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Abstract: Large rainfall-induced landslides are among the most dangerous natural hazards in Taiwan,
posing a risk for people and infrastructure. Thus, better knowledge about the evolution of landslides
and their impact on the downstream area is of high importance for disaster mitigation. The aim of
this study is twofold: (1) to semi-automatically map the evolution of the Butangbunasi landslide in
south-central Taiwan using satellite remote sensing data, and (2) to investigate the potential correlation
between changes in landslide area and heavy rainfall during typhoon events. Landslide area, as well
as temporary landslide-dammed lakes, were semi-automatically identified using object-based image
analysis (OBIA), based on 20 Landsat images from 1984 to 2018. Hourly rainfall data from the Taiwan
Central Weather Bureau (CWB) was complemented with rainfall data from Climate Hazards Group
Infrared Precipitation with Station data (CHIRPS) to examine the potential relationship between
landslide area changes and rainfall as a triggering factor. The OBIA mapping results revealed that
the most significant landslide extension happened after typhoon Morakot in 2009. We found a
moderate positive relationship between the landslide area change and the duration of the heavy
rainfall event, whereas daily precipitation, cumulative rainfall and mean intensity did not present
strong significant correlations.

Keywords: landslide; remote sensing; Landsat; object-based image analysis (OBIA); time series;
heavy rainfall; rainfall data; typhoon; landslide-dammed lake; Taiwan

1. Introduction

The mountains of Taiwan, with the highest peaks rising to almost 4000 m a.s.l., are characterized
by fractured rock formations, high relief and steep stream gradients. These mountains, particularly
the central mountain range (CMR), influence the tracks and intensity of typhoon events [1]. During
summer and autumn, Taiwan is regularly affected by typhoons (tropical cyclones), three to four per
year on average, which bring heavy rainfall [2]. Some studies indicate that the number of typhoons
hitting Taiwan increased after the year 2000, also resulting in heavier precipitation in recent years [3,4].
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Heavy rainfall is the main landslide triggering factor in Taiwan [5]. The rainfall events are usually
associated with typhoons, which account for almost 50% of the island’s total rainfall [6,7]. Studies
have found relationships between long-duration and moderate intensity rainfall events and large and
deep-seated landslides [8], sediment yield and debris flows [5,9].

Large, rapid landslides and debris flows frequently lead to fatalities. Major endeavors are
necessary to protect people and settlements in areas at risk, and to implement prevention and early
warning measures [10–13]. In general, as well as in Taiwan, such catastrophic landslides also cause
severe damages to infrastructure, and efforts both in time and money are needed to recover and
maintain the transportation infrastructure such as roads and bridges [14–17]. Beyond the direct
landslide hazard, large landslides can initiate natural hazard cascades by damming rivers and inducing
catastrophic flash floods and debris flows [18–20]. The large amount of mobilized debris that originates
from landslides significantly affects the drainage system, for example, resulting in an increase in
erosion and sediment discharge in rivers, and changes in channel size and shape [5,21,22]. According
to Chen et al. [9] about 384 Mt y−1 of sediment is transported into the ocean in Taiwan, whereby the
high proportion of large landslides significantly contributes to this high annual sediment yield.

In August 2009, typhoon Morakot caused a record-breaking cumulative rainfall (more than
2000 mm in three days), which led to debris flows and mudflows, flooding in coastal areas, and
massive landslides [23,24]. The rainfall also triggered one of the most famous and fatal landslides in
Taiwan, the Xiaolin landslide [25–28]. The Butangbunasi landslide [29–31] is another example of a
large rainfall-triggered landslide in Taiwan. Reactivation and extension of this landslide have been
resulting in repeated sediment delivery to the Laonong River, especially during torrential rainfall.
The river course has been frequently affected, leading to the formation of a landslide-dammed lake
several times during the past three decades [29,32–36]. The magnitude of the Butangbunasi landslide
is even significantly larger than of the disastrous Xiaolin landslide [29]. A deeper knowledge of the
evolution of landslides and their triggering factors is crucial for hazard mitigation [37,38]. Therefore,
mapping and analyzing the evolution of such large landslides over time helps to better understand
their reactivation rates and their impact on downstream areas.

Remote sensing plays a key role in studying landslides and provides an adequate and cost-effective
source to derive information about landslide distribution and types [39–42]. The use of remote sensing
data also helps to investigate the potential impacts of landslides such as the damming of rivers,
particularly in difficult to access and remote mountain regions [43]. The value of remote sensing for
landslide studies becomes more and more evident with the increasing amount of freely available Earth
observation (EO) data, which provides remarkable opportunities to map and monitor landslides over
time [44–46].

Object-based image analysis (OBIA) provides a suitable methodological framework for efficient
landslide mapping, as well as landslide change analysis [47,48]. By working on the object-level instead
of the pixel-level, OBIA allows considering spectral, spatial, textural, morphometric and hierarchical
properties for the classification of landslides [49–51]. Moreover, it is argued that using OBIA yields
better classification accuracies than pixel-based classifications [51–55]. Several studies employed OBIA
for landslide mapping and landslide change detection in Taiwan [32,49,53,56–59], but none of them
used time series of images for investigating the evolution and reactivation of an active large landslide.

