as the frequency-dependent directivity of the loudspeakers or the
effect of the wooden cabinet.

2.3. Deep Learning for Audio Effects Modeling

Deep learning architectures for audio processing tasks, such as audio effects modeling, have been
investigated as end-to-end methods or as parameter estimators of audio processors [43,44]. End-to-end
deep learning architectures, where raw audio is both the input and the output of the system, follow
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black-box modeling approaches where an entire problem can be taken as a single indivisible task which
must be learned from input to output. The desired output is obtained by learning and processing
directly from the incoming raw audio, thus reducing the amount of required prior knowledge and
minimizing the engineering effort [45].

End-to-end deep neural networks (DNNs) for audio effects modeling have been recently
explored for linear and nonlinear, time-varying and time-invariant audio effects with long temporal
dependencies. Equalization matching is achieved in [6] and nonlinear modeling in [7], where the
network is capable of modeling an arbitrary combination of linear and nonlinear audio effects with
short-term memory. Nevertheless, the network of [7] does not generalize to transformations with
long temporal dependencies such as modulation based audio effects. The model is divided into three
parts: adaptive front-end, latent-space and synthesis back-end, and follows an adaptive convolutional
architecture together with dense layers and trainable activation functions as nonlinear waveshapers.

Several linear and nonlinear time-varying and time-invariant audio effects were modeled in [8],
following the adaptive convolutional architecture from [7]. The structure of the synthesis back-end is
modified and RNNs are incorporated into the latent-space in order to explore their capabilities when
learning transformations with long temporal dependencies.

Also, based on [46], a feedforward variant of the WaveNet architecture is proposed in [9], where a
nonlinear audio effect and its controls are emulated. This network outperforms current state-of-the-art
analytical methods for nonlinear black-box modeling such as the block-oriented Wiener models
presented in [19].

In [28], gray-box modeling is proposed for nonlinear effects with long temporal dependencies
such as compressors. The architecture is based on U-Net [47] and Time-Frequency [48] networks,
where using input–output measurements and knowledge of the attack and release gate times are used
to emulate different compressors and their respective controls. Similarly, RNNs for real-time black-box
modeling of tube amplifiers and distortion pedals were explored in [23] and static configurations of
tube amplifiers in [21,22]. A gray-box method is explored in [24], where a DNN is used to model the
state-space system of nonlinear distortion circuits.

3. Methods

In this section we present the architecture of the different black-box audio effects modeling
networks: the deep convolutional audio effects modeling architecture (CAFx) from [7], the feedforward
WaveNet from [9] and the convolutional and recurrent audio effects modeling architecture (CRAFx)
from [8]. Also, we introduce CWAFx, a combination of the convolutional, dense and activation layers
from CRAFx together with a latent-space based WaveNet. All the models are based entirely in the
time-domain and end-to-end; with raw audio as the input and processed audio as the output. Code is
availabe online (https://mchijmma.github.io/DL-AFx/). Also, Appendix A shows the number of
parameters and processing times across all models.

3.1. Convolutional Audio Effects Modeling Network: CAFx

The model is divided into three parts: adaptive front-end, synthesis back-end and latent-space
DNN. The architecture is designed to model nonlinear audio effects with short-term memory and
is based on a parallel combination of cascade input filters, trainable waveshaping nonlinearities,
and output filters. All convolutions are along the time dimension and all strides are of unit value.
This means, during convolution, we move the filters one sample at a time. The model is depicted in
Figure 1 and its structure is described in detail in Table 2. We use an input frame of size 4096 sampled
with a hop size of 2048 samples.

https://mchijmma.github.io/DL-AFx/
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Figure 1. Block diagram of CAFx; adaptive front-end, synthesis back-end and latent-space DNN.

Table 2. Detailed architecture of CAFx with an input frame size of 4096 samples.

Layer Output Shape Weights Output

Input (4096, 1) . x
Conv1D (4096, 128) 128(64) X1
Residual (4096, 128) . R

Abs (4096, 128) . .
Conv1D-Local (4096, 128) 128(128) X2

MaxPooling (64, 128) . Z

Dense-Local (128, 64) 64(128) .
Dense (128, 64) 64 Ẑ

Unpooling (4096, 128) . X̂2
R× X̂2 (4096, 128) . X̂1
Dense (4096, 128) 128 .
Dense (4096, 64) 64 .
Dense (4096, 64) 64 .
Dense (4096, 128) 128 .
SAAF (4096, 128) 128(25) X̂0

deConv1D (4096, 1) . ŷ

The adaptive front-end consists of a convolutional encoder. It contains two CNN layers, one
pooling layer and one residual connection. The first convolutional layer is followed by the absolute value
as nonlinear activation function and the second convolutional layer is locally connected. This means
that we follow a filterbank architecture since each filter is only applied to its corresponding row in the
input feature map. This layer is followed by the softplus nonlinearity. The max-pooling layer is a moving
window of size 64, where the maximum value within each window corresponds to the output and the
positions of the maximum values are stored and used by the back-end. The operation performed by
the first layer can be described by (1):

X1 = x ∗W1 (1)

where ∗ denotes the convolution operator, W1 is the kernel matrix from the first layer, and X1 is
the feature map after the input audio x is convolved with W1. The weights W1 consist of 128
one-dimensional filters of size 64. The residual connection R is equal to X1, which corresponds to the
frequency band decomposition of the input x.

