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Abstract: The geotechnical centrifuge applied in various geotechnical engineering fields provides
physical data for investigating mechanisms of deformation and failure and for validating analytical
and numerical methods by simulating and studying the geotechnical problems. The basket, as one
of the important components used to place the inspection model of centrifugal test, is designed to
withstand complex loads. This paper presents an optimization design method for the basket based
on the weighted B-Spline Finite Cell Method (FCM) and the globally-convergent method of moving
asymptotes (GCMMA). In order to obtain a superior design solution, four topological configurations,
i.e., original single web, porous dual web, open deep groove dual web, and connected closed dual
web, are investigated and optimized. The mass is selected as the optimization objective, while
key shape parameters and stress are regarded as design variables and the constraint, respectively.
By optimization, the final masses of the four configurations are reduced greatly compared with the
initial configurations, where the greatest weight loss, in case 4, is 10.6%. This indicates that the
weighted B-Spline FCM and GCMMA can be well applied for shape optimization of structure in
engineering design. In contrast to the final single web adopted in the traditional basket design in
case 1, the final configuration in case 4, i.e., connected closed dual web, has the least mass. The final
mass is reduced by 133.38 kg when the centrifuge strength requirement is met. Therefore, the final
configuration in case 4, where the maximum von-Mises stress is 398.72MPa and mass is 781.82 kg, is
superior to the three other configurations.

Keywords: geotechnical centrifuge; topological configuration; B-Spline Finite Cell Method; globally
convergent method of moving asymptotes; shape optimization

1. Introduction

The centrifuge simulating composite environment loads with acceleration is designed to meet
the requirements of geotechnical, medical, and bio-industrial research, etc. [1]. In recent decades,
along with the development of military and social demands, the centrifuge has attracted continuous
research interest. An advanced centrifuge which is capable of high rotational speed and with a
more precise structure is seriously needed. Due to the high rotational speed, both the stress level
significantly affecting the reliability, and the weight involving the performance of the centrifuge, are
sensitive parameters. Several cases involving centrifuge failure have been reported. A centrifuge
was destroyed due to excessive mechanical stress in a Beckman L2-65B ultracentrifuge at Cornell
University [2]. A failure analysis of the cause of the burst of the centrifuge rotor was reported in Ref. [3].
A failed centrifuge caused by the basket employed for starch production is investigated in Ref. [4]. The
geotechnical centrifuge, a large-scale centrifuge, provides physical data for investigating mechanisms
of deformation and failure and for validating analytical and numerical methods [5] by simulating

Appl. Sci. 2020, 10, 620; doi:10.3390/app10020620 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10020620
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/2/620?type=check_update&version=2


Appl. Sci. 2020, 10, 620 2 of 19

and studying geotechnical problems. It is currently applied in various geotechnical engineering
fields, such as foundation systems, earth structures, offshore systems, earthquake-related problems,
geo-environment studies, etc. [6]. With the continually increasing demand for the geotechnical
centrifuge experiments in industrial engineering, the need for a centrifuge facility with advanced
capabilities is urgent. One of the most important components of a geotechnical centrifuge is the basket.
It is connected to the rotating arm via the pin shaft, which is used to place the inspection model. As a
variety of topological configurations of this component are possible, the specific installation and basic
shape will be described in detail later (as shown in Figure 1). The basket is designed to withstand
complex loads, such as the tensile stress from the arm caused by the rotation, vibration torque, gravity,
centrifugal force, and so on. With the high rotational speed, loads make the basket stretch and change
in size, which may cause it to fail. In addition, the weight of the basket has a significant influence on
the stress of the mounting hole of the arm connected with it. Several failure cases of the centrifuge
have been caused by the basket [4,7]; therefore, one of the major tasks of the geotechnical centrifuge
design is make the basket as light as possible while satisfying the requirement of its strength.
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Figure 1. The structures of a geotechnical centrifuge and the basket. (a) The main structures of a 
geotechnical centrifuge. (b) The structures of the basket. 