The aim of this study is to analyze the evolution of the Butangbunasi landslide in south-central
Taiwan using OBIA and time series of freely available Landsat images and to investigate the potential
correlation between changes in landslide area and heavy rainfall events during selected typhoon
(including tropical storm) events.
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2. Materials and Methods

2.1. Study Area

For this study, we selected the Butangbunasi landslide, which is located in the Taoyuan District of
Kaohsiung City, south-central Taiwan (R.O.C.; Figure 1). The study area comprised of two geological
strata, the Changchihkeng formation, which is composed of sandstone and shale, and the Tangenshan
formation, which consists of massive sandstones and is characterized by joints that can form precipitous
scarps and deep ravines [29]. The area experiences between 2000 and 4000 mm of annual rainfall
within a subtropical monsoon climate [34]. Reactivation and extension of this large landslide area have
been taking place since the 1980s and have been resulting in repeated pulses of sediment delivered to
the Laonong River, especially during torrential rainfall brought by typhoons.
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Figure 1. (a) Location of the study area in south-central Taiwan (R.O.C.; background data: © ESRI);
and (b) the Butangbunasi landslide shown on a SPOT-5 satellite image from 9 September 2013.

The accumulation of debris and sediments affects the river course and can lead to the damming of
the river as it happened several times in the past. The main landslide area is difficult to access and
hardly visible from the Laonong River valley, where major construction efforts are needed to maintain
and rebuild the transportation infrastructure such as roads and bridges. Figure 2 gives an impression
of the Butangbunasi landslide.

2.2. Data

2.2.1. Optical Satellite Data

We used time series of optical satellite data, i.e., Landsat 5, Landsat 7 and Landsat 8 imagery
(20 images overall) with 30 m spatial resolution, from 1984 to 2018 to semi-automatically map the
evolution of the Butangbunasi landslide (Table 1). In particular, we selected the first cloud-free image
of the area of interest available after a typhoon (including tropical storm) event that shows a noticeable
change in the landslide area compared to pre-event images. This was done based on a visual inspection
of the Landsat database and considering the historical hurricane/typhoon tracks of the National Oceanic
and Atmospheric Administration (NOAA) Office for Coastal Management [60]. In addition, all major
hurricanes crossing Taiwan within a radius of 100 km around the Butangbunasi landslide, which
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reached category H3 or above according to the Saffir–Simpson hurricane wind scale (SSHWS), were
identified and the respective post-event Landsat imagery added to the database. The Landsat 5 scene
from 1984 is the first available image for the study area and served as a starting point for the analysis.
The Landsat 8 scene from 2018 does not follow a specific typhoon event but was used as the final image
for the analysis to see if any changes in landslide area are also identified following a period without a
heavy rainfall event. Moreover, this image temporally coincides with the field visit in November 2018
(cf. Figure 2c).
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Figure 2. The Butangbunasi landslide area. (a) Unmanned aerial vehicle (UAV) image of the upper
part of the Butangbunasi landslide. The image was taken on 13 June 2017. (b) UAV image of the
temporary landslide-dammed lake at Butangbunasi and parts of the debris fan. The image was
acquired on 29 April 2011. (c) Photograph of the Butangbunasi landslide from 15 November 2018.
The photograph was taken from the Laonong river valley looking towards Butangbunasi; the actual
landslide area is further up the tributary. The Butangbunasi debris fan, the former lake area, and the
former landslide-dam area are indicated.

All Landsat scenes were downloaded as Level-1 products from the EarthExplorer user interface of
the United States Geological Survey (USGS). In order to increase the comparability across the Landsat
imagery captured by different Landsat sensors and/or at different times, a top-of-atmosphere (TOA)
calibration was performed on all satellite images [61]. To do so, the apparent reflectance function
implemented in the ArcGIS Desktop version 10.7 was applied. The algorithm uses sun elevation,
satellite position, acquisition date and sensor properties such as gain and bias settings for each spectral
band [62]. In this way, the spectral differences between images from different dates and sensors
were decreased. In addition to the Landsat images, the derived slope layer from the Advanced Land
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Observing Satellite (ALOS) Palsar digital elevation model (DEM; 12.5 m spatial resolution), acquired
in 2008, was used as ancillary data to support the landslide mapping.

Table 1. Landsat satellite images for the study area.

