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Abstract: In sports and rehabilitation processes where isotonic movements such as bodybuilding
are performed, it is vital for individuals to be able to correct the wrong movements instantly by
monitoring the trainings simultaneously, and to be able to train healthily and away from the risks of
injury. For this purpose, we designed a new real-time athlete support system using Kinect V2 and
Expert System. Lateral raise (LR) and dumbbell shoulder press (DSP) movements were selected as
examples to be modeled in the system. Kinect V2 was used to obtain angle and distance changes
in the shoulder, elbow, wrist, hip, knee, and ankle during movements in these movement models
designed. For the rule base of Expert System developed according to these models, a 28-state rule
table was designed, and 12 main rules were determined that could be used for both actions. In the
sample trainings, it was observed that the decisions made by the system had 89% accuracy in DSP
training and 82% accuracy in LR training. In addition, the developed system has been tested by
10 participants (25.8 + 5.47 years; 74.69 + 14.81 kg; 173.5 £ 9.52 cm) in DSP and LR training for four
weeks. At the end of this period and according to the results of paired ¢-test analysis (p < 0.05)
starting from the first week, it was observed that the participants trained more accurately and that
they enhanced their motions by 58.08 + 11.32% in LR training and 54.84 + 12.72% in DSP training.

Keywords: expert system; movement modelization; training accuracy; performance enhancement;
injury prevention; sport; human-machine interaction

1. Introduction

Simultaneous monitoring of movements in the training process in sports such as bodybuilding
and weightlifting is a necessity for athletes to train healthily. This allows the athlete to train effectively
without the risk of injury until motor skills related to movement develop. Athletes and trainers are
looking for ways to train most effectively without causing injury. This process is carried out within
the framework of training programs as in all sport branches. Visual training programs designed for
more accurate and safe training use visual perception and motor tasks based on it [1]. By using these
programs, potential injury risks may decrease and sensory processes and motor movements may
become faster and more accurate [2].

In the literature, there are studies about the optimization of sports technique and the use of more
effective training mechanisms and computerized vision and human-machine interaction in sports on
rehabilitation processes [3]. The methods developed for this purpose are generally divided into two
groups as observational and direct measurement [4]. Data collection in the observation method is based
on subjective observations or on a simple estimation of angles provided from videos or images [5].
This method does not restrict the movements of the athletes and does not disturb the athlete [6].
However, it is costly to place multiple cameras for information in suitable locations where visibility
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is not obstructed in gyms [7]. In the direct measurement method, data is collected through sensors
attached to the body of the athlete. There are three main methods in this group: optical, mechanical,
and magnetic [8-10].

In an optical system, the correct placement of markers is crucial. The fact that a marker is
misplaced, slipped, or not seen by the system before training can lead to incorrect results in the
monitoring process [11,12]. Magnetic and mechanical systems can restrict the movement of the athlete
due to the need for cabling [13,14]. Mechanical systems have to be calibrated frequently because of
sweating or bumping during training [15]. These methods cannot frequently be used in a real gym
environment due to the time required for calibration—setup time and preparation (sensor placement,
installation, cabling, etc.).

An alternative to all this is Kinect, a second generation RGB-D type sensor (2014) which is notable
for its ease of setup and usage. This sensor includes an RGB camera, an infrared camera, and a
microphone mechanism. Kinect uses its own proprietary algorithm to create 3D movements to enable
monitoring movements without the need for any special equipment or markers [16]. Studies on the
ability to monitor body movements during static and dynamic balance tests of Kinect have shown
that this sensor has a wider accuracy range compared to video movements capture systems [16,17].
In comparison with systems with gold standards (>99% accuracy), it is stated that this sensor could be
used in biomedical, sports, and rehabilitation fields [18,19].

The methods used in the literature to monitor and evaluate human movement are divided into two
parts: template-based and pose-based [20-22]. In template-based methods, a movement or movement
group is recorded and analyzed sequentially to form a model [23,24]. The monitored movements are
used to define the movement or activity through this model. In this approach, results are obtained
depending on whether the monitored movement is defined by the template or not. The pose-based
approach does not require specific examples and trained models [25,26]. Instead, a key dynamic
set of rules for the movement is defined, indicating how much the performed movement with the
given feedback is similar to the one that is defined [27,28]. When these methods are used in the gym
environment, they give information about what the movement is, but cannot give any correction data
about how the distortions in movement can be corrected.

When the studies using Kinect in the field of sports and rehabilitation were examined, it was
observed that in the pose monitoring studies of Cervantes et al., movement distortion was shown
only in the respective joints by comparing the results they obtained during training with the pose
template they created before and finding the movement matching rate [29], that Khazaeli et al., gave
feedback by manually examining the results of the movement follow-up after training [30], and that
Elaoud et al., performed kinematic analyses of handball throwing poses after training [31]. Furthermore,
Scherer et al., investigate the performance monitoring and user satisfaction through the similarity of
movement with the pose monitoring-based system they had developed for supervised training at
home [32]. However, it has been observed that all these systems were unable to give users simultaneous
feedback on how to train more effectively and efficiently by correcting the wrong movement.

In their studies in the field of sports and rehabilitation for hemophilia patients, Mateo et al., analyzed
and conducted performance analysis on similarity with Kinect through dynamic time warping
(DTW) by examining movements affecting single and multiple joints through posing follow-up [33],
Urturi et al., designed a system for wheelchair users and combined physical skills with
entertainment [34], Yu et al., analyzed user performance through movement similarity by processing
pose data from tai chi exercises obtained with Kinect through DTW [35] while, on the other hand,
Su aimed to help knee rehabilitation with a bike racing game he developed using Kinect [36]. However,
it was seen that these systems were limited only to patients in the area where the study was conducted
or with similarity in movement, and that they are not suitable in terms of movement accuracy for use
in sports gym environment and weight training with isotonic movements. In an another remarkable
study, a recurrent self-organization structure made by Parisi et al., was examined for three different
weightlifting exercises and it attempted to give simultaneous feedback to the user [37]. However,



Appl. Sci. 2020, 10, 611 30f24

also in this study, the effect of the system on physical-cognitive development with its ability to increase
training efficiency was not tested for long-term use.