Shape optimization is important in seeking to improve mechanical properties and reduce weight 
[8–13]. In engineering practice, the shape optimization design of the basket is mostly based on the 
traditional finite element method (FEM), which makes the optimization design process time-
consuming and complicated. There are two reasons for this; one is that the traditional FEM uses 
conforming mesh discretization and the perturbation method of structural optimization and shape 
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Shape optimization is important in seeking to improve mechanical properties and reduce
weight [8–13]. In engineering practice, the shape optimization design of the basket is mostly based
on the traditional finite element method (FEM), which makes the optimization design process
time-consuming and complicated. There are two reasons for this; one is that the traditional FEM uses
conforming mesh discretization and the perturbation method of structural optimization and shape
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sensitivity analysis [14–16]. During the optimization process, the mesh should be updated based
on shape changes. Unfortunately, conforming the mesh is a huge challenge, especially for complex
structures. Statistics show that [17] the conversion of geometric models to finite element models
represents 80% of structural analysis work, so the meshing and repartitioning process is very time
consuming, especially for the shape optimization of complex structures. Even with some advanced
mesh generation methods, such as mesh mapping, Laplacian deformation, adaptive mesh generation,
and so on [18], in some cases, mesh deformation caused by the finite element approximation error [19] is
still inevitable. The other reason is the difficulty of solving sensitivity in a gradient-based optimization
process. Therefore, achieving an optimal basket shape in a geotechnical centrifuge is a significant
engineering challenge.

In this work, motivated by the easier remeshing and sensitivity analysis of the Finite Cell Method
(FCM) [20,21] compared to traditional FEM, the shape optimization of the basket is investigated and
achieved by weighted B-Spline FCM [22–24], where the critical component, i.e., the lifting lug, is put
into the computational domain divided with the fixed grid, the geometric model is represented by
the level set function [25] and R-functions [26], the boundary cells are refined by the Quadtree or
Octree method, and a homogeneous Dirichlet boundary condition is applied by the weighted function.
Based on the weighted B-Spline FCM, an effective optimization model is built. The structure mass is
selected as the optimization objective, and key shape parameters and stress are regarded as design
variables and s constraint, respectively. Additionally, the highly-efficient optimization design flow for
the lifting lug based on the gradient is developed, and a gradient-based optimization algorithm named
the “globally convergent method of moving asymptotes” (GCMMA) [27] is implemented. With four
cases containing different topological configurations, the superior design solution of the lifting lug is
chosen. The main contributions are as follows.

(1) Extend the B-Spline FCM for structure shape optimization design into engineering applications;
(2) Develop a complete shape optimization process of the basket of a geotechnical centrifuge based

on the competitive weighted B-Spline FCM and the GCMMA, which settles the light-weighting
design of the basket with multi topological configurations whilst also meeting the requirement of
the geotechnical centrifuge strength.

The rest of the paper is organized as follows. In Section 2, based on the overall structure of the
geotechnical centrifuge, the key component of the basket, i.e., the lifting lug, is investigated. Firstly, the
parameterized geometric representation of the lifting lug is established by the level set and Rfunctions.
Then, the geometric structure is divided by the fixed grid, the homogeneous Dirichlet boundary is
applied exactly by the weighted function, and the force of the lifting lug is analyzed. Finally, for the
four topological configurations, the stress analysis is carried out by weighted B-Spline FCM. The stress
distribution and mass of each configuration are obtained. Section 3 carries out the shape optimization
of the four configurations by the GCMMA. The optimization results are analyzed in Section 4. Some
conclusions are given in Section 5.

2. Review on the Weighted B-Spline FCM

2.1. The Implicit Level Set Function

Different from the classical finite element method, the element meshing is transferred to the
grid identifying in the fixed grid. The implicit level set function [25] of a physical domain is usually
employed to determine which grids are inside, outside, or cut by the boundary. Suppose a physical
domain with a level set function Φ(x), the position of an arbitrary point x with respect to the physical
domain can be determined by Equation (1).

Φ(x) > 0 ∀x ∈ Ω
Φ(x) = 0 ∀x ∈ ∂Ω
Φ(x) < 0 ∀x ∈ D\(Ω∪ ∂Ω)

(1)
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where Ω, ∂Ω, and D, denote the physical domain, the boundary of the physical domain, and the
computational domain, respectively. Taking an arbitrary structure for example, the level set function
of the structure is depicted in Figure 2. According to Equation (1), the property of the point x can
be identified.
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For any complicated physical domain consisting of basic geometric elements, the level set function
and R-functions [26] can be formulated by:

Φ =

{
Φ1 ∪Φ2

Φ1 ∩Φ2
(2)

in which
Φ1 ∪Φ2 = Φ1 +Φ2 +

√
Φ2

1 +Φ2
2

Φ1 ∩Φ2 = Φ1 +Φ2 −

√
Φ2

1 +Φ2
2

(3)

where Φ1 and Φ2 denote the level set functions of the basic geometric elements.

