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Abstract: The monitoring of respiratory rate is a relevant factor in medical applications and
day-to-day activities. Contact sensors have been used mostly as a direct solution and they have
shown their effectiveness, but with some disadvantages for example in vulnerable skins such as
burns patients. For this reason, contactless monitoring systems are gaining increasing attention for
respiratory detection. In this paper, we present a new non-contact strategy to estimate respiratory rate
based on Eulerian motion video magnification technique using Hermite transform and a system based
on a Convolutional Neural Network (CNN). The system tracks chest movements of the subject using
two strategies: using a manually selected ROI and without the selection of a ROI in the image frame.
The system is based on the classifications of the frames as an inhalation or exhalation using CNN.
Our proposal has been tested on 10 healthy subjects in different positions. To compare performance
of methods to detect respiratory rate the mean average error and a Bland and Altman analysis is used
to investigate the agreement of the methods. The mean average error for the automatic strategy is
3.28± 3.33% with and agreement with respect of the reference of ≈98%.

Keywords: respiratory rate estimation; non-contact monitoring; motion video magnification;
hermite transform

1. Introduction

The monitoring of Respiratory Rate (RR) is a relevant factor in medical applications and day-to-day
activities. Contact sensors have been used mostly as a direct solution and they have shown their
effectiveness, but with some disadvantages. In general, the main inconveniences are related to the
correct and specific use of each contact sensor, the stress, pain, and irritation caused, mainly on some
vulnerable skins, like neonates and burns patients [1]. For a review of contact-based methods and
comparisons see [2]. Contactless breathing monitoring is a recent research interest for clinical and
day-to-day applications; a review, and comparison of contactless monitoring techniques can be seen
in [3]. In this paper, the literature review is restricted to respiratory activity and the works concerning
the detection of cardiac activity are not included voluntarily.

There are three main categories for contactless RR monitoring methods. The first group includes
non-image-based proposals, like radar sensor approaches [4,5] and sound-based approaches [6].
The main disadvantage of radar methods is that the antenna must be in front of the thoracic area,
a restriction that cannot always be met [7], and for sound-based approaches ambient noise remains a
difficulty for the extraction of signal [3]. Other recent approaches include smart textiles for respiratory
monitoring with evident restriction in some medical applications [8]. The second group includes
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different kinds of image sensing. Thermal images [9–11] measure the temperature variations between
inhalation and exhalation phases with it not working if the nasal area is not visible. In recent years,
several works have used the photoplethysmography technique, employed initially to measure cardiac
frequency [12], to measures skin blood changes to track RR [13–18]. Some works such as [18] train
a CNN using respiratory raw signal as reference and a skin reflection model to represent the color
variations of the image sequence as input. This technique is robust for extracting signal in both dark
and light lighting conditions [14]; the motion artifacts can be corrected [17] and can be introduced to a
multi-camera system for tracking cardiorespiratory signals for multiple people [19]. This method is
promising; however, the skin must always be visible, a condition that is not met in some positions of
the subject. Other methods directly extract the respiratory signal from the motion detected on the RGB
video. Different strategies to track motion are proposed. For example, Massaroni et al. [20] employed
frame subtraction and temporal filtering to extract signal, and Chebin et al. detected the motion of
the face and the shoulders for a spirometry study [21]. Several works have used magnification video
motion technique to track subtle motions [22]. This last technique allows revelation of invisible motions
due to respiratory rhythm [23–27]. The third category uses hybrid techniques applying image-based
and non-image-based approaches. For example, in [28], a sleep monitoring system using infrared
cameras and motion sensors is proposed.

Motion magnification methods compute respiratory rate by detecting motions of the thoracic
cavity. Their main advantages are that they need only an RGB camera, and the measurement
can be taken in different thorax cavity regions, as opposed to thermal and photoplethysmography
techniques that require a specific region to extract signal. Motion magnification can be categorized
according to the magnification of the amplitude [23,24,29,30] or the phase of the signal [25,26]. It is
shown in [31] that phase amplitude produces a lower noise level in magnified signal compared to
amplitude magnification; however, algorithm complexity is higher. Phase magnification also allows
discrimination of large motions not related to respiratory activity as shown by Alinovi et al. [25] or a
motion compensation strategy to stabilize RR reported by [26]. Different decomposition techniques
are used to carry out magnification. Al-Najia and Chahl [30] present a remote respiratory monitoring
system to magnify motion using the Wavelet decomposition obtaining smaller errors in RR estimation
than with use of traditional Laplacian decomposition. Other works [27,32] show that the magnification
Hermite approach allows a better reconstruction and a better robustness to the noise than traditional
Laplacian decomposition used in [22]. The camera distance to the subject is an important parameter;
in general, systems use short distances but as shown by Al-Najia et al. [23], magnification techniques
allow usage of long ranges for monitoring vital signs. Another important characteristic is the possibility
of processing after magnification using other techniques as optical flow [24].