In addition to these studies, there are also systems that perform posture and pose analysis by
using Kinect in the treatment of Parkinson by reaching the shapes and in the treatment of balance
disorder by following walking on a straight line [38—40]; also in these studies, however, it was shown
that the abovementioned deficiencies were still present.

When all these mentioned studies are examined, the 10 main features that should be considered
in an athlete support system can be listed as follows. These are:

e Simultaneously work (S);

e  Determination of movement accuracy (MA);

e Giving feedback for movement correction (F);

e  Skeleton extraction (SE);

e  Usability in training (UT);

e  Usability in rehabilitation (UR);

e Being oriented towards physical ability (PA);

e Being oriented towards cognitive ability (CA);

e To be able to make pose analysis (POA);

e  The ability to perform movement model analysis (MMA).

All these features can be simultaneously used during training or rehabilitation processes; in
particular, it may be useful for beginner athletes to perform healthy training in sports such as body
building and weightlifting, to perform an instant performance evaluation until the physical and
cognitive skills of the athlete related to movement develop, to prevent the injury process by intervening
during the training when necessary, or to increase the efficiency of rehabilitation processes.

Based on these elements, a new athlete support system is proposed in our study using Kinect V2
and Expert System as shown in Figure 1.

Kmect V2
Data

Motion Model Based
Real-time Feedback Rule Design

Movement

ime Training Data

Figure 1. Example view of the proposed system.

In addition, a comparative summary of these studies and the characteristics of our study are
presented in Table 1.
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Table 1. Comparison of the Features of Presented System with Other Systems. S, simultaneously work;
MA, determination of movement accuracy; F, giving feedback for movement correction; SE, skeleton
extraction; UT, usability in training; UR, usability in rehabilitation; PA, being oriented towards physical
ability; CA, being oriented towards cognitive ability; POA, to be able to make pose analysis; MMA,
the ability to perform movement model analysis.

£
>
n
e

Systems UT UR PA CA POA MMA

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38-40]
Proposed System

2222 XX |»
2 K X2 2 X2 2 <2<
2 XX XX XXX XX X| ™
LR X111
2 KL X X 2 <2<
L R 22 XL X X X<
<X XL 2Ll
L XX XL 2 XX XX
<L X222 <L
2 2 <2 X X2 X X< X

In the proposed system, the rule-based Expert System, which uses the calculated angle and
distance data from Kinect data according to the developed movement model, primarily determines the
accuracy of athletes’ movements and distortions in movements. It then gives the user simultaneous
feedback that tells them how to correct the movement. In addition, in the simultaneous monitoring
and feedback process, data such as the joint angle and distance associated with training are presented
to the athlete to provide more accurate training.

The tests of the proposed system were conducted under the supervision of a certified trainer in DSP
and LR training with 10 volunteer participants. The reason for choosing DSP and LR movements is that
both movements are the most commonly used movements in sports training and rehabilitation processes
and affect the shoulder area of the upper extremity where the most injuries are experienced [41].
In these trainings, the feedback given by the system was recorded and the decision-making adequacy
of the system was examined by comparing it with the recommendations of the trainer.

In addition, participants were asked to use the system for four weeks in DSP and LR trainings.
Within the period, they have benefited from the outputs and recommendations of the system in their
trainings. During the process, the average displacement data of the related joints was recorded in
each training performed. Thus, the change in the performance of the participants and the effect of the
system on physical-cognitive development were analyzed through this data as stated in [42].

2. Materials and Methods

2.1. Isotonic Movements

Isotonic movements are movements in which muscle tendons are shortened for the purpose of
creating movement. Any movement from weightlifting to swimming or squats is in this category [43].
In sports, isotonic training consists of isotonic movements where the most force is applied to a particular
muscle or muscle group to increase muscle mass or performance in general [44]. Isotonic movements
form the basis of many training protocols because most human activity and athletic performance
require movements like these. In addition, muscle endurance can also be increased through these
movements [44,45].

2.2. Data Analysis

The data analysis first uses Excel and then the Statistical Package for Social Sciences (SPSS
version 25—Trial; SPSS Inc.; Chicago, IL, USA). The training efficiency and the effect of the system
on athlete development were done through paired t-test, independent t-test, and effect size as stated
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in [46—48]. The paired t-test compares the averages of a variable’s values observed in two different
states. These two situations usually occur through the analysis of the data obtained from the stages of
a method to be applied [49]. Thus, the aim was to examine the weekly physical ability development
as stated in [50]. The results obtained from paired ¢-test are evaluated based on the p value and the
effect size (Cohen’s d for correlation between two variables) [51] as stated in [42,52]. Independent ¢-test
and effect size were used to examine cognitive ability development by examining changes in joints
as weekly pairs from the beginning to the end of the trial period as stated in [53]. Independent ¢-test
determines whether there is a statistically significant difference between the means in two unrelated
groups using p value and the test of Levene [54].

In the SPSS package program, the p value is given by the abbreviation Sig. (2-tailed) and refers
to the abbreviation for relevance. The smaller the p value, the greater the evidence for statistically
significant difference. It is stated that there is a significant difference if the value is between 0.01
and 0.05, a highly significant difference if it is between 0.001 and 0.01, and a very highly significant
difference if it is smaller than 0.001. In our study, the significance was accepted as p < 0.05 as stated
in [55]. Effect size (d) refers to the difference between the means of two events or groups [56]. It is
stated that there is a weak effect size if the value is less than 0.2, a moderate effect size if it is between
0.2 and 0.5, a large effect size if it is between 0.5 and 0.8, and a strong effect size if it is greater than 0.8.