2.2. The B-Spline Finite Cell Method

The finite cell method [20,21] is an extension to the core principle and concept using high-order
basis functions to approximate the unknown physical domain. Without losing generality, this paper
focuses on 3D linear elasticity problems. The original physical domain Ωp with boundary ∂Ωp is
embedded into a cubic domain Ω, as shown in Figure 3.
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The strong form of the boundary value problem for embedded domain Ω can be expressed as
−divσ(u) = βf in Ω
u = g on ΓD

σ(u) · n = t on ΓN

(4)

where σ denotes the stress tensor, u is the displacement field, t expresses the traction vector defining
on ΓN, g is the prescribed displacement vector defining Dirichelt boundary condition (DBC) on ΓD,
f denotes the body force on Ωp, and n is the unit outward normal vector on ΓN. The scalar factor β can
be defined as

β =

{
1 in Ωp

0 in Ω\Ωp
(5)

The weak form of Equation (4) can be stated as

a(u, v) = l(v) u, v ∈ H1(Ω) (6)

with the bilinear form being

a(u, v) =
∫
Ω
ε(v) : βD : ε(u)dΩ (7)

and the load function being

l(v) =
∫
Ω

v · βfdΩ+

∫
ΓN

v · tdΓ (8)

in which H1(Ω) expresses the Sobolev space of order 1. v denotes the admissible test displacement in
kinematics. ε and D are the strain tensor and the constitutive elasticity tensor of Ωp, respectively.

Similar to the finite element method, the embedded domainΩ is discretized by a general Cartesian
grid. As illustrated in Figure 4a, cells are simply hexahedrons, and can be classified into physical cells,
fictitious cells, and boundary cells, according to the implicit level set function of Ωp.
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In the B-spline FCM [22–24], the B-spline basis functions are used as the interpolation functions over
the hexahedral cells. The standard parametric domain (see Figure 4b) is mapped to the discretization
of the embedded domain. For 3D problem mapping, it can be easily constructed by taking the tensor
product of corresponding univariate B-spline basis functions.

Ms(ξ, η,γ) = Ni,p(ξ) ·N j,q(η) ·Nh,r(γ) s = i + n · ( j− 1) + m · n · (h− 1) (9)

in which Ni,p(ξ), N j,q(η) and Nh,r(γ) are three univariate B-spline basis functions defined over
Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
, H =

{
η1, η2, . . . , ηm+q+1

}
andΨ =

{
γ1,γ2, . . . ,γk+r+1

}
, respectively. n, m, and

k are numbers of Ni,p(ξ), N j,q(η), and Nh,r(γ), respectively. p, q, and r denote the polynomial degree, in
this paper p = q = r = 2. The following recurrence relation (10) is included by the above expression.

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

Ni,p(ξ) =
ξ−ξi
ξi+p−ξi

Ni,p−1(ξ) +
ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ)

provide : 0
0 = 0

(10)

In this paper, Ξ, H, andΨ are uniform and open knot vectors. At the same time, these original
knot vectors are all defined as {0, 0, 1, 1} in parametric space. The quadratic univariate B-spline basis
functions defined by this uniform and open knot vector are depicted in Figure 5.
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Figure 5. Quadratic univariate B-spline basis functions (q = 2) defined over the uniform and open knot
vector H =

{
0, 0, 0, 1

1 , 1
2 , 3

4 , 1, 1, 1
}
.

Let us assume an arbitrary point P =
{
x, y, z

}T inside Ω; this can be interpolated by the following
mapping relation:

P =
m×n×k∑

s=1

Ms(ξ, η,γ)Ps (11)

where Ps =
{
xs, ys, zs

}T refers to the sth control point, as illustrated in Figure 4c.
The trial functions uh and the test functions vh are defined over Rh, which is a finite-dimensional

subspace. The discrete form of the weak form Equation (6) can be stated as

a(uh, vh) = l(vh) ∀vh
∈ Rh (12)

where v is spanned by the B-spline basis function M. A linear combination of shape functions is
considered concerning the numerical approximation uh.