Sensor Acquisition Date Scene ID

Landsat 8 8 November 2018 LC81170442018312LGN00
Landsat 8 4 December 2016 LC81170442016339LGN01
Landsat 8 16 November 2015 LC81170442015320LGN01
Landsat 8 03 June 2013 LC81170442013154LGN01
Landsat 5 20 December 2010 LT51170442010354BKT00
Landsat 5 12 September 2009 LT51170442009255BKT00
Landsat 5 24 August 2008 LT51170442008237BKT00
Landsat 5 17 March 2008 LT51170442008077BKT00
Landsat 5 3 October 2005 LT51170442005276BJC00
Landsat 5 17 September 2005 LT51170442005260BKT02
Landsat 5 12 July 2004 LT51170442004194BKT02
Landsat 7 14 September 2001 LE71170442001257EDC00
Landsat 7 27 September 2000 LE71170442000271SGS00
Landsat 5 1 November 1998 LT51170441998305BJC00
Landsat 5 23 August 1996 LT51170441996236CLT00
Landsat 5 3 September 1994 LT51170441994246CLT00
Landsat 5 31 October 1992 LT51170441992305BJC00
Landsat 5 10 October 1990 LT51170441990283BJC00
Landsat 5 23 October 1989 LT51170441989296BJC00
Landsat 5 12 December 1984 LT51170441984347HAJ00

2.2.2. Typhoon and Rainfall Data

The International Best Track Archive for Climate Stewardship (IBTrACS) data repository [63]
compiles the hurricane/typhoon best-track position and intensity from different data sources and
makes them available in one consolidated archive. We obtained the fourth version of this data in
shapefile format to extract the spatial information corresponding to 19 typhoon events that had an
impact on the landslide area or had a SSHWS category three (H3) or higher within a 100 km radius
from the Butangbunasi landslide (Table 2).

Table 2. Selected typhoon and tropical storm events for the study.

Name Year Date and Time 1 Maximum SSHWS
Category 2

SSHWS
Category 1

Distance to Butangbunasi
Landslide (km) 1

Megi 2016 27 September 2016 12:00 H3 H1 74
Nepartak 2016 8 July 2016 03:00 H4 H1 58
Soudelor 2015 8 August 2015 00:00 H3 H2 78

Talim 2012 20 June 2012 12:00 TS TS 151
Fanapi 2010 19 September 2010 06:00 H3 H1 16

Morakot 2009 7 August 2009 18:00 H1 TS 108
Fung-Wong 2008 28 July 2008 00:00 H2 H2 64

Sepat 2007 18 August 2007 00:00 H3 H3 46
Longwang 2005 2 October 2005 00:00 H4 H2 85

Haitang 2005 18 July 2005 03:00 H4 H3 106
Mindulle 2004 1 July 2004 12:00 H1 H1 81

Toraji 2001 29 July 2001 18:00 H3 H3 80
Bilis 2000 22 August 2000 15:00 H5 H4 47
Otto 1998 4 August 1998 06:00 H1 H1 48

Gloria 1996 26 July 1996 09:00 H2 H2 87
Tim 1994 10 July 1994 12:00 H4 H4 70

Omar 1992 4 September 1992 15:00 TS TS 56
Dot 1990 7 September 1990 15:00 H1 H1 33

Sarah 1989 11 September 1989 18:00 H4 H2 51

Note: 1 Variables selected from the closest point in the typhoon track to the centroid of the Butangbunasi landslide
area; 2 Maximum Saffir–Simpson hurricane wind scale (SSHWS) category reached by the typhoon when passing
over Taiwan. H = Hurricane, TS = Tropical Storm.
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As for the rainfall data, Taiwan’s Central Weather Bureau (CWB) provides the open Typhoon
Database [64], which compiles various sources of information relevant to the study and the monitoring
of typhoon events in the western North Pacific. Among their data sources, CWB has made station
weather data available, which includes hourly precipitation for each typhoon event for all the automatic
rain gauge stations in Taiwan. For this study, we identified the three closest stations to the Butangbunasi
landslide, all located within the Laonong River basin, which are summarized in Table 3. The locations
of the three selected CWB stations are shown in Figure 3. Since station C1V210 was upgraded to a new
weather station coded C0V210, which continues the data registration, we will refer to it as a single
station called Fuxing.

Table 3. Selected Central Weather Bureau (CWB) rain gauge stations.

Station
Code

Station
Name Operation Period Latitude Longitude Elevation

(m a.s.l.)
Distance to Butangbunasi

Landslide (km) 1

C1V200 Meishan 21 January 1992–Present 23.2684 120.8236 870 8.3
C1V210 Fuxing 21 January 1992–8 March 2013 23.2224 120.8059 700 3.3
C0V210 Fuxing 18 April 2013–Present 23.2224 120.8061 734 3.3
C1V220 Xiaoguanshan 22 January 1992–Present 23.1542 120.8136 1781 6.8

Note: 1 Distance calculated to the centroid of the Butangbunasi landslide area.
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Figure 3. Locations of the three selected CWB rain gauge stations shown on the Landsat image from
8 November 2018.

Since the entire study period was not covered by the CWB rain gauge station data available on
the Typhoon Database, we also collected data from the CHIRPS (Climate Hazards Group Infrared
Precipitation with Station data) dataset. CHIRPS combines information from the Tropical Rainfall
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Measuring Mission (TRMM) 3B42 product, the NOAA Climate Forecast System (CFS) and other
precipitation data sources to provide daily precipitation in grid format at a resolution of 0.05◦, for
latitudes between 50◦ S and 50◦ N [65,66]. We accessed the data through the Google Earth Engine,
where we obtained the mean rainfall in the area of interest for the 19 typhoon events selected for
analysis. For each event, we obtained the daily precipitation on the day the typhoon passed closest to
the Butangbunasi landslide area.