2.3. Angles between Joints and Kinect V2

In our system, we used Kinect V2, consisting of an RGB camera capable of shooting at 30 frames
per second (1920 x 1080 pixels), a depth sensor (512 x 424 pixels) and a microphone. The operation of
the depth sensor in Kinect works according to the 3D depth detection principle by sending IR (infrared)
rays to the object in front of it and measuring the time taken for the reflected rays to return (time of
flight) [57,58]. The 3D depth is calculated with the help of an algorithm belonging to Kinect running
in the background and thus makes it possible to follow the skeleton of the users [59]. As shown in
Figure 2, the data from here were used to express the 3D positions of the joints by vectors.

Figure 2. Distance and angle between joints.
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The depth of any pixel in each depth data frame obtained from Kinect can be converted to
three-dimensional coordinates according to the principle of triangulation (1). In this way, the 3D
coordinate of any joint is obtained with the information obtained from the sensor.

(xp—py/2)—tan(6y,/2)

X = ( )ph/Z( /) *2Z)p
Pp—yp)—tan(0y /2
Y:HT*ZP 1)
Z =1z

Equation (1) x, refers to the horizontal coordinate of a pixel in the depth image, y, to the vertical
coordinate of a pixel in the depth image, z, to the depth value of a pixel in a given coordinate, pj, to
the total number of pixels in the horizontal direction, p, to the total number of pixels in the vertical
direction, 0y, to the horizontal angle of view of the IR camera and 0, refers to the vertical angle of view
of the IR camera. Based on Equation (1), vectors were created for the joints by finding their coordinates
and the dot product called multiplication [60] was carried out. Mathematically, dot product is the
process that takes two vectors as a value and returns a scalar value as the result. If we explain the
example shown in Figure 2, presented in dot product (2) are the non-zero A vectors formed between
the wrist-elbow and the non-zero B vectors formed between the elbow-shoulder, and the two vectors
are identified as A = <Ay, Ay, A3, ... ,A,>and B=<Bq, By, B3, ..., B;>.

n
A*B:ZAi*Bi @)
i=1

Here, A = a1i + apj + ask and B = byi + byj + b3k are defined in the R3 coordinate system. With the
data obtained from Equation (2), the angle ® between these vectors is found using Equation (3).

AxB
O = arccos(—) 3
AT+ Bl )

In the continuation, as shown in Equation (4), the distance d between the joints is calculated with
the data obtained for each joint coordinate by using Equations (2) and (3).

(4)

2.4. Modeling of DSP and LR Movements

The methods used to process the data obtained during training are usually focused on the
similarity of pose and movement. Expert poses are used to obtain the most accurate movement,
but during these and also during different weights in the gym environment, there is the occurrence
of either differences in movement between the experts or due to the fact that one movement which
was performed cannot be performed exactly the same again [61]. In addition, an injury can occur
during the performance of training exercises until the movement reaches its final form [62]. Therefore,
the main thing to note when obtaining the training movements used in the evaluation is that instead of
analyzing the final form of the obtained pose or movement the process from the beginning to the end
of the movement can be modeled in a way that does not lead to injury.

For this purpose, movement models were designed for isotonic DSP and LR movements by
consulting the opinions of faculty member of Physical Education and Sports Teaching (Karamanoglu
Mehmetbey University) and a certified trainer (Antalya Sport Center). In these models, the changes in
angles of shoulder (A2 and A3), elbow (A1l and A4), wrist (A13 and A14), hip (A7 and A8), knee (A9 and
A10), ankle (A11 and A12), and spine (A5) are obtained through the data of Kinect during performing
the movements shown in Figure 3.
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Lateral Raise Angles

Figure 3. Designed movement models: (a) lateral raise (LR) model; (b) dumbbell shoulder press
(DSP) model.

In the movement models, it is defined how the movements should be performed and warnings
are given for correction when the movement is incorrect.
If the model created for LR training is explained as shown in Figure 3a,

e  You should be standing upright (Equation (5)) with a dumbbell in each hand in the range of
170-180° (A5) [63]:

©)

Ry — 1, 170 < A5 < 180
1= 0, Otherwise

e  The distance between the feet (A11-A12) should be slightly narrower than shoulder width (A2-A3)
and slightly more than the width of the hip (A7-A8) (Equation (6)) [63,64]:

(6)

R, — 1, distanceaq1_a12 < distancepr_a3 And distancepry_ag < distanceai1-a12
2= 0, Otherwise

e  Arms should be opened at the elbows (Al and A4) in the range of 140-160° (Equation ((7)) [65]:
Re — 1, 140 < A1 <160 and 140 < A4 < 160 @
3= 0, Otherwise

e  The arms should be raised up sideways until the elbows (Al and A4) form an angle of 15-30° at
shoulder level (A2 and A3) (Equation ((8)) [63,65]:

< A < d15 < 04344 <
R4:{1,15_6A1A2_30an 5< A3A4—30 (8)

0, Otherwise

e At the last point of movement, the wrists (A13 and A14) should be high enough to create 10-30°
with the elbows (Al and A4) (Equation ((9)) [65,66]:

< 13 < d10 < 414 <
R5_{1,10_9A1 A13_30un 0—9A4A14—30 (9)

0, Otherwise

If the model created for DSP training is explained as shown in Figure 3b,
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e  You should be positioned upright when the movement is made by sitting, at a 90° angle (A5) and
when the movement is made by standing, at 170-180° angle (Equation ((5)) [63];

e Elbows (Al and A4) should have a vertical angle of 90-100° on the arms (Equation ((10)) [67,68]:

1, 90 < A1 <100 and 90 < A4 < 100

Re = { 0, Otherwise (10)

e  Dumbbells should lie in a vertical line, arms should lie on top of the head and be pushed almost
until the dumbbells reach the point of touch (Equation (11)) [66,67]:

(11)

R 1, distancepq3_a14 < distancepr_a3 And distancepr_ag < distanceai3_a14
7 = .
0, Otherwise

e  Elbow (A1-A4) angles should be 160-170° (Equation (12)) to maintain tension in muscles [67,69]:

(12)

Re — 1, 160 < A1 <170 and 160 < A4 <170
8~ 0, Otherwise

When the movement is performed correctly, the user gets a “Good Posture” message on the screen
as positive feedback as stated in [70], and when it is done incorrectly, the user gets as feedback the
message shown in Table 2.