The operation performed by the second layer is described by (2):

X2 = softplus(|X1| ∗W2) (2)

where X2 is the second feature map obtained after the locally connected convolution with
W2, the kernel matrix of the second layer which has 128 filters of size 128.

The adaptive front-end performs time-domain convolutions with the raw audio and is designed to
learn a latent representation for each audio effect modeling task. It also generates a residual connection
which is used by the back-end to facilitate the synthesis of the waveform based on the specific audio
effect transformation. By using the absolute value as activation function of the first layer and by having
larger filters W2, we expect the front-end to learn smoother representations of the incoming audio,
such as envelopes [49].
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The latent-space DNN contains two layers. Following the filter bank architecture, the first layer
is based on locally connected dense layers and the second layer consists of a fully connected (FC) layer.
The DNN modifies the latent representation Z into a new latent representation Ẑ which is fed into the
synthesis back-end. The first layer applies a different dense layer to each row of the matrix Z and the
second layer is applied to each row of the output matrix from the first layer. In both layers, all dense
layers have 64 hidden units, are followed by the softplus function and are applied to the complete latent
representation rather than to the channel dimension.

The synthesis back-end accomplishes the nonlinear task by the following steps. First, X̂2,
the discrete approximation of X2, is obtained via unpooling the modified envelopes Ẑ. Then the
feature map X̂1 is the result of the element-wise multiplication of the residual connection R and X̂2.
This can be seen as an input filtering operation, since a different envelope gain is applied to each of the
frequency band decompositions obtained in the front-end.

The second step is to apply various waveshapping nonlinearities to X̂1. This is achieved with a
a DNN with smooth adaptive activation functions (DNN-SAAF). The DNN-SAAF consists of 4 FC
dense layers. All dense layers are followed by the softplus function with the exception of the last layer.
Locally connected Smooth Adaptive Activation Functions (SAAFs) [50] are used as the nonlinearity
for the last layer. SAAFs consist of piecewise second order polynomials which can approximate any
continuous function and are regularized under a Lipschitz constant to ensure smoothness. Overall,
each function is locally connected and composed of 25 intervals between −1 to 1.

We tested different standard and adaptive activation functions, such as the parametric and
non parametric rectifier linear unit (ReLU), hyperbolic tangent, sigmoid and fifth order polynomials.
Nevertheless, we found stability problems and non optimal results when modeling nonlinear effects.
Since each SAAF explicitly acts as a waveshaper, the DNN-SAAF is constrained to behave as a set of
trainable waveshaping nonlinearities, which follow the filter bank architecture and are applied to the
channel dimension of the modified frequency decomposition X̂1.

Finally, the last layer corresponds to the deconvolution operation, which can be implemented
by transposing the first layer transform. This layer is not trainable since its kernels are transposed
versions of W1. In this way, the back-end reconstructs the audio waveform in the same manner that the
front-end decomposed it. The complete waveform is synthesized using a hann window and constant
overlap-add gain.

3.2. Feedforward WaveNet Audio Effects Modeling Network—WaveNet

The WaveNet architecture corresponds to a feedforward variation of the original autoregressive
model. For a regression task, such as nonlinear modeling, the predicted samples are not fed back
into the model, but through a sliding input window, where the model predicts a set of samples in a
single forward propagation. The feedforward Wavenet implementation is based on the architecture
proposed in [9] and [46]. The model is divided into two parts: stack of dilated convolutions and a
post-processing block. The model is depicted in Figure 2 and its structure is described in Table 3.

Input
audio

Dilated conv

Dilated conv

tanh

�

1x1

1x1

ReLU
���

����

�

3x1 3x1ReLU �̂ 

Output 
audio

1x1Conv1D

Post-processing block

k stacks, n layers

Figure 2. Block diagram of the feedforward WaveNet; stack of dilated convolutional layers and the
post-processing block.
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Table 3. Detailed architecture of WaveNet with input and output frame sizes of 5118 and 4096
samples respectively.

Layer–Output Shape–Weights Output

Input (5118, 1) x
Conv1D (5118, 16)–16(3) Rin

Dilated conv (5118, 16)–16(3) Dilated conv (5118, 16)–16(3) .
Tanh (5118, 16) Sigmoid (5118, 16) . .