Major research using motion-detection techniques to estimate RR is reviewed and summarized
in Table 1. Most studies listed in Table 1 were limited to use of motion magnification method from
a single subject and for short distances. In this Table 1, the characteristics of each method to extract
RR is summarized: choice of ROI (manually [20,29,30], automatically [18,24,25], or not ROI [26]
), the kind of signal extracted to estimate RR (raw respiratory signal [18,20,24,25] or binary signal
corresponding to inhalations and exhalations [26,29,30]), the method to obtain motion (amplitude
magnification [24,29,30], phase magnification [25,26], frame subtraction [18]), the obtaining of the
reference used to validate the method (visually using magnified video directly [24,26,29,30], using an
electronic device [20,25,26]) and the number of subjects used in the work to validate the method.
All works in this review use their own database. In the last column in Table 1 the metric error to
measure the assessment of each method is shown. Most methods use Mean Absolute Error (MAE)
defined as the absolute value of the difference between the reference value and the estimated value
with units of breaths per minute (bpm), or its version in percentage, normalizing the error by reference
value. Other works [25] use Root Mean Squared Error (RMSE) between estimated RR and the reference
one. Bland–Altman (BA) analysis [33] was used to obtain the Mean of the Differences (MOD) between
the reference value and the estimated value and the limits of Agreements (LOAs) values that are
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typically reported in other studies and very useful for comparing our results to relevant scientific
literature [20,30]. In addition, correlation coefficients as Spearman coefficients (SCC) and Pearson
coefficients (PCC) are also reported in some works [30].

Table 1. Principal motion detection works to detect respiratory activity.

Paper Choice of
ROI Reference Signal to estimate

de RR Method Nb of
Subjects Metric Error

Brieva et al. [29] Manually Visual (from Mag.
Video)

Frame Binary signal,
Inhalation–Exhalation

Amplitude
Magnification IPM 4 MAE

Massaroni
et al. [20] Manually Electronic Device Respiratory Signal Filtering on original

video 10 MAE, BA

Al Naji et al. [30] Manually Visual (from Mag.
Video)

Binary signal
Inhalation–Exhalation

Amplitude
Magnification IPM 1 MAE, BA,

SCC, PCC

Ganfure [24] Automatic Visual (from Mag.
Video) Respiratory Signal

Amplitude
Magnification Optical

flow
10 MAE

Alinovi et al. [25] Automatic Electronic Device Respiratory Signal Phase magnification 6 RMSE

Alam et al. [26] No ROI Visual (from Mag.
Video)

Binary signal
Inhalation–Exhalation

Phase magnification,
Peak detections 1 MAE

Chen et al. [18] Automatic Electronic Device Respiratory Signal Frame difference
CNN 25 MAE

Our proposal No ROI Visual (from Mag.
Video)

Binary signal,
Inhalation–Exhalation

Amplitude
Magnification CNN 10

MAE, BA,
RMSE, SCC,

PCC

In this paper, we present a combined strategy using motion magnified video and a Convolutional
Neural Network (CNN) to classify inhalations and exhalations frames to estimate respiratory rate. First,
a Eulerian magnification technique based on Hermite transform is carried out.

Then, the CNN is trained using tagged frames of reconstructed magnified motion component images.
Two strategies are used as input to the CNN. In the first case, a region of interest (ROI) is selected manually
on the image frame (CNN-ROI approach) and in the second case, the whole image frame is selected
(CNN-Whole-Image proposal). The CNN-Whole-Image proposal includes three approaches: using as
input the original video, the magnified video, and the magnified components of the sequence.

Finally, RR is estimated from the classified tagged frames. The CNN-ROI proposal is tested on
five subjects lying face down and it is compared to a procedure using different image processing
methods (IPM) presented in [29,30] to tag the frames as inhalation or exhalation, while the final
CNN-Whole-Image proposal is tested on ten subjects in four different positions (lying face down,
lying face up, seat and lying fetal). We compared the different approaches computing a percentage
error regarding a visual reference of the RR.