Table 2. Simultaneous Warnings Given to User.

Warning No. Warnings

—_

Please stand upright
Feet should be slightly narrower than the shoulder
The angle of the arm with the elbow is small
The elbows should not be below the shoulder line, please choose lighter weights
The wrist should not be below the elbow line
The elbows should be positioned at right angles
The elbows and shoulders are not aligned, please push up the weights or choose lighter weights
Raise your elbows
Good Posture

O 0NNl WN

2.5. Rule-Based Expert System Design

The Expert System is a decision support software created by copying one or more
individual judgement capabilities and decision-making processes encountered in specific areas [71].
The information and logical inference mechanism used by this program is modeled according to the
information and logical inference mechanism of the person or persons who are experts in the field [72].
In addition, the decision structures that will be used in the modeling process must have unquestionably
accuracy. Thus, users can be guided by Expert System in accordance with their needs and wishes.
One of the most important parts of expert systems, the information database, is created and updated
as decision rules according to the knowledge of the person or persons who are experts in the field [73].
By creating these rules, an “If-Then” structure is used. These structures are expressed as follows:

If (one or more condition = True) then (outcome/result)

Multiple conditions can be used when creating this structure. These conditions are linked using the
terms “And” and “Or” depending on the situation. As an example, if two conditions are checked,
both conditions are verified using the expression “And”. However, if only one of the two conditions is
sufficient, the expression used is “Or”. An example algorithm of a sports area can be expressed as
follows (Algorithm 1).
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Algorithm 1: Example algorithm of a sports area

Input: Joint Angles | = (Elbow anglel, Elbow angle2, Shoulder anglel, Shoulder angle2, Spine angle)
Output: Accuracy of Movement

If (Elbow Angle Difference < 10°) and (Shoulder Angle Difference < 15°) and (Spine Angle > 170°)

Then

“Correct Movement”
Else

“Wrong Movement”
End If

The combined movement models developed for this purpose are shown in Table 3 with an
accuracy table consisting of 8 rules (R1-R8) and 256 conditions according to the change in the angle of
movement for use in Expert System in the study. In this table, Y is defined as output values, “1” as
correct LR movement, “2” as correct DSP movements, and “0” as incorrect movements. This process
has been realized by determining the other rules that can be used jointly according to the execution of
the movement and combining the main rules of the movement.

Table 3. Accuracy Table for DSP and LR.

Case. R1 R2 R3 R4 R5 Ré6 R7 R8 Y
0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 1 1 1 1
135 1 0 0 0 1 1 1 1 2
248 1 1 1 1 1 0 0 0 1

In Table 3, to create a rule base that can be used for both movements, the cases where the rule
is provided are marked with “1”, the cases where the relevant rule is not provided are marked with
“0”, and the cases where the relevant rule is unimportant according to the action made are marked
with “X”.

In order to provide movement correction information depending on the movement flow,
the warnings given in Table 2 according to the correct movement and the incorrect movements
that can be corrected are assigned as output states. Hence, a table of accuracy that can work according
to the flow of movement is obtained and presented in Table 4.

Table 4. Simplified Rule Base for DSP and LR.

Case. R1 R2 R3 R4 R5 Ré6 R7 R8 Y

31 0 0 0 X X 1 1 1 2

199 1 X 0 0 1 1 1 1 2
249 1 1 1 1 1 0 0 X 6

Shown in Table 5 are the two example rules together with the warnings (Y), exit states, and rule
states (Q1-Q8) given by the system through determining the 12 main rules that can be used for both
training in this table.
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Table 5. Sample Output Values of Main Conditions.

Rules Conditions

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Qs

1 Ixxx1111 1 X X X 1 1 1 1
2 111x1x11 1 1 1 X 1 X 1 1

Y Output Cases

2.6. System Architecture

The movement data in our system during training is obtained through Kinect via a USB 3.0
connection. The data received are in the form of depth data. The system is written in C# language.
The computer in which the system is run has a i7 2.4 GHz processor, 12 GB of RAM, 1 TB HDD, and a 4
GB external graphics card.

Skeletal inference is performed as shown in Figure 4a by processing with SDK 2.0, which is part
of Kinect that we use in the system and can be downloaded from Microsoft’s official website.

Users do their training at a distance of 2.5 m from Kinect, which is placed on a tripod 0.8-1.2 m
high from the ground, as described in [33,59]. In addition, joint angles and inter-joint distances are
calculated using the data obtained from skeletal extraction (see Section 2.3). The obtained angle and
distance values are sent to Expert System as input values over the running memory.

The Expert System, which we develop according to the movement model, consists of 7 sections
(Figure 4b). These are expert interface, Expert System rule base, system database, running memory,
inference module, knowledge base editor, and user interface.

Rules can be added to the expert system through the expert interface. In the interface shown in
Figure 5a, experts can enter the angle, distances, states of accuracy, and warnings about the training
system. The created rules are made available in Expert System by converting them into “If~Then”
structures in the knowledge base editor before they are added to the rule base, as shown in Section 2.5.