2.3. Semi-Automated Landslide Mapping

For semi-automatically mapping the Butangbunasi landslide area on each Landsat image, OBIA
was used. The analyses were conducted using the eCognition (Trimble) software. We defined a set of
knowledge-based classification rules for mapping the landslide area per image. Since images from 20
different points in time were used, efforts were made to design a transferable classification routine that
could be applied to all images without or with only minor adaptations of the classification thresholds
(Table 4). The classification rules were developed based on the Landsat 5 image from 1984 and then
transferred to the other images.

Table 4. Segmentation and classification parameters used for object-based landslide mapping.

Data
Parameters for

Multiresolution
Segmentation

Bands for Segmentation Classification Parameters

Landsat 5 (1984, 1989, 1990,
1992, 1994, 1996, 1998, 2004,

September 2005, October 2005,
August 2008, 2009, 2010)

Scale parameter: 10;
Shape criterion: 0.1;

Compactness criterion: 0.4

blue, green, red, nir,
brightness

Mean NDVI < 0.5
Mean MSAVI < 0.7

Mean brightness > 20
Mean slope > 10◦

Mean DEM > 650 m

Landsat 5 (March 2008)
Scale parameter: 10;
Shape criterion: 0.1;

Compactness criterion: 0.4

blue, green, red, nir,
brightness

Mean NDVI < 0.4
Mean MSAVI < 0.6

Mean brightness > 20
Mean slope > 10◦

Mean DEM > 650 m

Landsat 7 (2000, 2001)
Scale parameter: 10;
Shape criterion: 0.1;

Compactness criterion: 0.4

blue, green, red, nir,
brightness

Mean NDVI < 0.6
Mean MSAVI < 0.75

Mean brightness > 20
Mean slope > 10◦

Mean DEM > 650 m

Landsat 8
(2013, 2015, 2016, 2018)

Scale parameter: 150;
Shape criterion: 0.1;

Compactness criterion: 0.4

blue, green, red, nir,
brightness

Mean NDVI < 0.4
Mean MSAVI < 0.55

Mean brightness > 8000
Mean slope > 10◦

Mean DEM > 650 m

As a first step, the normalized difference vegetation index (NDVI) and the modified soil-adjusted
vegetation index (MSAVI), as well as a brightness layer were calculated. Next, we applied
the multiresolution segmentation [67] for creating image objects as a basis for the classification.
The multiresolution segmentation in eCognition is a bottom-up region merging technique. It starts with
single pixel objects and merges them stepwise to larger objects based on local homogeneity criteria that
describe the similarity of adjacent image objects [67]. The scale parameter and homogeneity criteria
(shape vs. color weighting, compactness vs. smoothness weighting) determine the maximum allowed
heterogeneity and control the average size and shape of the resulting image objects. The segmentation
parameters (Table 4) were selected based on an expert-guided trial and error approach and a visual
assessment of resulting image objects.

The knowledge-based classification primarily relied on the usage of the calculated spectral indices.
The main indication for mapping the landslide area was the absence of vegetation, which leads to a
distinctive spectral contrast between the landslide-affected area and its surroundings, especially in
densely vegetated regions [49,58,68]. This change in land cover related to landslide occurrence can
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be well represented with spectral indices such as the NDVI [51]. The same classification parameters
were applied to all Landsat 5 images, except the March 2008 image, where the thresholds for the NDVI
and MSAVI were slightly adapted. The reason for this was that this image is the only one acquired in
spring, i.e., before the rainy season, and the seasonal variation leads to a slightly different spectral
reflection. Minor adaptations were also needed for the Landsat 7 and Landsat 8 images, while the
same classification rules and thresholds were used per sensor.

Since the DEM used in this study only represents one point in time, the topographic signature of
the landslide at different dates cannot be accurately represented by the DEM data [49]. Thus, the DEM
and the slope were mainly used as ancillary data to avoid the classification of obvious false positives,
for example, debris accumulation areas with low slopes at low elevations in the Laonong river bed.

Finally, a few true but unwanted positives such as landslides on slopes not belonging to the
Butangbunasi landslide area were manually removed, and small landslide objects in shadow areas that
were obviously missed were manually added.

Some of the images revealed a temporary landslide-dammed lake where the debris from
Butangbunasi reaches and blocks the Laonong River. The lake area was additionally mapped
with OBIA by using relatively low NDVI and near-infrared values.

Finally, changes in landslide and lake area were calculated as the area change in the respective
class between two successive images within the time series.

2.4. Accuracy Assessment of OBIA Results

To assess the classification accuracy, we compared the OBIA results to results from visual image
interpretation. Reference data were exemplarily created based on three selected images, whereby one
image from each Landsat sensor was used (Landsat 8 from 4 December 2016; Landsat 7 from 24 August
2008; Landsat 5 from 27 September 2000). Another criterion for the selection of these images was the
presence of a lake close to the landslide area so that the accuracy of both classes could be assessed.
Manual digitizing from the satellite imagery was carried out in ArcGIS 10.7 at a scale of 1:25,000. We
assessed the classification accuracy based on the overlapping area between the manual and the OBIA
mappings. Producer’s accuracies were computed by dividing the correctly classified area (overlap
area) by the total area of the reference data (i.e., the manual mapping results), and user’s accuracies
were obtained by dividing the correctly classified area by the total area mapped by OBIA [37,45,69].
The producer’s accuracy is the map accuracy from the point of view of the creator of the map (here:
the producer of the OBIA classification). It is a measure of omission error (error of exclusion) [69].
The user’s accuracy is the accuracy from the point of view of a map user, not the map creator. It is a
measure of commission error (error of inclusion) [69].