Multiply (5118, 16) z
Conv1D (5118, 16)–16(1) Conv1D (5118, 16)– 16(1) Rout S

Add (4096, 16) .
ReLU (4096, 16) .

Conv1D (4096, 2048)–2048(3) .
ReLU (4096, 16) .

Conv1D (4096, 256)–256(3) .
Conv1D (4096, 1)–1(1) ŷ

We use 2 stacks of 8 dilated convolutional layers with a dilation factor of 1, 2, . . . , 128 and 16 filters
of size of 3. From Figure 1, prior to the stack of dilated convolutions, the input x is projected into 16
channels via a 3 × 1 convolution. This in order to match the number of channels within the feature
maps of the dilated convolutions.

The stack of dilated convolutions processes the input feature map Rin with 3 × 1 gated
convolutions and exponentially increasing dilation factors. This operation can be described by:

z = tanh(W f ∗ Rin) · σ(W g ∗ Rin) (3)

Where W f and W g are the filter and gated convolutional kernels, tanh and σ the hyperbolic tangent
and sigmoid functions and ∗ and · the operators for convolution and element-wise multiplication.
The residual output connection Rout and the skip conection S are obtained via a 1 × 1 convolution
applied to z. Thus, S is sent to the post-processing block and Rout is added to the current input matrix
Rin, thus, resulting in the residual input feature map of the next dilated convolutional layer.

The post-processing block consists in summing all the skip connections S followed by a ReLU.
Two final 3 × 1 convolutions are applied to the resulting feature map, which contain 2048 and 256
filters and are separated by a ReLU. As a last step, a 1 × 1 convolution is introduced in order to obtain
the single-channel output audio ŷ.

Since the receptive field of the model is of 1022 samples, in order to output frames of 4096 samples,
the input presented to the model consists of sliding frames of 5118 samples.

3.3. Convolutional Recurrent Audio Effects Modeling Network—CRAFx

The CRAFx model builds on the CAFX architecture and is also divided into three parts: adaptive
front-end, latent-space and synthesis back-end. A block diagram can be seen in Figure 3 and its
structure is described in detail in Table 4. The main difference is the incorporation of Bi-LSTMs into the
latent-space and the modification of the synthesis back-end structure. This in order to allow the model
to learn nonlinear transformations with long temporal dependencies. Also, instead of 128 channels,
due to the training time of the recurrent layers, this model uses 32 channels.

Conv1D
Conv1D

Local

Max

Pool

Adaptive Front-end

Bi-LSTM

SAAF

Input

audio

Output 

audio

deConv1DUnpool

Synthesis Back-end

DNN

SAAF

SE

Figure 3. Block diagram of CRAFx; adaptive front-end, latent-space Bi-LSTM and synthesis back-end.
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Table 4. Detailed architecture of a model with input frame size of 4096 samples and ±4 context frames.

Layer Output Shape Weights Output

Input (9, 4096, 1) . x
Conv1D (9, 4096, 32) 32(64) X1
Residual (4096, 32) . R

Abs (9, 4096, 32) . .
Conv1D-Local (9, 4096, 32) 32(128) X2

MaxPooling (9, 64, 32) . Z

Bi-LSTM (64, 128) 2(64) .
Bi-LSTM (64, 64) 2(32) .
Bi-LSTM (64, 32) 2(16) .

SAAF (64, 32) 32(25) Ẑ

Unpooling (4096, 32) . X̂3
Multiply (4096, 32) . X̂2

Dense (4096, 32) 32 .
Dense (4096, 16) 16 .
Dense (4096, 16) 16 .
Dense (4096, 32) 32 .
SAAF (4096, 32) 32(25) X̂′

1
Abs (4096, 32) . .

Global Average (1, 32) . .
Dense (1, 512) 512 .
Dense (1, 32) 32 se

X̂′
1 × se (4096, 32) . X̂1

X̂1 + X̂2 (4096, 32) . X̂0
deConv1D (4096, 1) . ŷ

In order to allow the model to learn long-term memory dependencies, the input consists of the
current audio frame x concatenated with the 4 previous and 4 subsequent frames. These frames are of
size 4096 and sampled with a hop size τ = 2048 samples. The input x is described by:

x = x(t + jτ), j = −4, ..., 4 (4)

The adaptive front-end is exactly the same as the one from CAFx, but its layers are time
distributed, i.e., the same convolution or pooling operation is applied to each of the 9 input frames.
In this model, R is the corresponding row in X1 for the frequency band decomposition of the current
input frame x. Thus, the back-end does not directly receive information from the past and subsequent
context frames.

The latent-space consists of three Bi-LSTM layers of 64, 32, and 16 units, respectively. Bi-LSTMs
are a type of RNN that can access long-term context from both backward and forward directions [51].
Bi-LSTMs are capable of learning long temporal dependencies when processing time series where the
context of the input is needed [52].