The contribution of this work is that the final proposed system does not require the selection
of a ROI as others methods have reported in the literature [18,20,23–26,34]. In addition, to the best
of our knowledge, this is the first time that a CNN is trained using tagged frames as inhalation and
exhalation, instead of a raw respiratory rate signal used to train other CNN strategies [18]. Our tagging
strategy for training the CNN uses only two classes and is simple to implement. Table 1 puts into
context our proposal with respect to the other important works in the literature.

The paper is organized as follows. Section 2 presents the methodology of the proposed system
including the description of the motion magnification technique, the two training strategies, and the
respiratory rate measuring method. Section 3 presents the experimental protocol and the results
obtained from the trained CNN. Finally, conclusions are given in the last section.
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2. Materials and Methods

2.1. Data Set Creation and Ethical Approval

In this work, we enrolled ten subjects (males) with a mean age of 22± 5 years old, mean height
of 174± 0.02 cm and mean body mass of 72± 14 Kg. All the study participants agreed to participate
and signed their consent. All healthy young adults without impairment that participated in
this study previously filled out an agreement with the principal investigator and the School of
Engineering, considering the regulations and data policies applicable. The decision to participate in
these experiments was voluntary. The Research Committee of Engineering Faculty of Universidad
Panamericana approved all study procedures.

A dataset was created to evaluate the system proposed in this paper. The experiments were
carried out using a digital camera EOS 1300D (Canon, Ohta-ku, Tokyo, Japan) and we acquired video
sequences with duration between 60 s, at 30 frames (480× 640 pixels) per second (fps). The subjects
were at rest during the experiment and choose one of the following four positions: seat (‘S’), lying face
down (‘LD’), lying face up (‘LU’) and lying in fetal (‘LF’) position (for some subjects more than one trial
was recorded in other positions, hence for some subjects the four positions were tested). We obtained a
set of 25 trials combining the ten subjects and the four positions. The camera was located to a fixed
distance of approximately 1 m from the subject with an angle of 30 degrees from the horizontal line for
the ‘LD’, ‘LU’ and ‘LF’ position and 0 degrees for the ‘S’ position, respectively. All the subjects had on a
t-shirt during the acquisition but no restrictive condition about the slim-fit or loose-fit was demanded.
The respiratory rate reference was obtained visually from the magnified videos of approximately one
minute duration.

2.2. Overall Method Description

The proposed system is based on the motion magnification technique and a training-testing
strategy based on a CNN. The output of the CNN classified the frames as an inhalation (‘I’) or an
exhalation (‘E’) of the video sequence corresponding to the breathing signal. Finally, from the temporal
labeled vector, RR is computed. The whole system is depicted in Figure 1.

2.2.1. Hermite Transform–Motion Magnification

In this work, we used an implementation of the Eulerian motion magnification method [22]
through Hermite transform (HT) [32] to represent the spatial features of the image sequence.
The Hermite transform description can be seen in Appendix A.

Following this, we present the Eulerian motion magnification basis, and we describe its
implementation using Hermite transform.

Let I(X, t) an image sequence, where X = (x, y)> represent the pixel position; W(t) =(
δx(t), δy(t)

)>
represents the corresponding displacements within the image domain and t is the time

associated with each image in the sequence.
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Figure 1. Block diagram of the breath rate estimation system showing the CNN-ROI and
CNN-Whole-Image approaches.

Thus, the intensities of pixel X on the image sequence can be expressed as a function of
displacement W(t):

I(X, t) = f
(

X + W(t)
)

, (1)

where I(X, 0) = f (X) is the first image of the sequence.
Applying the Hermite transform to Equation (1), we obtain a set of functions defined in terms of

the displacement function W(t) as shown in Equation (2):

Im,n−m(X, t) = fm,n−m

(
X + W(t)

)
, (2)

with Im,n−m(X, 0) = fm,n−m(X).
The Eulerian motion magnification method [22] consists of amplifying the displacement function

W(t) by a factor α to obtain a synthesized representation of the Hermite coefficients:

Îm,n−m(X, t) = fm,n−m

(
X + (1 + α)W(t)

)
. (3)

If we applied in Equation (2) a first-order Taylor decomposition to Im,n−m(X, t), we obtain:

Im,n−m(X, t) ≈ fm,n−m(X) + W(t)T(∇ fm,n−m(X)), (4)

where ∇ represents the gradient operator and W(t)T(∇ fm,n−m(X)) represents the high-order terms of
the Taylor expansion, i.e., the motion components of the Hermite coefficients.