2.5. Analysis of Rainfall Data during Typhoon Events

Rainfall data registered during the selected typhoon and tropical storm events were analyzed to
find potential relationships between the reactivation and evolution of the landslide area and heavy
rainfall. From the CHIRPS data, we extracted daily precipitation for the date when the typhoon was
closest to the landslide. For the CWB rain gauge station data, hourly precipitation data allowed us to
identify rainfall events during the selected typhoons. We followed the definition of a rainfall event as
explained in Chang et al. [5] and Chen et al. [8], where an event starts when there is more than 4 mm of
rain registered in the gauge during an hour, and ends when the rain registered is lower than 4 mm for
six consecutive hours. We calculated the duration, cumulative rainfall and intensity for each rainfall
event. Rainfall duration is defined as the hours the event lasted; cumulative rainfall is the amount
of precipitation registered during the entire rainfall event; rainfall intensity is the average amount of
precipitation registered per hour during a rainfall event. The rainfall event with the highest duration
and intensity within each typhoon event was selected for further analysis.
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2.6. Correlation between the Change in Landslide Area and Rainfall

An exploratory analysis of the variables derived from the rainfall data, as well as of the landslide
area change, showed a non-parametric distribution of the data with the presence of outliers. Hence,
we tested for rank correlation after Spearman between the landslide area change and the derived
rainfall parameters for each CWB rain gauge station and for the daily precipitation extracted from
the CHIRPS data. The Spearman rank-order correlation coefficient (ρ) determines whether there is
a monotonic relationship between variables, that is, two variables increasing or decreasing together,
or as one increases, the other decreases. Unlike the Pearson correlation coefficient (p), which is a
measure of the linear correlation between two variables, Spearman does not test for a linear relationship
with a constant rate. The Spearman coefficient is more robust to outliers and appropriate for skewed
distributions [70,71], as observed for our data. Finally, the correlation results were evaluated at a 90%
confidence level [72].

3. Results

3.1. Semi-Automated Mapping Results

Figure 4 shows the OBIA landslide mapping results for each Landsat image. In addition to the
Butangbunasi landslide area, we detected a temporary landslide-dammed lake at the confluence of the
Butangbunasi tributary with the Laonong River on six images.

Each selected typhoon event was linked to the respective Landsat image date when the OBIA
mapping of the landslide area was performed. Figure 5 shows the time series where landslide area
evolution was tracked along with the preceding typhoon events. After typhoon Morakot in 2009,
an abrupt increase in landslide area was identified, keeping a steady or even slightly decreasing
trend for the following years. Section 3.3 provides additional information about the evolution of the
Butangbunasi landslide and the temporary landslide-dammed lake in the Laonong river bed with
respect to the heavy rainfall events.
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Figure 4. Object-based image analysis (OBIA) landslide mapping results for Butangbunasi.
The evolution of the landslide area from 1984 to 2018 is shown per Landsat image. Additionally,
a landslide-dammed lake was detected on six of the images (2016, 2010, August 2008, 2000, 1992
and 1990).
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Figure 5. Time series of the Butangbunasi landslide area evolution and the dates of each typhoon event.
The SSHWS category corresponds to the maximum category reached by the typhoon when crossing
Taiwan. The mapped areas for the images corresponding to 12 December 1984 and 8 November 2018
are indicated. A locally estimated scatterplot smoothing (LOESS) curve (confidence interval 95%) is
fitted to the time series for illustration purposes.

3.2. Comparison of OBIA Results with Visual Interpretation

The accuracy of the semi-automated OBIA results was assessed by comparison to results from
visual interpretation. Table 5 summarizes the results of the accuracy assessment.

Table 5. OBIA and manual mapping (MM) results, the difference between OBIA and manual
mapping results, overlapping area and producer’s and user’s accuracy for each of the three selected
Landsat images.

Landsat Image Class OBIA
Mapping (ha)

Manual
Mapping (ha)

Difference
OBIA—MM (%)

Overlap
Area (ha)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

4 December 2016
(Landsat 8)

Landslide 382.30 401.87 −4.87 357.09 88.86 93.41
Lake 8.38 8.24 1.68 6.44 78.19 76.91

24 August 2008
(Landsat 7)

Landslide 164.19 189.04 −13.15 155.92 82.48 94.96
Lake 3.56 4.40 −18.96 2.86 65.03 80.25

27 September 2000
(Landsat 5)

Landslide 119.75 117.87 1.60 101.47 86.09 84.73
Lake 6.88 6.04 13.77 4.32 71.50 62.85

Similar accuracy values were achieved for the OBIA classification among the selected images,
whereby higher accuracies were reached for the landslide class compared to the lake class. Mixed
pixels—or in our case mixed objects as a result of undersegmentation [73]—are an important issue
in the identification and proportion estimation of classes in Landsat satellite scenes, since they cover
more than one ground cover type and thus decrease the separability of classes [74]. We faced this
problem especially in areas where small patches of vegetation within the landslide area exist or
where revegetation leads to a sparse vegetation cover that influences the spectral reflectance on
post-event images. This results in small differences in the OBIA landslide mapping compared to the
visual interpretation. For the detected landslide-dammed lakes, classification uncertainties are mainly
associated with mixed objects, partly shallow water areas with high sediment load or wet areas in the
river bed.