The Bi-LSTMs process the latent-space representation Z, which is learned by the front-end and
contains information regarding the 9 input frames. These recurrent layers are trained to reduce
the dimension of Z, while also learning the modulators Ẑ. This new latent representation is fed
into the synthesis back-end in order to reconstruct an audio signal that matches the modeling task.
Each Bi-LSTM has dropout and recurrent dropout rates of 0.1 and the first two layers have tanh as
activation function. Also, the nonlinearities of the last recurrent layer are locally connected SAAFs.

The synthesis back-end accomplishes the reconstruction of the target audio by processing the
frequency band decomposition R and the nonlinear modulation Ẑ. The new structure of the back-end
incorporates a Squeeze-and-Excitation (SE) [53] layer after the DNN-SAAF block (DNN-SAAF-SE).

The SE block explicitly models interdependencies between channels by adaptively scaling the
channel-wise information of feature maps [53]. Thus, we propose a SE block which applies a dynamic
gain to each of the feature map channels and follows the structure from [54]. It consists of a global
average pooling operation followed by two FC layers. The FC layers are followed by ReLU and sigmoid
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activation functions accordingly. Since the feature maps of the model are based on time-domain
waveforms, we incorporate an absolute value layer before the global average pooling operation.

Following the filter bank architecture, the back-end matches the time-varying task by the following
steps. First, an upsampling operation is applied to the learned modulators Ẑ which is followed by an
element-wise multiplication with the residual connection R. This can be seen as a frequency dependent
amplitude modulation to each of the channels or frequency bands of R. This is followed by the
nonlinear waveshaping and channel-wise scaled filters from the DNN-SAAF-SE block.

Thus, the modulated frequency band decomposition X̂2 is processed by the learned waveshapers
from the DNN-SAAF layers and further scaled by the frequency dependent gains from the SE
layers. The resulting feature map X̂1 can be seen as modeling the nonlinear short-term memory
transformations within the audio effects modelling tasks. Then, X̂1 is added back to X̂2, acting as a
nonlinear feedforward delay line. The structure of the back-end is informed by the general architecture
in which the modulation based effects are implemented in the digital domain, through the use of LFOs,
digital filters and delay lines.

Finally, the complete waveform is synthesized in the same way as in CAFx, where the last layer
corresponds to the transposed and non-trainable deconvolution operation.

3.4. Convolutional and WaveNet Audio Effects Modeling Network - CWAFx

We propose a new model based on the combination of the convolutional and dense architectures
from CRAFx with the dilated convolutions from WaveNet. Since the Bi-LSTM layers in the former
were in charge of learning long temporal dependencies from the input and context audio frames,
we replace these recurrent layers with a feedforward WaveNet. As it has been shown that dilated
convolutions outperform recurrent approaches when learning sequential problems [55], such as in [56],
where Bi-LSTMs are successfully replaced with this type of temporal convolutions.

Thus, we investigate whether a latent-space based on stacked dilated convolutions can learn
frequency-dependent amplitude modulation signals. The model is depicted in Figure 4 and the
structure of the latent-space WaveNet is described in detail in Table 5. The adaptive front-end and
synthesis back-end are the same as the ones presented in CRAFx.

Conv1D
Conv1D

Local

Max

Pool

Adaptive Front-end

WaveNet

Input

audio

Output 

audio

deConv1DUnpool

Synthesis Back-end

DNN

SAAF

SE
 FC

Figure 4. Block diagram of CWAFx; adaptive front-end, latent-space WaveNet and synthesis back-end.

Table 5. Detailed architecture of the latent-space WaveNet.

Layer–Output Shape–Weights Output

Z (576, 32) .
Conv1D (576, 32)–32(3) Rin

Dilated conv (576, 32)–32(3) Dilated conv (576, 32) –32(3) .
Tanh (576, 32) Sigmoid (576, 32) . .

Multiply (576, 32) .
Conv1D (576, 32)–32(1) Conv1D (576, 32)–32(1) Rout S

Add (576, 32) .
ReLU (576, 32) .

Conv1D (576, 32)–32(3) .
ReLU (576, 32) .

Conv1D (576, 32)–32(3) .

Dense (32, 64)–64 Ẑ



Appl. Sci. 2020, 10, 638 11 of 25

The latent representation Z from the front-end corresponds to 9 rows of 64 samples and
32 channels, which can be unrolled into a feature map of 576 samples and 32 channels. Thus,
we approximate these input dimensions with a latent-space WaveNet with receptive and target
fields of 510 and 64 samples, respectively. We use 2 stacks of 7 dilated convolutional layers with
a dilation factor of 1, 2, . . . , 64 and 32 filters of size 3. Also, we achieved better fitting by keeping
the dimensions of the skip connections S and by replacing the final 1 × 1 convolution with a FC
layer. The latter has 64 hidden units followed by the tanh activation function and is applied along the
latent dimension.