uh =
m×n×k∑

s=1

Msus = MU (13)
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with

M =


M1 0 0 M2 0 0 · · · Mm×n×k 0 0
0 M1 0 0 M2 0 · · · 0 Mm×n×k 0
0 0 M1 0 0 M2 · · · 0 0 Mm×n×k

 (14)

in which U denotes the unknown displacement vector of control points.
Based on Ritz-Galerkin approach, inserting Equation (13) into Equation (12), the finite cell

formulation, which is identical to the FEM in form, is obtained as

KU = F (15)

where K and F are the global stiffness matrix and the global load vector that can be assembled in the
traditional fashion from all cell stiffness matrices Kc and load vectors Fc, respectively. Kc and Fc are
acquired by

Kc =

∫
Ωc

BTβDBdΩ (16)

Kc =

∫
Ωc

BTβDBdΩ(1)Fc =

∫
Ωc

MTβfdΩ+

∫
ΓNc

MTtdΓ (17)

in which Ωc illustrates one cell domain. ΓNc is the Neumann boundary related to one cell. B is the
strain-displacement matrix, written as

B =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


M (18)

2.3. The Weighted Dirichlet Boundary Conditions

Comparing the FCM with the classical FEM, the difficulty of generating meshes for complex
structures shifts to the problem of implementing boundary conditions. In particular, when the boundary
∂Ωp does not conform to the cells, this problem arises. At present, the weighted method is usually
employed to implement the Dirichlet boundary condition.

In this paper, the weighted B-spline is used to penalize locally the interpolation displacement
field defined by Equation (13). For homogeneous Dirichlet boundary conditions, the prescribed
displacement g applied on ΓD is equal to zero. With the weighted function w(x), an alternative
Equation (13) can be stated as

u(x) = w(x)MU = MU (19)

in which
w(x) = w(x, y, z) = 0 ∀(x, y, z) ∈ ΓD (20)

Therefore, the geometry equation can be addressed as

ε = BU (21)
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where

B =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


M (22)

with

M =


wM1 0 0 wM2 0 0 · · · wMm×n×k 0 0

0 wM1 0 0 wM2 0 · · · 0 wMm×n×k 0
0 0 wM1 0 0 wM2 · · · 0 0 wMm×n×k

 (23)

and
∂(wMi)

∂y
=
∂w
∂y

Mi + w
∂Mi
∂y

(24)

∂(wMi)

∂y
=
∂w
∂y

Mi + w
∂Mi
∂y

(25)

∂(wMi)

∂z
=
∂w
∂z

Mi + w
∂Mi
∂z

(26)

Thus, Equations (16) and (17) are modified as

Kc =

∫
Ωc

B
T
βDBdΩ (27)

Fc =

∫
Ωc

M
T
βfdΩ+

∫
ΓNc

M
T

tdΓ (28)

3. Geometric Representation and Mechanical Analysis

3.1. Geometric Representation Based on Level-Set Function

The basket, as one of the most important components in a geotechnical centrifuge, is used to
contain the inspection model. Figure 1a demonstrates the structure of a typical geotechnical centrifuge,
where the basket consists of the lifting lug, mounting base plate, and a pin shaft, and is at the farthest
end of the rotation radius of the geotechnical centrifuge. As shown in Figure 1b, the shape of lifting lug
may be trapezoidal, but its contour line is not necessarily a simple straight line. Based on the different
strength requirements, it can be designed as circular arcs, quadratic curves, and so on. The material of
the lifting lug is usually 34CrNi1Mo; thus, the upper bound of the von-Mises stress with safety factor 2
is 400 MPa, and Young’s modulus and Poisson’s ratio are 207.5 GPa and 0.3, respectively.

In order to carry out the shape optimization of the lifting lug based on the weighted B-Spline
FCM, the level set function [25], as a competitive parametric modeling method, is adopted in this paper.
Based on the statement described in Section 2.1, the level set functionΦ of the lifting lug established by
Boolean operations is derived as follows.

Φ = (Φ1 ∪Φ2 ∩ (−Φ3)∩ (−Φ4)∩ (−Φ5)∩ (−Φ6))∪ ((−Φ7)∩Φ8 ∪Φ9 ∩ (−Φ10)∩ (−Φ11)∩ (−Φ12)) (29)

in whichΦi(i = 1, 2, . . . , 12) denotes the level set function ofΩi in Figure 6, and the design variables are
included by some of the level set function Φi(i = 1, 2, . . . , 12). With the changing of design variables,
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the value of Φ changes, which leads to a change in the cells properties in the fixed grid. Therefore,
shape optimization can be carried out.
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3.3. Topological Configurations and Related Design Variables

In order to obtain a superior shape solution, four topological configurations forthe lifting lug are
taken into account in this paper, as illustrated in Figure 8.
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Case 1. Original single web. The single web is widely used in the lifting lug structure, supposing
that the outer contour has eight design variables.