When interpreting the accuracy values it has to be considered that results from visual expert
interpretation, especially for natural phenomena such as landslides, cannot constitute an entirely ‘true’
reference, as their creation depends on various factors such as the data used or the expertise of the
interpreter [49].
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3.3. Rainfall Data Analysis for Each Typhoon Event

Two data sources of rainfall data were individually analyzed for this study. CHIRPS daily
precipitation was obtained for the 19 typhoon events selected, where the highest daily precipitation
registered on the day of the typhoon passing over Taiwan was 208 mm for typhoon Fung-Wong, while
the lowest daily precipitation registered was 43.7 mm for typhoon Sarah. The mean daily precipitation
for the selected events was 120 ± 48.2 mm. Nevertheless, a comparison of this satellite-derived data
with rain gauge data from the CWB showed that the CHIRPS dataset under/overestimates the rainfall
amount for different events (Figure 6). This observation is supported by the findings of Chen et al. [24],
who found that remote sensing rainfall products underestimate rainfall compared to rain gauges for
typhoon Morakot over Taiwan.
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Figure 6. Comparison of daily precipitation for Climate Hazards Group Infrared Precipitation with
Station (CHIRPS; orange) and CWB (blue palette) data for the selected 19 typhoon events.

Given that the CHIRPS data are freely available and span the entire study period, we decided to
include it in the study. However, the correlation results of the mapped landslide area with CHIRPS
daily precipitation data should be interpreted carefully.

For the CWB station data, we analyzed rainfall event parameters derived from hourly precipitation
records for three separate rain gauges. Several studies used spatial interpolation for the analysis of
rainfall parameters in comparison to landslide area [8,75,76]. These studies investigate several landslide
locations but do not focus on a detailed analysis of the progressive evolution of one major landslide.
Given that spatial interpolation can introduce uncertainty to the resulting rain measurements [77] and
that the rain gauges were located within a range of 2.8–8 km from the landslide area, we decided to
analyze the three closest rain gauges separately.

The rain gauge data are available since 1992, and thus cover only 17 of the selected 19 typhoon
events. In addition, rainfall data for the Longwang and Haitang typhoons were not available for station
Xiaoguanshan. Cumulative rainfall, duration and mean intensity were derived for each rainfall event
within the typhoon period for each station. Summary statistics of the derived parameters are presented
in Table 6. In general, station Xiaoguanshan recorded the highest cumulative rainfall, duration and
intensity during rainfall events, which could be explained by the altitude of the station, as well as its
location downstream of the valley.

Table 7 presents the individual parameters per typhoon event next to the semi-automated mapping
results. For every station, the maximum cumulative rainfall and duration correspond to typhoon
Morakot, whereas the maximum intensity corresponds to typhoon Toraji, and the minimum duration
corresponds to typhoon Nepartak. Minimum cumulative rainfall and intensity varied between typhoon
events and stations.
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Table 6. Summary statistics for rainfall parameters derived from rain gauges at three CWB stations.

Cumulative Rainfall (mm) Duration (h) Intensity (mm/h)

M F X M F X M F X

Mean 419.39 423.01 514.25 26.3 25.9 27.9 13.97 14.37 16.97
SD 425.41 440.16 508.47 16.0 16.5 15.3 6.24 6.08 8.33

Min 69.00 56.50 132.00 7 7 10 6.31 4.71 7.76
Max 1818.50 1914.00 2185.50 76 78 76 28.86 27.34 36.93

Count 17 17 15 17 17 15 17 17 15

Note: CWB station symbols: M = Station Meishan, F = Station Fuxing, X = Station Xiaoguanshan.

Table 7. Landslide mapping results and derived rainfall parameters for each typhoon event.