4. Experiments

4.1. Training

The training of the CAFX, CRAFx and CWAFx architectures includes an initialization step.
This pretraining stage consists in optimizing a network formed solely by the convolutional and pooling
layers of the front-end and back-end. This pretraining allows to have a better fitting when training
for the nonlinear or time-varying tasks. Thus, within an unsupervised learning task, this network
is trained to process and reconstruct both the dry audio x and target audio y. Only during this step
the unpooling layer of the back-end uses the time positions of the maximum values recorded by the
max-pooling operation.

Once the front-end and back-end are pretrained, the rest of the convolutional, recurrent, dense
and activation layers are incorporated into the respective models, and all the weights are trained
following an end-to-end supervised learning task. The WaveNet model is trained directly following
this second step. Since small amplitude errors are as important as large ones, the loss function to be
minimized is the mean absolute error between the target and output waveforms.

For both training steps, Adam [57] is used as optimizer and we use an early stopping patience of
25 epochs, i.e., training stops if there is no improvement in the validation loss. The model is fine-tuned
further with the learning rate reduced by a factor of 4 and also a patience of 25 epochs. The initial
learning rate is 1 × 10−4 and the batch size consists of the total number of frames per audio sample.
On average, the total number of epochs is approximately 750. We select the model with the lowest
error for the validation subset (see Section 4.2). For the Leslie speaker modeling tasks, the early stopping
and model selection procedures were based on the training loss. This is explained in more detail
in Section 6.

4.2. Dataset

Raw recordings of individual 2-second notes of various 6-string electric guitars and 4-string bass
guitars are obtained from the IDMT-SMT-Audio-Effects dataset [58]. We use the 1250 unprocessed
recordings of electric guitar and bass to obtain the wet samples of the respective audio effects
modeling tasks. The raw recordings are amplitude normalized and for each task the test and
validation samples correspond to 5% of this dataset each. After the analog audio processors were
sampled with the raw notes, all the recordings were downsampled to 16 kHz. The dataset is
available online (https://mchijmma.github.io/DL-AFx/).

4.2.1. Universal Audio Vacuum-Tube Preamplifier 610-B

This microphone tube preamplifier (preamp) is sampled from a 6176 Vintage Channel Strip unit.
In order to obtain an output signal with high harmonic distortion, the preamp is overdriven with the
following settings: gain +10 dB, level 6, line impedance and high and low boost/cut 0 dB.

https://mchijmma.github.io/DL-AFx/
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4.2.2. Universal Audio Transistor-Based Limiter Amplifier 1176LN

Similarly, the wildly used field-effect transistor limiter 1176LN is sampled from the same 6176
Vintage Channel Strip unit. The limiter samples are recorded with the following settings: attack 800 µs,
release 1100 ms, input level 4, output level 7 and ratio ALL. We use the slowest attack and release
settings in order to further test the long-term memory of the models. The compression ratio value
of ALL corresponds to all the ratio buttons of an original 1176 being pushed simultaneously. Thus,
this setting also introduces distortion due to the variation of attack and release times.

4.2.3. 145 Leslie Speaker Cabinet

The output samples from the rotating horn and woofer of a 145 Leslie speaker cabinet are recorded
with a AKG-C451-B microphone. Each recording is done in mono by placing the condenser microphone
perpendicularly to the horn or woofer and 1 meter away. Two speeds are recorded for each rotating
speaker; tremolo for a fast rotation and chorale for a slow rotation. The rotation frequency of the horn is
approximately 7 Hz and 0.8 Hz for the tremolo and chorale settings, respectively, while the woofer has
slower speed rotations [36].

Since the horn and woofer speakers are preceded by a 800 Hz crossover filter, we apply a highpass
FIR filter with the same cutoff frequency to the raw notes of the electric guitar and use only these
samples as input for the horn speaker. Likewise, for the woofer speaker we use a lowpass FIR filter to
preprocess the raw bass notes. The audio output of both speakers is filtered with the respective FIR
filters. This in order to reduce mechanical and electrical noise and also to focus the modeling tasks on
the amplitude and frequency modulations. Also, the recordings are amplitude-normalized.

4.3. Objective Metrics

Three metrics are used when testing the models with the various modeling tasks. Since the mean
absolute error depends on the amplitude of the output and target waveforms, before calculating this
metric, we normalize the energy of the target and the output and define it as the energy-normalized
mean absolute error (mae).

As an objective evaluation for the Leslie speaker time-varying tasks, we propose an objective metric
which mimics human perception of amplitude and frequency modulation. The modulation spectrum
uses time-frequency theory integrated with the psychoacoustics of modulation frequency perception,
thus, providing long-term knowledge of temporal fluctuation patterns [59]. The modulation spectrum
mean squared error (ms_mse) is based on the audio features from [60] and [61] and is defined as follows:

• A Gammatone filter bank is applied to the target and output entire waveforms. In total we use 12
filters, with center frequencies spaced logarithmically from 26 Hz to 6950 Hz.