Case 2. Porous dual web. In order to reduce the weight of the lifting lug, a topological opening is
carried out inside the web, where the shape of the holes is an ellipse, so each hole contains two design
variables. Therefore, the structure contains a total of 17 design variables.

Case 3. Open deep groove dual web. On the basis of the initial single web, the lifting lug is
grooved to achieve the purpose of weight reduction. The number of design variables is 12.

Case 4. Connected closed dual web. Based on the open deep groove dual web, the connected
closed dual wed with the bottom of the connection to the mount base plate is designed. The total
number of design variables is 13.

3.4. Mechanical Analysis

The lifting lug used to connect the rotating arm and the mounting base plate is taken as the
research object, and the loads are analyzed in combination with the working environment. Generally,
the load type mainly includes two parts, i.e., the centrifugal force caused by its self-mass, and the
tensile stress generated by the centrifugal force of other connected parts. The centrifugal force FC is
represented by Equation (30).

FC = mrω2 (30)

where m is the mass of the lifting lug, r is the radius of rotation of the lifting lug, and ω represents the
rotary angular velocity.

With the high-speed rotation of the centrifuge, the stress σa generated by the centrifugal load of
the mounting base plate and the inspection model of centrifugal test at the joint and the centrifugal
force FC act simultaneously, and the combination of the two causes significant strength problems for
the lifting lug. Assuming that the load caused by the centrifugal loads of the mounting base plate
and the inspection model of centrifugal test are evenly distributed over the edge of the lifting lug
connection, the radial stress of the load is defined by

σa =
F

2πRL
(31)
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where F represents the centrifugal load of the mounting base plate and the inspection model of
centrifugal test, R is the rotary radius of the lifting lug edge, i.e., the distance from the position where
the mounting base plate is attached to the lifting lug to the center axis of the centrifuge, L represents
the width of the edge of the lifting lug.

Based on the loads and boundary conditions stated above, the weighted B-spline FCM is employed
to compute the von-Mises stress distribution of the lifting lug in fixed grid. Figure 9 shows the initial
von-Mises stress distribution of the four cases. A comparison of the maximum von-Mises stress and
mass among the four cases is demonstrated, as described in Figure 10. From these figures, it can be
noted that the maximum von-Mises stresses of the four cases appear at the junction of the lifting lug
and the mounting base plate, wherein both of the maximum von-Mises stress and mass in the case 1
are the largest. The four cases with these topological configurations all satisfy the stress condition with
a safety factor greater than or equal to 2. Thus, in order to obtain a superior solution of the lifting lug
based on the four topological configurations, shape optimization is carried out for the four cases.
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where θ  stands for the vector of design variables characterizing geometric shapes of the lifting lug. 
The objective function is to minimize the mass of the physical domain Ω . In the equilibrium equation 
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4. Shape Optimization

4.1. Shape Optimization Model

In order to solve the problem of designing a light-weight basket which meets the requirement of
the geotechnical centrifuge in terms of strength, shape optimization is implemented. The optimization
model is constructed by 

find θ = [y1, y2, . . . , yly , d1, d2, . . . , dld ]

min m =
∫
Ω
ρdΩ

s.t. KU = F
max

{
σ1, σ2, . . . , σq

}
≤ σ

yi ≤ yi ≤ yi i = 1, 2, . . . , ly

d j ≤ d j ≤ d j j = 1, 2, . . . , ld

(32)

where θ stands for the vector of design variables characterizing geometric shapes of the lifting lug.
The objective function is to minimize the mass of the physical domain Ω. In the equilibrium equation
KU = F, K is the stiffness matrix, U denotes the displacement vector, and F represents the load vector.
The constraints concern the maximum von-Mises stress in the lifting lug being limited by the allowable
value σ. q is the number of nodes of the finite cells. ld and ly are numbers of design variables di and y j,
respectively. yi and yi denote the lower and upper bounds of the ith design variable yi, respectively. d j

and d j denote the lower and upper bounds of the jth design variable d j, respectively.