Typhoon Event Landslide
Area (ha)

Landslide Area
Change (ha)

Lake Area
(ha)

CHIRPS CWB Stations

Daily Precipitation
(mm/d)

Meishan Fuxing Xiaoguanshan

C (mm) D (h) I (mm/h) C (mm) D (h) I (mm/h) C (mm) D (h) I (mm/h)

Megi
382.3 −13.58 8.38

195.64 229.50 21 10.93 448.50 25 17.94 491.50 25 19.66
Nepartak 134.05 69.00 7 9.86 77.50 7 11.07 170.00 10 17.00
Soudelor 395.88 −3.17 - 84.06 373.00 27 13.81 554.00 27 20.52 525.00 28 18.75

Talim 399.05 3.42 - 163.54 254.50 20 12.73 252.50 20 12.63 333.00 21 15.86
Fanapi 395.63 −27.94 20.97 104.06 217.60 20 10.88 241.10 19 12.69 311.20 22 14.15

Morakot 423.56 259.38 - 120.97 1818.50 76 23.93 1914.00 78 24.54 2185.50 76 28.76
Fung-Wong 164.19 −26.39 3.56 208.01 436.00 30 14.53 384.00 29 13.24 467.00 30 15.57

Sepat 190.58 39.52 - 61.25 517.50 40 12.94 474.50 40 11.86 483.50 40 12.09
Longwang 151.06 0.48 - 99.95 184.00 15 12.27 175.10 15 11.67 - - -

Haitang 150.58 27.30 - 123.62 846.50 44 19.24 903.00 45 20.07 - - -
Mindulle 123.28 2.31 - 63.88 736.00 32 23.00 252.50 15 16.83 869.50 32 27.17

Toraji 120.97 1.22 - 145.66 577.10 20 28.86 574.10 21 27.34 738.50 20 36.93
Bilis 119.75 23.41 6.88 177.59 314.10 29 10.83 341.60 29 11.78 393.00 35 11.23
Otto 96.34 −21.45 - 75.87 229.10 20 11.46 245.50 20 12.28 250.50 19 13.18

Gloria 117.8 23.72 - 116.11 103.00 11 9.36 56.50 12 4.71 148.50 19 7.82
Tim 94.08 −27.38 - 111.92 104.50 16 6.53 92.60 14 6.61 132.00 17 7.76

Omar 121.45 43.20 3.33 179.54 119.80 19 6.31 204.20 24 8.51 215.10 25 8.60
Dot 78.25 15.81 5.31 70.67 - - - - - - - - -

Sarah 62.44 −3.81 - 43.65 - - - - - - - - -

Note: C = Cumulative rainfall, D = Duration, I = Mean Intensity.
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3.4. Relation between Landslide Area Change and Rainfall-Derived Parameters during Typhoon Events

No cloud-free satellite image was available between typhoons Megi and Nepartak (cf. Figure 5).
Hence, the landslide area mapped for December 2016 could represent either of those events. To avoid
any uncertainty, both typhoon events were removed from the correlation analysis.

CHIRPS daily precipitation data for the exact date when the typhoon passed over Taiwan were
correlated with the landslide area change for 17 typhoon events. The results show that there was not
enough evidence of a significant correlation between the variables (ρ = 0.186, p = 0.47).

For the CWB rain gauges, we tested for correlations between the landslide area change and the
cumulative rainfall, duration and mean intensity of the rainfall events during 15 typhoon events for the
stations Meishan and Fuxing, and for 14 typhoon events for the Xiaoguanshan station. Figure 7 shows
the rainfall parameters per CWB station plotted against the landslide area change and the resulting
Spearman’s rank correlation coefficients. Moderate positive correlations were found at a 90% confidence
level between the landslide area change and the duration of the heavy rainfall event for stations Fuxing
and Xiaoguanshan. This means, there is less than 10% chance that the found relationship was due to
chance. Cumulative rainfall and mean intensity did not present strong significant correlations with the
landslide area change. For the Meishan station, no significant correlation was found, which may be
explained by the rain gauge location within a tributary valley.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22 
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4. Discussion

Semi-automated techniques can limit the subjectivity in landslide mapping and can contribute to
improving the reproducibility of landslide maps [78]. OBIA is such a technique and provides a set of
suitable tools to semi-automatically map the evolution of landslides with time series of satellite images.
The developed OBIA workflow was designed to be transferable across images, whereby only minor
modifications for each Landsat sensor were necessary. This reduces the analysis time and increases the
transferability of the approach. We used spectral indices for the landslide classification supported by
ancillary DEM data to avoid the classification of specific false positives. While a DEM was available for
only one point in time for our analysis, using DEMs acquired after each triggering event would increase
the classification accuracy and would also allow a volume change estimation. In practice, however,
multi-temporal DEM data are rarely available. The semi-automated mapping led to reasonable results.
However, the determined accuracy values need to be considered with care, since any reference data
created by manual mapping includes a certain degree of uncertainty and subjectivity [45].

The Landsat archive offers multispectral imagery since the 1980s suitable to identify recurrent
changes in the area of large landslides such as the Butangbunasi landslide. Even if the spatial resolution
of 30 m does not allow to identify very small changes, trends over time can be well depicted. However,
the exact timing of landslide extension/reactivation following typhoons or tropical storms remains
difficult. We employed the first cloud-free Landsat image acquired after such an event, but in some
cases, the time span between a rainfall event and image acquisition date was up to several months or
even longer. The accuracy of the OBIA mapping probably also depends on the time elapsed between a
landslide triggering event and the acquisition of the next satellite image [37]. A short delay would
allow deriving more detailed information about the landslide reactivating, the revegetation time and
the formation of landslide-dammed lakes. The time span of over two years between the last image
used and the last identified typhoon is probably the reason for the slightly decreasing trend in landslide
area since initial revegetation happens quite fast. Several studies investigated the vegetation recovery
after the occurrence of landslides. For example, Lin et al. [79] estimated a vegetation recovery rate of
approximately 60% two years after landslides and Chou et al. [80] found a vegetation recovery rate of
approximately 90% six years after landslides in central Taiwan. The new generations of satellites, for
example, freely available data such as Sentinel-2 or EO data from commercial data providers, already
provide a higher temporal and spatial resolution for recent years. This offers great opportunities for
improving studies similar to the presented one in the future when longer time series of very high
resolution (VHR) images will be available.