• The envelope of each filter output is calculated via the magnitude of the Hilbert transform and
downsampled to 400 Hz.

• A Modulation filter bank is applied to each envelope. In total we use 12 filters, with center
frequencies spaced logarithmically from 0.5 Hz to 100 Hz.

• The Fast Fourier Transform (FFT) is calculated for each modulation filter output of each
Gammatone filter. The energy is summed across the Gammatone and Modulation filter banks and
the ms_mse metric is the mean squared error of the logarithmic values of the FFT frequency bins.

The evaluation for the nonlinear tasks with short-term and long-term memory corresponds to
mfcc_cosine: the mean cosine distance of the Mel-frequency cepstral coefficients (MFCCs). This metric
is calculated as follows:

• A log-power-melspectogram is computed from the energy-normalized waveforms. This is
calculated with 40 mel-bands and audio frames of 4096 samples and 50% hop size.

• 13 MFCCs are computed using the discrete cosine transform and the mfcc_cosine metric is the
mean cosine distance across the MFCC vectors.
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4.4. Listening Test

Thirty participants between the ages of 23 and 46 took part in the experiment which was
conducted at a professional listening room at Queen Mary University of London. The Web Audio
Evaluation Tool [62] was used to set up the test and participants used Beyerdynamic DT-770 PRO
studio headphones.

The subjects were among musicians, sound engineers or experienced in critical listening.
The listening samples were obtained from the test subsets and each page of the test contained a
reference sound, i.e., a recording from the original analog device. The aim of the test was to identify
which sound is closer to the reference, and participants rated 6 different samples according to the
similarity of these in relation to the reference sound.

Therefore, participants were informed what modeling task they were listening to, and were asked
to rate the samples from ‘least similar’ to ‘most similar’. This in a scale of 0 to 100, which was then
mapped into a scale of 0 to 1. The samples consisted of a dry sample as anchor, outputs from the 4
different models and a hidden copy of the reference.

5. Results

The training procedures were performed for each architecture and each modeling task:
preamp corresponds to the vacuum-tube preamplifier, limiter to the transistor-based limiter
amplifier, horn tremolo and horn chorale to the Leslie speaker rotating horn at fast and slow speeds,
respectively, and woofer tremolo and woofer chorale to the rotating woofer at the corresponding
speeds. Then, the models were tested with samples from the test subset and the audio results are
available online (https://mchijmma.github.io/DL-AFx/).

Figure 5 shows the mae, mfcc_cosine and ms_mse for all the test subsets. It can be seen that the mae
models’ performance is similar within each modeling tasks with limiter having the lowest error. Also,
CAFx presents the largest errors, with the Leslie speaker chorale settings being the highest.
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Figure 5. mae, mfcc_cosine and ms_mse values with the test dataset for all the modeling tasks.

In terms of perceptually-based metrics such as the mfcc_cosine and ms_mse, the CRAFx and CWAFx
models achieved the best scores. This with the exception of the woofer chorale task, where the CWAFx
model did not manage to accomplish the task. Overall, CRAFx and CAFx correspond to the highest
and lowest scoring models, respectively.

https://mchijmma.github.io/DL-AFx/


Appl. Sci. 2020, 10, 638 14 of 25

The results of the listening test for all modeling tasks can be seen in Figure 6 as notched box
plots. The end of the notches represents a 95% confidence interval and the end of the boxes represent
the first and third quartiles. Also, the green lines illustrate the median rating and the purple circles
represent outliers. In general, both anchors and hidden references have the lowest and highest median,
respectively. The perceptual findings match closely the objective metrics from Figure 5, since the
architectures that explicitly learn long-temporal dependencies, such as CRAFx and CWAFx outperform
the rest of the models. Furthermore, for the woofer chorale task, the unsuccessful performance of the
latter is also evidenced in perceptual ratings. This indicates that the latent-space WaveNet fails to learn
low-frequency modulations such as the woofer chorale rotating rate.
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Figure 6. Box plot showing the rating results of the listening tests. (a) preamp, (b) limiter, (c)
Leslie speaker horn-tremolo, (d) Leslie speaker woofer-tremolo, (e) Leslie speaker horn-chorale
and (f) Leslie speaker woofer-chorale.
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For selected test samples of the preamp and limiter tasks and for all the different models, Figure 7
shows the input, reference, and output waveforms together with their respective spectrogram. Both in
the time-domain and in the frequency-domain, it is observable that the waveforms and spectrograms
are in line with the objective and subjective findings. To more closely display the performance of these
nonlinear tasks, Figure 8 shows a segment of the respective waveforms. It can be seen how the different
models match the waveshaping from the overdriven preamp as well as the attack waveshaping of the
limiter when processing the onset of the test sample.