4.2. The Flowchart of Shape Optimization

The whole optimization solution is based on the weighted B-Spline FCM [23,24] and the
GCMMA [27,28]. The weighted B-Spline FCM analysis process is as follows: including geometric
modeling based on level set function and R-functions, determining the properties of all the cells in fixed
grid, refining the boundary cells with the Quadtree or Octree technique, imposing the homogeneous
Dirichlet boundary condition exactly with the weighted function, and calculating the shape sensitivity.
The optimization solution is implemented by the GCMMA algorithm integrated into Boss-Quattro
optimization platform [29]. A flowchart of the shape optimization based on the weighted B-Spline
FCM and GCMMA is presented in Figure 11.
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4.3. Sensitivity Analysis

In shape optimization based on Equation (32), sensitivity analysis, i.e., stress sensitivity and mass
sensitivity with respect to design variables, is essential for gradient-based optimization algorithms.

For the level set function Φ(x, d) of a physical domain Ω, the Dirac delta function δ̂(x, d) denotes
the directional derivative of the Heaviside function H in the normal direction, i.e.,

δ̂ = ∇H(Φ) ·
∇Φ
‖∇Φ‖

=
dH(Φ)

dΦ
· ∇Φ ·

∇Φ
‖∇Φ‖

=
dH(Φ)

dΦ
‖∇Φ‖ (33)

Then, the mass sensitivity is calculated by

∂m
∂θi

=
∫
Ω
ρ
∂H(Φ)
∂θi

dΩ

=
∫
Ω
ρ ∂Φ∂θi

1
‖∇Φ‖

dH(Φ)
dΦ ‖∇Φ‖dΩ

=
∫
Ω
ρ ∂Φ∂θi

1
‖∇Φ‖ δ̂dΩ

=
∫
Γ
ρ ∂Φ∂θi

1
‖∇Φ‖dΓ

(34)

in which Γ represents the boundary of the physical domain, i.e., Γ =∂Ω.
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Based on the stress-strain relationship σ = Dε = DBU, the stress sensitivity is estimated by

∂σ
∂θi

= DB
∂U
∂θi

+ D
∂B
∂θi

U (35)

where D represents the elastic modulus, U denotes the displacement field, and B is the
strain-displacement matrix corrected by the weighted function.

For the four topological configurations of the lifting lug are considered in Section 2.3. Since the
design variables are all on the free boundary, B is independent of the design variables. Thus, the stress
sensitivity is derived as

∂σ
∂θi

= DB
∂U
∂θi

(36)

According to the equilibrium equation KU = F, the stress sensitivity is deduced as

∂σ
∂θi

= DBK−1
(
∂F
∂θi
−
∂K
∂θi

U
)

(37)

where
∂K
∂θi

=

∫
Γ

B
T

DB
∂(Φ)

∂θi

1
‖∇Φ‖

dΓ (38)

and
∂F
∂θi

=

∫
Γ
ωMTf

∂Φ
∂θi

1
‖∇Φ‖

dΓ (39)

5. Optimization Results

Based on the weighted B-Spline FCM performed in Matlab script and GCMMA implemented in
the Boss-Quattro optimization platform, the shape optimization results for the four cases are obtained.
The final design solutions of the four cases provide us with the minimum mass that removes material
to the maximum extent. Meanwhile, the allowable von-Mises stresses are all still satisfied. The final
design solutions of the four cases of the lifting lug and the von-Mises stress distributions are depicted
in Figure 12.
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The corresponding iteration histories of the von-Mises stress and the mass of the four cases are
shown in Figure 13.
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Table 1. Results of the initial and the final maximum von-Mises stress and mass of the four cases. 

 Maximum Von-Mises Stress/MPa Mass/kg 
 Initial Final Initial Final 
Case 1 396.95 398.25 987.51 915.20 
Case 2 390.03 399.32 909.86 819.76 
Case 3 394.68 399.68 921.60 827.51 
Case 4 390.34 398.72 874.57 781.82 

In Table 1 and Figures 12–14, it can be seen that in contrast to the initial configurations, although 
the maximum von-Mises stresses of the four cases all increased, they still meet the strength 
requirements of the lifting lug, i.e., 

max 400MPaσ ≤ . The mass reduction by shape optimization in the 
four cases is very obvious. Below, the four cases are discussed in detail. 