This process is done by compiling the converted “If-Then” structures in the interface as a
dynamic-link library (DLL) both before and during running [74,75]. The rules created here are classified
according to the type of movement and displayed first in the rule base and then sent to the database.
On the other hand, during usage, the rules are retrieved from the database as DLL and transferred to
the rule base [76], then processed in the inference engine.

The inference engine processes by taking rules from the running memory and rule base on which
training data of the user is arranged for use. The inference engine performs three main functions:
matching, selecting, and executing. Based on the data from the inference engine, it looks for a match in
the rules on the rule base. This matching is done in two ways as forward and backward chaining in
Expert System [77]. In terms of ease of use in our system, the forward chaining model is preferred as
used in [78]. It executes the specified operations by selecting rule or rules about matching (creating
movement accuracy and movement correction data) as shown in Figure 6.

Figure 6 illustrates the work of the inference engine in a case where the rules 2-3, 4-5, and 7-8
are active. Inference engine processes rule according to their relationship to each other (availability
in the DSP and/or LR movement, rule scope). This process consists of two parts. The first part is the
exclusion of rules by using OR procedure in the rules used for the same movement. In this process,
warning selection is made by considering which rule is more comprehensive. In the second part,
AND procedure is performed in rules used for different movements and a warning is extracted. In this
process, a warning selection is made for both rules by considering which rules contain more common
features. By applying the same operations to the warnings, the warning selection is made, and the
inference engine concludes.
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e

Figure 6. The working process of inference engine.

The inferences obtained here are sent to the user interface. The user interface is in use for
movement selection, for determining the countdown time before training, and to give the angle data
related to the training and the inferences obtained from the Expert System to the user (Figure 5b).
With the help of this interface, the user can choose the training and the countdown period before
training. This selected information is used for the selection of training through sending of it to the
inference engine. The information provided by this interface to the user are the results obtained from
the training data and inference engine. After all the parts we have explained have been integrated
together, users were asked to practice using the weights system, and the obtained data are presented in
the Results and Discussion section.

2.7. Participants and Setup

A total of 5 men and 5 women (with at least 2 years of experience in strength training) voluntarily
participated in our study. Our study was carried out under the supervision of a certified bodybuilding
trainer in Antalya Sports Centre. Participants were informed about the content of our study and a
signed consent form was obtained from all of them. The number, age, gender, weight, and height
information of the participants are shown in Table 6.

Table 6. Information about gender, age, height and weight of the participants.

Participant No.  Age Gender Weight (kg) Height (cm)

1 21 Male 80 163
2 25 Male 82.3 178
3 29 Male 87 180
4 33 Male 85 177
5 37 Male 104.6 193
6 27 Female 70 180
7 22 Female 62 160
8 24 Female 60 172
9 19 Female 58 167
10 21 Female 58 165

3. Results and Discussion

3.1. Kinect V2 Data Obtained from the Trainings

An example of the data obtained by using the system is shown through the marking of each
repetition over the results of participants 3 and 6. Figure 7a shows the right and left shoulder angles as
well as differences in these angles and spine angles of participant number 3 in LR training when using
a 12.5 kg dumbbell.
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Figure 7. Sample LR and DSP training results: (a) angle displacement for LR; (b) angle displacement
for DSP.

When the figure is examined, distortions are observed at the waist angle during the movement
in Rep2, Rep3, and Rep5. When we consulted our faculty member about this situation, it was seen
that the support needed for movement was taken from the back which, as mentioned in [79], may
cause neck and spine diseases in later stages by causing excessive cervical spine bending. Furthermore,
the shoulder angles are within the acceptable distance in all repetitions (see Section 2.5), the difference
in elbow angles is that the left elbow is not sufficiently open which, as stated, has been observed to
cause damage and injury to the joints by distorting the shape of the movement due to the high weight
used [80].

Figure 7b shows the data of participant number 6 obtained during DSP training using a 25 kg
dumbbell. When the figure is examined, it is seen that in the process of lifting the weight up in Repl
and Rep4, by taking the necessary support from the back, there is a distortion of the waist angle and the
movement has been performed incorrectly, as indicated in [81]. In Rep2, Rep3, and RepS, it is observed
that the angle of movement is within acceptable limits (see Section 2.5) and that the movement is
performed correctly. In this case, the system gives the user the message “Good Posture”. It is observed
that in Rep1, Rep4, Rep5, Rep6, Rep7, Rep8, Rep9, and Rep10, the right elbow angle is less than the left
during weight reduction, and when we consult our faculty member, it is seen that this situation can
cause stress and injuries in the rotator cuff muscle group by disrupting the balance of movement as
stated in [82,83].

The same situation was seen in the difference between elbow angles in Rep7, Rep 9, and Rep10
during weightlifting. These data, obtained from the system and related to the movement of the user,
can also be followed by the user via a monitor. Some of the data obtained from the system belonging
to other users are presented in Figure 8.

3.2. Decisions of Rule-Based Expert System

As mentioned in the Introduction, the accuracy of the data obtained in the systems examined
in other studies was based on either movement similarity or similarity of pose. However, in our
study [84-86], since differences can occur even at different weights in isotonic movements made with
weights in the gym environment, the accuracy of the decisions made by the system was compared with
the decisions of the certified coach. For this purpose, the participants were asked to perform DSP and
LR exercises for one set of 10 repetitions (50%-90% load, one set of 10 reps), as in [87]. The decisions of
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the system and of the trainer were made by recording and comparing a total of 200 decisions in both
training sessions. In this comparison, the coach was asked to make his decisions as good, moderate,
and bad, as stated in [37]. All decisions obtained in this comparison are presented in Table 7 on the
basis of both Expert System (with system warnings) and trainer.