Regarding the Leslie speaker modeling task, Figures 9–12 show the different waveforms together
with their respective modulation spectrum and spectrogram: Figure 9 horn-tremolo, Figure 10
woofer-tremolo, Figure 11 horn-chorale and Figure 12 woofer-chorale. From the spectra, it is noticeable that
CRAFx and CWAFx introduce and match the amplitude and frequency modulations of the reference,
whereas CAFX and WaveNet fail to accomplish the time-varying tasks.
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Figure 7. Results with selected samples from the test dataset for the tasks: (a,b) preamp and
(c,d) limiter. The waveforms and their respective spectrograms are shown and vertical axes represent
amplitude and frequency (Hz), respectively.
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Figure 8. For the test samples from Figure 7, a segment of the respective waveforms: (a) preamp task
and (b) limiter task when processing the onset of the input audio. Vertical axes represent amplitude.
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Figure 9. Results with selected samples from the test dataset for the Leslie speaker horn-tremolo
tasks. (a) Waveform, (b) modulation spectrum and (c) spectrogram. Vertical axes represent amplitude,
Gammatone frequency (Hz) and FFT frequency (Hz), respectively.
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Figure 10. Results with selected samples from the test dataset for the Leslie speaker woofer-tremolo
tasks. (a) Waveform, (b) modulation spectrum and (c) spectogram. Vertical axes represent amplitude,
Gammatone frequency (Hz) and FFT frequency (Hz), respectively.
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Figure 11. Results with selected samples from the test dataset for the Leslie speaker horn-chorale
tasks. (a) Waveform, (b) modulation spectrum and (c) spectogram. Vertical axes represent amplitude,
Gammatone frequency (Hz) and FFT frequency (Hz), respectively.
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Figure 12. Results with selected samples from the test dataset for the Leslie speaker woofer-chorale
tasks. (a) Waveform, (b) modulation spectrum and (c) spectogram. Vertical axes represent amplitude,
Gammatone frequency (Hz) and FFT frequency (Hz), respectively.

6. Discussion

6.1. Nonlinear Task with Short-Term Memory - Preamp

The architectures that were designed to model nonlinear effects with short-term memory, such as
CAFx and WaveNet, were outperformed by the models that incorporate temporal dependencies.
With CRAFx and CWAFx being the highest scoring model both objectively and perceptually.
Although this task does not require a long-term memory, the context input frames and latent-space
recurrent and WaveNet layers from CRAFx and CWAFx, respectively, benefited the modeling of the
preamp. This performance improvement could be on account of the temporal behaviour present on the
vaccum-tube amplifier, such as hysteresis or attack and release timings, although additional tests on
the preamp might be required.

Given the successful results reported in [7] and [9], which represent the state-of-the-art for
nonlinear audio effects modeling, it is remarkable that the performance of these architectures (CAFx
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and WaveNet) is exceeded by CRAFx and CWAFx. It is worth noting that the [7] model is trained with
input frame sizes of 1024 samples, which could indicate a decrease in modeling capabilities when
handling larger input frame sizes, such as 4096 samples. Similarly, the model from [9] included 1 stack
of dilated convolutions whereas the WaveNet architecture used 2.

Nevertheless, from Figure 6a, we can conclude that all models successfully accomplished the
modeling of the preamp. Most of the output audio is only slightly discernible from their target
counterparts, with CRAFx and CWAFx being virtually indistinguishable form the real analog device.

6.2. Time-Dependent Nonlinear Task - Limiter

Since the limiter task includes long temporal dependencies such as a 1100 ms release gate,
as expected, the architectures that include memory achieved a higher performance both objectively
and subjectively. From Figure 7d it can be seen that CAFx and WaveNet introduce high frequency
information that is not present in the reference spectrogram. This could be an indication that the
models compensate for their limitations when modeling information beyond one input frame, such as
the distortion tone characteristic due to the long release time together with the variable ratio of the
limiter. Furthermore, from Figure 8b it is noticeable how each architecture models the attack behavior
of the limiter.

We can conclude that although all networks closely matched the reference target, it is CRAFx
and CWAFx which achieved the exact saturation waveshaping characteristic of the audio processor.
The latter is accentuated with the perceptual results from Figure 6b, where CRAFx and CWAFx are
again virtually indistinguishable from the reference target. While CAFx and WaveNet are ranked
behind due to the lack of long-term memory capabilities, it is noteworthy that these models closely
accomplished the desired waveform.

6.3. Time-Varying Task: Leslie Speaker

With respect to the horn tremolo and woofer tremolo modeling tasks, it can be seen that for both
rotating speakers, CRAFx and CWAFx are rated highly whereas CAFx and WaveNet fail to accomplish
these tasks. Thus, the perceptual findings from Figure 6c,d confirm the results obtained with the
ms_mse metric and overall, the woofer task has a better matching that the horn task. Nevertheless,
for CRAFx and CWAFx, the objective and subjective ratings for the horn tremolo task do not represent
a significant decrease of performance and it can be concluded that both time-varying tasks were
successfully modeled by these architectures.