Case 1: Compared with the initial configuration, the maximum stress change is very small; 
however, by the optimization design for the outer contour of the lifting lug, the final mass was 
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Figure 14a,b compare the maximum von-Mises stress and the mass between the initial and the
final design solutions of the four cases, respectively. The results are listed in Table 1.
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Table 1. Results of the initial and the final maximum von-Mises stress and mass of the four cases.

Maximum Von-Mises Stress/MPa Mass/kg

Initial Final Initial Final

Case 1 396.95 398.25 987.51 915.20
Case 2 390.03 399.32 909.86 819.76
Case 3 394.68 399.68 921.60 827.51
Case 4 390.34 398.72 874.57 781.82

In Table 1 and Figures 12–14, it can be seen that in contrast to the initial configurations, although the
maximum von-Mises stresses of the four cases all increased, they still meet the strength requirements
of the lifting lug, i.e., σmax ≤ 400MPa. The mass reduction by shape optimization in the four cases is
very obvious. Below, the four cases are discussed in detail.

Case 1: Compared with the initial configuration, the maximum stress change is very small;
however, by the optimization design for the outer contour of the lifting lug, the final mass was reduced
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by 72.31 kg, i.e., 7.3%, which is still the largest among the four cases. This indicates that although the
original single web configuration can achieve the goal of weight reduction by shape optimization on
the premise of meeting the strength requirements, the effect of weight reduction is limited.

Case 2: With the maximum stress increasing by 9 MPa based on the shape optimization, the mass
decreases by 90.1 kg from 909.86 kg to 819.76 kg, i.e., by 10%. Compared with the optimized single
web, the weight loss of the porous dual web is about 96 kg, which shows the configuration of case 2 is
better than that of case 1.

Case 3: The maximum stress in the optimized configuration does not change much, but as seen
in Figure 12, the stress distribution changes greatly. The maximum stress in the initial configuration
occurs at the connection hole with the mounting base plate, while that in the final configuration occurs
in multiple places. Additionally, the final mass declines by 94.09 kg based on shape optimization,
i.e., by 10%. In contrast to the optimized single web in case 1, the final open deep groove dual web in
case 3 reduces 87.69 kg, which is less than that of case 2.

Case 4: Compared with the initial configuration, the maximum stress and stress distribution in
the optimized configuration do not change substantially, but the final mass drops by 92.75 kg, i.e., by
10.6%. Compared with the optimized single web, the weight loss of the connected closed dual web is
133.38 kg, which indicates that the final configuration of case 4 is the best among the four cases.

The above results indicate that while satisfying the stress requirement, the final mass of case 4 is the
least. Therefore, considering the matching, cost, and other factors, the optimized shape configuration
of the case 4 is superior to those of the other three cases.

6. Conclusions

The lifting lug, as one key structure of the geotechnical centrifuge, is the focus of this research.
This paper presents an effective and systematic structure design and shape optimization for the
lifting lug with multi topological configurations based on the weighted B-Spline FCM and GCMMA.
It provides a complete shape optimization process for the lifting lug of the geotechnical centrifuge, which
addresses the problem of the light-weight design of the lifting lug while satisfying the requirement of
the geotechnical centrifuge strength. Four topological configurations, i.e., original single web, porous
dual web, open deep groove dual web, and connected closed dual web, are investigated and optimized.
Two main conclusions can be drawn.

First, through shape optimization design based on the weighted B-Spline FCM and GCMMA, the
final mass of the four configurations is greatly reduced compared with the initial configurations, where
the greatest weight loss was observed in case 4 is 10.6%. This indicates that the weighted B-Spline FCM
and GCMMA can be applied for shape optimization of the complex structure in the engineering design.

Second, in contrast to the final single web adopted in the traditional basket design in case 1, the
final configuration in case 4, i.e., connected closed dual web, has the least mass. The final mass was
reduced by 133.38 kg with the centrifuge strength requirement being satisfied. Therefore, the final
configuration in case 4 is superior to other three configurations.

In this work, the design procedure extending the weighted B-Spline FCM and GCMMA into
shape optimization is developed for the rotational structure concerning the important role it plays in
engineering applications. However, our mechanical analysis was restricted to the static loads; vibrating
loads, also as a common load condition during the operation of centrifuges, were not tested. Further
investigation on this problem will make the design of the centrifuge within the FCM and GCMMA
framework more comprehensive.
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