Rainfall-triggered landslides are particularly frequent in areas heavily affected by typhoon events,
such as Taiwan. Freely available rainfall data are essential to improve early-warning models, as new
technologies and research opportunities emerge. In this study, we focused on two free and open
rainfall data sources. The CHIRPS data are globally available since 1981, however, its coarse spatial and
temporal resolution limits its usage for local studies. In addition, the CHIRPS data under/overestimate
daily precipitation. In our case, rain gauge data available from the CWB typhoon database were a
more suitable alternative. Our results indicate that the duration of the heavy rainfall event is the
main parameter linked to the landslide area change, while cumulative rainfall and mean intensity did
not show significant correlations with the extension of the Butangbunasi landslide. Further analyses
should be performed to find a direct causation between the rainfall event duration and the landslide
area change. However, the freely available CWB data are limited to those hours when the typhoon
passed Taiwan, and hence a complete historical rainfall database cannot be analyzed together with
these extreme events. Several parameters could be computed from such a database, as indicated by
Guzzetti et al. [81], which could lead to a more robust evaluation of the relationship between rain
events and landslide evolution.

Better knowledge about the reactivation of large landslides and the recurring impact on
downstream areas is of high importance for disaster mitigation. Even if our results did not indicate
a direct relationship between the extension of the Butangbunasi landslide and the strength of the
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typhoon event, it became evident that also comparatively small typhoons or tropical storms could
cause landslide reactivation. This is, for example, of high relevance for implementing early warning
measures. The repeated sediment delivery after rainfall events frequently impacts the rivers system,
which can result in the formation of landslide-dammed lakes and debris flows, and eventually poses
a risk for people, settlements and infrastructure downstream. Major efforts are taken to maintain
the transportation infrastructure in the study area and to avoid the repeated damming of the river
(Figure 8). In particular, the Southern Cross-Island Highway, which is a popular tourist route that
crosses the CMR and that provides a connection to the remote Yushan National Park, was severely
affected by typhoon Morakot and following events, and the associated debris and sediment from the
Butangbunasi landslide [29,30]. Information about the evolution of the Butangbunasi landslide is thus
also important for planning and implementing maintenance and reconstruction activities of roads
and bridges.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22 
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Figure 8. (a) Recently reconstructed road next to Butangbunasi. The photograph was taken on 8 April
2014. (b) Road construction and maintenance work at Butangbunasi. The photograph was taken on
28 June 2011. (c) Excavation work at the lower part of the Butangbunasi debris fan in the Laonong river
bed. The photograph was taken on 15 November 2018.

In this study, we focused on one large landslide. By studying larger areas and relating
spatio-temporal landslide hotspots to rainfall events brought by typhoons or tropical storms, more
robust correlations between landslide extensions and triggering events might be found. Further
research should also emphasize on the combination of OBIA and machine learning approaches for
automated landslide time series analysis.

5. Conclusions

Large rainfall-induced landslides are among the most dangerous natural hazards in Taiwan,
putting people and infrastructure at risk. Thus, better knowledge about the evolution of large landslides,
their triggering factors and their potential to initiate cascading hazards is important in several respects.
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Often insufficient information exists on landslide occurrence and reactivation intervals. Findings
from the analysis of time series of satellite imagery, as provided for example by the Landsat missions,
can provide useful information for supporting hazard mitigation and spatial planning. At the same
time, the constantly increasing amount of satellite imagery at higher spatial and temporal resolutions
implies the need for efficient and robust landslide (change) mapping methods. OBIA provides a suitable
methodological framework for addressing these challenges. In this study, we semi-automatically
mapped the evolution of the Butangbunasi landslide using Landsat time series data. The OBIA
mapping results showed that the most significant landslide extension happened after typhoon Morakot
in 2009. Freely available rainfall data were analyzed to find potential relationships between the
reactivation and evolution of the landslide area and heavy rainfall during typhoon events. Our results
indicate that the duration of the heavy rainfall event is the main parameter linked to the landslide area
change, whereas daily precipitation, cumulative rainfall and mean intensity did not present strong
significant correlations.

While landslides and associated hazards are a significant problem under present-day climate
regimes, it is likely that climate change will lead to more frequent and extreme landslide-triggering
events such as typhoons and tropical storms in Taiwan. Consequently, even more landslides may occur
in the future. With this in mind, the relevance of studies that investigate and analyze the evolution
of large landslides with respect to triggering events becomes even more important. Respective
results can serve as input for hazard and risk analysis and the implementation of prevention and
mitigation measures.
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