Figure 8. Data of other participants obtained from LR and DSP trainings: (a) results of participant
number 1 for LR; (b) results of participant number 2 for DSP; (c) results of participant number 4 for
DSP; (d) results of participant number 5 for LR; (e) results of participant number 7 for LR; (f) results
of participant number 8 for LR; (g) results of participant number 9 for LR; (h) results of participant
number 10 for LR.

In order to facilitate the procedures, good and moderate movements of the participants in the
trainer evaluations were accepted as the correct movements as in [88,89]. In Table 7, the decisions
taken by the system are matched by the decisions of the trainer by 89% in DSP training, 82% in LR
training, and 85.5% in total. In addition, the results obtained from the system for LR training have the
same achievements as the results obtained in [33]. This suggests that the system is suitable for use in
the home-gym environment, as stated for the sports field [90] and in the rehabilitation area [91].
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Table 7. Comparison of the System and Trainer Decisions.
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X: bad movement; v/: good movement; O: moderate movement. For system warnings, see Table 3.
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3.3. The Effect of the System on Physical and Cognitive Development

In order to examine the effect of the system on physical and cognitive development, participants
were asked to perform LR and DSP trainings (4 sets, 8-12 reps, and 70%-90% load) using the system
for four weeks. Glenohumeral joints (right and left shoulder) and spine displacement values of the
participants were recorded via the system during the trainings. The recorded data are shown in
Figure 9 as the amount of position change in the joints (cm) by type of training, participant number,
and joint type. The data obtained in Figure 9 are presented in Appendix A as Table A1.
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Figure 9. Joint displacement of participants during a four-week training period. DSP: dumbbell
shoulder press; LR: lateral raise; GJLweek1: glenohumeral left joint week 1; GJRweek1: glenohumeral
right joint week 1; Spweekl: spine week 1; GJRweek2: glenohumeral right joint week 2; Spweek?2:
spine week 2; G]JLweek2: glenohumeral left joint week 2; GJRweek3: glenohumeral right joint week 3;
Spweek3: spine week 3; GJLweek3: glenohumeral left joint week 3; GJRweek4: glenohumeral right
joint week 4; Spweek4: spine week 4; GJLweek4: glenohumeral left joint week 4. (a) left glenohumeral
joint displacement for DSP; (b) right glenohumeral joint displacement for DSP; (c) spine displacement
for DSP; (d) left glenohumeral joint displacement for LR; (e) right glenohumeral joint displacement for
LR; (f) spine displacement for LR.

When Figure 9—which is showing the average weekly displacement of glenohumeral joints and
spine affected by DSP and LR training—was examined, it was observed that users started to do their
movements using only the related muscles without using momentum, and minimized the risk of
injury in this process as stated in [85]. Furthermore, in these data, an average enhancement of 54.84%
+ 12.72% in DSP training and 58.08% + 11.32% in LR training is observed. This indicates that each
participant has performed their training more stably at the end of the system usage process, as stated
in [92]. A detailed analysis of these recovery rates is shown in Table 8.

The data shown in Figure 9 were analyzed using SPSS via the paired t-test according to the
significance criterion p < 0.05, and the results are presented in Table 9. In this table, the results of the
paired t-test analysis of the weekly joint displacement are shown in pairs (1-2, 1-3, 1-4) according
to the training of the participants, as available. In addition, d values are added to the last column of
the table.
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Table 8. Improvement Rates Achieved at the End of System Usage Process. GJL% means glenohumeral
left joint % improvement; GJR% means glenohumeral right joint % improvement; S% means spine
% improvement.

Participant No.
1 2 3 4 5 6 7 8 9 10

GJL% 4725 4529 5349 66.15 7884 6620 53.04 4947 4696 59.10
DSP GJR% 4824 3678 6322 5480 4558 7554 51.84 6414 3761 51.87

Improv.ement S% 7412 1859 5334 51.34 6375 7260 5820 59.65 5415 43.99
According to
Training Type GJL% 50.08 3815 6047 6521 4612 7581 6791 6232 59.36 43.06

LR GJR% 4319 4359 63.65 6701 4776 8030 5425 5342 5832 58.10
S$% 5795 3851 61.63 59.02 5208 81.10 71.58 5796 5741 66.96

Table 9. Paired t-test Results (CRITERIA = CI (0.9500)) of the Four-Week Training Period. DSP:
dumbbell shoulder press, LR: lateral raise, GL: glenohumeral left joint, GR: glenohumeral right joint,
S: spine, GL1: glenohumeral left joint week 1, GR1: glenohumeral right joint week 1, S1: spine week
1, GR2: glenohumeral right joint week 2, S2: spine week 2, GL2: glenohumeral left joint week 2,
GR3: glenohumeral right joint week 3, S3: spine week 3, GL3: glenohumeral left joint week 3, GR4:
glenohumeral right joint week 4, S4: spine week 4, GL4: glenohumeral left joint week 4.