CRAFx is perceptually ranked slightly higher than CWAFx. This indicates a closer matching of
the reference amplitude and frequency modulations, which can be seen in the respective modulation
spectra and spectrograms from Figure 9 and Figure 10.

For the horn chorale and woofer chorale modeling tasks, CRAFx and CWAFx successfully modeled
the former while only CRAFx accomplished the woofer chorale task. Since the woofer chorale task
corresponds to modulations lower than 0.8 Hz, we can conclude that Bi-LSTMs are more adequate
than a latent-space WaveNet when modeling such low-frequency modulations.

In general, from Figure 9 to Figure 12, it is observable that the output waveforms do not match
the waveforms of the references. This shows that the models are not overfitting to the waveforms of
the training data and that the successful models are learning to introduce the respective amplitude
and frequency modulations. The models cannot replicate the exact reference waveform since the
phase of the rotating speakers varies across the whole dataset. For this reason, the early stopping and
model selection procedures of these tasks were based on the training loss rather than the validation
loss. This is also the reason of the high mae scores across the Leslie speaker modeling tasks, due
to these models applying the modulations yet without exactly matching their phase in the target
data. Further exploration of a phase-invariant cost function could improve the performance of the
different architectures.
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CAFx and WaveNet were not able to accomplish these time-varying tasks. It is worth noting that
both architectures try to compensate for long-term memory limitations with different strategies. It is
suggested that CAFx wrongly introduces several amplitude modulations, whereas WaveNet tries to
average the waveform envelope of the reference. This results in output audio significantly different
from the reference, with WaveNet being perceptually rated as the lowest for the horn tremolo and
horn chorale tasks. This also explains the ms_mse results from Figure 5 for the woofer chorale task,
where WaveNet achieves the best score since averaging the target waveform could be introducing the
low-frequency amplitude modulations present in the reference audio.

7. Conclusions

In this work, we explored different deep learning architectures for black-box modeling of audio
effects. Using raw audio and a given audio effects modeling task, we explored the capabilities of
end-to-end DNNs to process the audio accordingly. We tested the models when modeling nonlinear
effects with short-term and long-term memory such as a tube preamp and a transistor-based limiter;
and nonlinear time-varying processors such as the rotating horn and woofer of a Leslie speaker cabinet.

Through objective perceptual-based metrics and subjective listening tests we found that across
all modeling tasks, the architectures that incorporate Bi-LSTMs or, to a lesser extent, latent-space
dilated convolutions to explicitly learn long temporal dependencies, outperform the rest of the models.
With these architectures we obtain results that are virtually indistinguishable from the analog reference
processors. Also, state-of-the-art DNN architectures for modeling nonlinear effects with short-term
memory perform similarly when matching the preamp task and considerably approximate the limiter
task, but fail when modeling the time-varying Leslie speaker tasks.

The nonlinear amplifier, rotating speakers and wooden cabinet from the Leslie speaker were
successfully modeled. Nevertheless, the crossover filter was bypassed in the modeling tasks since the
dry and wet audio were filtered accordingly. This was due to the limited frequency bandwidth of the
bass and guitar samples, thus, this modeling task could be further explored with a more appropriate
dataset such as Hammond organ recordings.

As future work, a cost function based on both time and frequency can be used to further improve
the modeling capabilities of the models. In addition, since the highest ranked architectures use past
and subsequent context input frames, more research is needed on how to adapt these architectures to
overcome this latency. Thus, real-time applications would benefit significantly from the exploration
of end-to-end DNNs that include long-term memory without resorting to large input frame sizes
and the need for past and future context frames. Also, an end-to-end WaveNet architecture with a
receptive field as large as the context input frames from CRAFx and CWAFx could also be explored for
the time-varying modeling tasks.

Modeling of artificial reverberators such as a plate or spring can also be explored. Moreover,
as shown in [9], the introduction of controls as a conditioning input to the networks can be investigated,
since the models are currently learning a static representation of the audio effect. Finally, applications
beyond virtual analog can be investigated, for example, in the field of automatic mixing the models
could be trained to learn a generalization from mixing practices.
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Appendix A

Table A1 shows the number of trainable parameters and processing times across all the models.
The latter was calculated for a Titan XP GPU and an Intel Xeon E5-2620 CPU and corresponds to the
time the model takes to process one batch, i.e., the total number of frames within a 2 s audio sample.
GPU and CPU times are reported using the non real-time optimized python implementation.

Table A1. Number of parameters and processing times across various models.

Model Number of Parameters GPU Time (s) CPU Time (s)

CAFx 604,545 0.0842 1.2939
WaveNet 1,707,585 0.0508 1.0233
CRAFx 275,073 0.4066 2.8706
CWAFx 205,057 0.0724 2.9552
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