Paired Differences

Pairs No. Pair Groups 95% Confidence Interval t df Sig (2-Tailed) Effect Size (d)
Mean Std. Dev Std. Err. of the Difference
Mean
Lower Upper
Pair 1 DSP_GJL1-DSP_GJL2  0.82100 0.58936 0.18637 0.39940 1.24260 4405 9 0.002 0.328
Pair 2 DSP_GJL1-DSP_GJL3  1.99400 1.04455 0.33032 1.24677 2.74123 6.037 9 0.000 0.884
Pair 3 DSP_GJL1-DSP_GJL4  2.93600 1.23701 0.39118 2.05110 3.82090 7.506 9 0.000 1.351
Pair 4 DSP_GJR1-DSP_GJR2  1.06900 1.14143 0.36095 0.25247 1.88553 2962 9 0.016 0.383
Pair 5 DSP_GJR1-DSP_GJR3  2.17300 1.69575 0.53624 0.95994 3.38606 4.052 9 0.003 0.814
Pair 6 DSP_GJR1-DSP_GJR4  2.85100 1.85241 0.58578 1.52586 417614 4867 9 0.001 1.093
Pair 7 DSP_S1-DSP_S2 0.78800 0.57569 0.18205 0.37618 1.19982 4329 9 0.002 0.288
Pair 8 DSP_S1-DSP_S3 1.68400 1.59516 0.50443 0.54289 2.82511 3338 9 0.009 0.698
Pair 9 DSP_S1-DSP_S4 2.43900 1.59002 0.50281 1.30157 3.57643 4851 9 0.001 0.998
Pair 10 LR_GJL1-LR_GJL2 0.96600 0.61281 0.19379 0.52762 1.40438 4985 9 0.001 0.744
Pair 11 LR_GJL1-LR_GJL3 2.48900 0.93475 0.29560 1.82032 3.15768 8.420 9 0.000 2.114
Pair 12 LR_GJL1-LR_GJL4 3.61400 1.28388 0.40600 2.69556 4.53244 8901 9 0.000 3.225
Pair 13 LR_GJR1-LR_GJR2 1.55200 0.88919 0.28119 0.91591 2.18809 5519 9 0.000 1.150
Pair 14 LR_GJR1-LR_GJR3 2.98800 1.18392 0.37439 2.14108 3.83492 7981 9 0.000 2.364
Pair 15 LR_GJR1-LR_GJR4 3.71900 1.57827 0.49909 2.58998 4.84802 7452 9 0.000 2972
Pair 16 LR_S1-LR_S2 2.06300 1.10056 0.34803 1.27571 2.85029 5928 9 0.000 0.630
Pair 17 LR_S1-LR_S3 1.40200 0.74800 0.23654 0.86691 1.93709 5927 9 0.000 0.442
Pair 18 LR_S1-LR_S4 4.80100 2.03101 0.64226 3.34810 6.25390 7475 9 0.000 1.686

The results of the analysis indicate a significant change in physical ability (p < 0.005) in DSP
(Pair 1-9) and LR (Pair 10-18) training using the system from the first week. This change continues
throughout the process. When the results were examined in terms of effect size, weak and medium
effects were observed in the pair 1, pair 4, and pair 7 data in the comparison of the first and second
weeks of DSP training, whereas large and strong effects were observed in the other pairs starting from
the second week. In LR training, only medium and large effects were observed in pair 10, pair 16,
and pair 17, while the remaining pairs had strong effects. These results support a significant change in
physical ability according to the p value.

To examine the cognitive development during the training process, an independent t-test was
applied to the left glenohumeral joint, right glenohumeral joint, and spine data of the 1st and 4th
weeks. The results obtained from this analysis are shown in Table 10 with d values.

Table 10 is examined primarily according to the Sig. value (Levene’s test). If this value is less than
0.05, the variances are not homogeneous. In this case, the equal variances not assumed line is used.
However, if the Sig. value is greater than 0.05, it is decided that the variances are homogeneous. The p
and d values (Sig. (2-tailed)) used in these cases are shown in the table as underlined.
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Table 10. Paired t-Test Results (CRITERIA = CI (0.9500)) of the Four-Week Training Period. DSP:
dumbbell shoulder press, LR: lateral raise, S: spine, GJL: glenohumeral left joint, GJR: glenohumeral
right joint, week 1-4: joint data of week 1 and week 4.

Independent Samples Test

Levene’s Test
for Equality t-Test for Equality of Means
of Variances

95% Conf. Interval of

i Sig. i Std. Err. the Difference
FooSie A oqjeq)  MeanDiff Thiy
Lower Upper Effect Size

DSP GJL Eq. var. assum.  4.531 0.047 3.022 18 0.007 2.93600 0.97154 0.89488 497712 0.95564

Week 1-4 Eq. var. not as. 3.022 14.514 0.009 2.93600 0.97154 0.85916 5.01284 0.95564
DSP GJR Eq. var. assum. 3.458 0.079 2.444 18 0.025 2.85100 1.16635 0.40058 5.30142 0.772861
Week 1-4 Eq. var. not as. 2444  13.827 0.029 2.85100 1.16635 0.34649 5.35551 0.772861

DSP S Eq. var. assum. 0.439 0516 2232 18 0.039 2.43900 1.09288 0.14295 4.73505 0.70582

Week 1-4 Eq. var. not as. 2232 14.679 0.042 2.43900 1.09288 0.10513 4.77287 0.70582
LRGJL Eq. var. assum.  1.741  0.204 7.211 18 0.000 3.61400 0.50118 2.56106 4.66694 2.280318
Week 1-4 Eq. var. not as. 7211 15317 0.000 3.61400 0.50118 2.54768 4.68032 2.280318
LR GJR Eq. var. assum. 5.064 0.037 6.645 18 0.000 3.71900 0.55968 2.54316 4.89484 2.101334
Week 1-4 Eq. var. not as. 6.645 12178 0.000 3.71900 0.55968 2.50154 4.93646 2.101334
LR S Week Eq. var. assum. 3.168  0.092 3.771 18 0.001 4.80100 1.27326 2.12598 7.47602 1.192495
14 Eq. var. not as. 3.771  13.899 0.002 4.80100 1.27326 2.06826 7.53374 1.192495

Eq. var. assum.: Equal variances assumed; Eq. var. not as.: Equal variances not assumed.

When these values were analyzed for DSP movement, p values of the glenohumeral left joint,
spine, and glenohumeral right joint indicate a significant change in cognitive abilities before and after
the process (p < 0.05). The same situation is observed in the p values of LR movement, indicating
a significant change in cognitive abilities before and after the process. Moreover, these results are
supported by the d values shown in pair 3, pair 6, pair 9, pair 12, pair 15, and pair 18 of Table 9 as
in [42,56].

These situations in Tables 9 and 10 are an indication that in addition to making the movements
more stable, the use of the system makes training more accurate, so physical and cognitive abilities
related to the movements are increased as stated in [93-95].

4. Conclusions

In this study, a new athlete support system designed by using Kinect V2 and Expert System was
proposed to monitor and improve athlete training. In the design process of the rule base used by the
system, movement models for DSP and LR have been created by consulting the opinions of experts.
The Expert System rule table design was made according to the created movement models. On the
designed rule base, a 28-element rule table for DSP and LR movements was examined, and the main
conditions that can be used in both movements were determined. During the study, Expert System
makes decisions by processing the change of elbow, wrist, knee, hip, and shoulder joint data according
to the rule base it contains.

The test of the system was carried out by 10 participants in a real gym environment. The first of
the obtained data concern the decision-making ability of Expert System. The fact that the decisions of
the system match those of the human expert in 85.5% of cases shows that the system can be used in
gyms which lack trainers, by people who want to do sports at home, or by athletes working alone.
However, if the system is to be used in movements other than DSP or LR, then a movement model for
those movements and a rule design for the Expert System depending on this model are required.

A four-week planned study was conducted to assess the effect of the proposed system on the
training process. The paired t-test and effect size analysis results of this study indicate a significant
change in physical abilities (p < 0.05 and d > 0.5) from the first week according to joint changes in
training, and shows that this change continues throughout the process.

The independent t-test analysis results of the glenohumeral joints and spine data of the 1st and
4th weeks indicates a significant change in cognitive abilities (p < 0.05) between the beginning and the
end of training period, and these results are supported by the physical ability results.
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In training efficiency, it is observed that there is an average enhancement of 54.84% + 12.72%
in DSP training and 58.08% =+ 11.32% in LR training. This indicates that by using proposed system,
each participant has performed their training more stably.

These results suggest that the designed athlete support system can be used in gyms, homes,
and physiotherapy centers as a low-cost training support system to enhance the quality of training and
reduce the risk of injury until the motor skills of new athletes develop.

As previously explained, the effect of the proposed system on physical and cognitive development
was tested with data from 10 volunteers with at least two years of sports experience. The statistical
limitations of our study can be seen as a limited number of participants and the resulting effect size
values. It is possible to overcome these limitations with a study that will examine the physical and
cognitive effects of the proposed system through more participants using individuals with different
age, gender, sports expertise, sports experience, or degree of disability. Based on this study, a separate
study is planned to examine these limitations and issues.
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Appendix A

The data obtained in Figure 8 are presented in Table A1 for ease of examination.

Table A1. Weekly Joint Displacement of Participants.

Training Part. Joint Names and Weeks

Type No. GJLweekl GJLweek2 GJLweek3 GJLweek4 GJRweekl GJRweek2 GJRweek3 GJRweek4 Spweekl pweek?2 pweek3  Spweek4
1 6.92 5.84 493 3.65 6.8 6.01 4.24 3.52 4.25 3.92 1.95 1.1
2 9.56 9.01 6.58 5.23 10.25 8.15 7.56 6.48 6.08 5.24 5.14 4.95
3 10.02 8.11 5.66 4.66 11.88 7.94 5.22 4.37 12.58 10.33 6.62 5.87
4 3.25 32 1.86 1.1 2.81 222 1.35 1.27 4.11 3.27 2.55 2

DSP 5 3.78 3.61 1.66 0.8 2.94 2.85 2.01 1.6 3.31 3.08 2.82 1.2
6 3.55 248 2.14 12 3.68 2.74 1.93 0.9 2.92 1.8 1.2 0.8
7 3.62 293 2.11 1.7 3.26 2.88 22 1.57 3.11 252 235 1.3
8 3.76 3.15 2.56 1.9 3.82 3.15 217 1.37 2.85 231 2.1 1.15
9 3.13 2.62 24 1.66 3.27 2.84 2.35 2.04 277 2.28 1.65 1.27
10 6.21 4.64 3.96 2.54 5.63 4.87 3.58 2.71 4.66 4.01 3.42 2.61
1 6.25 4.35 3.48 3.12 5.21 4.66 3.32 2.96 15.22 11.64 8.77 6.4
2 7.13 6.27 54 4.41 7.02 5.74 4.31 3.96 10.1 7.72 7.26 6.21
3 5.11 4.24 2.88 2.02 5.42 4.25 2.88 1.97 8.6 5.53 5.21 33
4 8.91 8.14 522 3.1 9.82 6.76 4.88 3.24 12.47 10.66 8.99 5.11

LR 5 49 4.77 2.95 2.64 4.92 3.11 2.56 257 6.24 5.01 3.58 299
6 7.44 5.28 29 1.8 8.12 5.12 32 1.6 6.88 3.24 1.55 1.3
7 6.95 6.08 4.57 2.23 6.82 491 2.85 3.12 5.56 4.51 2.64 1.58
8 4.75 3.84 2.98 1.79 4.68 3.94 2.69 2.18 4.21 3.26 249 1.77
9 5.29 4.83 3.29 2.15 5.35 4.52 3.41 223 4.86 4.19 2.86 2.07
10 6.2 5.47 4.37 3.53 6.3 5.13 3.68 2.64 6.87 4.62 3.01 227

DSP: dumbbell shoulder press, LR: lateral raise, GL: glenohumeral left joint, GR: glenohumeral right joint, S: spine,
GL1: glenohumeral left joint week 1, GR1: glenohumeral right joint week 1, S1: spine week 1, GR2: glenohumeral
right joint week 2, S2: spine week 2, GL2: glenohumeral left joint week 2, GR3: glenohumeral right joint week 3, S3:
spine week 3, GL3: glenohumeral left joint week 3, GR4: glenohumeral right joint week 4, S4: spine week 4, GL4:
glenohumeral left joint week 4.
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