Next, we applied a broadband temporal band filter to Equation (4) to retain the displacement
vector W(t) obtaining:

Bm,n−m(X, t) = W(t)T(∇ fm,n−m(X)). (5)
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Multiplying Bm,n−m(X, t) by the factor α and summing it to Im,n−m(X, t) we obtain:

Ĩm,n−m(X, t) = Im,n−m(X, t) + α
(

W(t)T(∇ fm,n−m(X))
)

. (6)

Replacing Im,n−m in Equation (6) by the Taylor expansion of Equation (4) we obtain:

Ĩm,n−m(X, t) ≈ fm,n−m(X) + W(t)T (∇ fm,n−m(X)) + α
(

W(t)T(∇ fm,n−m(X))
)

≈ fm,n−m(X) + W(t)T(1 + α) (∇ fm,n−m(X)) . (7)

We can demonstrate that if the first-order Taylor series holds in Equation (7), the amplification of
the temporal bandpass signal Bm,n−m(X, t) is related to the motion amplification of Equation (3):

Ĩm,n−m(X, t) ≈ fm,n−m

(
X + (1 + α)W(t)

)
. (8)

Finally, the motion magnification sequence Ĩ(X, t) can be obtained by applying the inverse
Hermite transform to Equation (8) (see Appendix A):

Ĩ(X, t) =
∞

∑
n

n

∑
m=0

∑
(X0)∈S

Ĩm,n−m(X0, t) · Pm,n−m(X− X0) (9)

In practical terms, instead of summing the magnified spatial components and then performing
the inverse Hermite transform, we can interchange it and first perform the reconstruction of the
magnified spatial components and then sum it with the original image. This is because the inverse
Hermite transform (Equation (A4)) and the motion magnification technique (Equation (6)) are both
linear processes.

The Eulerian motion magnification proposal used in this work can be summarized as follows:

1. Carry out a spatial decomposition of the image sequence using Hermite transform. This allows
decomposition of the image sequence into different spatial frequency bands that are related with
different motions (see Equation (4))

2. Perform a temporal filtering of the spatial decomposition to retain the motion components
(Equation (5)). The cut frequencies of the filter are chosen to retain the motions components
depending the application. In this case, the cut frequencies are related to the human
respiratory frequencies.

3. Amplify the different spatial frequency bands by the α factor.
4. Reconstruct the magnified motion components through an inverse spatial decomposition process

(inverse Hermite transform).
5. Add the reconstructed magnified motion components to the original image sequence by means

of (Equation (6)).

In Figure 2 we show some reconstructed images by using the magnified motion components
(αB(X, t)) before summing it to the original image sequence, where the reconstructed images
correspond to inhalation (‘I’) and exhalation (‘E’) frames. Later, the reconstructed magnified motion
component images will be used as input to the CNN net.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Reconstructed images using the magnified motion components from the image
sequence showing some respiratory phases. (a,c,e,g,i) Frames representing the inhalation ‘I’ phase.
(b,d,f,h,j) Frames representing the exhalation ‘E’ phase.

2.2.2. Convolutional Neural Networks

CNNs are nets inspired on the nature of visual perception in living creatures mainly applied
for image processing [35,36]. There exist different topologies which include two basic steps: feature
extraction and classification model. In the feature extraction step, several neural layers are employed
such as convolutional and pooling. A convolutional layer aims to compute feature representations of
the input, a pooling layer aims to reduce the resolution of feature maps. In the classification model
step, dense networks are the most used ones that include a fully connected layer that aims to perform
high-level reasoning. In addition, for classification purposes a SoftMax layer is mainly implemented at
the end of the network [36].

We propose a CNN that receives an input image of the video magnification and returns an output
class representing ‘I’ or ‘E’, as shown in Figure 2. The input image is resized to the fixed dimensions
28× 28 pixels. The topology of the CNN consists of: an input layer that receives a grayscale image,
a convolutional layer with 25 filters of size 12× 12 with a rectified linear unit (ReLU); then, there is a
2-size fully connected layer that feeds a SoftMax layer; and finally, a classification layer is occupied to
compute the corresponding output class. Finally, we obtained a temporal vector labeled in each frame
position as ‘I’ or ‘E’. In Figure 3 we show the topology of the CNN including the two strategies for
training the network: the CNN-ROI and CNN-Whole-Image approaches.

Figure 3. CNN-topology for detecting the two phases of breathing: inhalation (‘I’) or exhalation (‘E’).
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2.2.3. Respiratory Rate Estimation

The proposed respiratory rate measuring system is based on motion magnification technique
using Hermite transform and a CNN to classify the frames. Respiratory rate estimation is computed
using the method proposed by [30] as explained next.

Once the CNN classifies each frame in the image sequence, and it is assigned a label inhalation
(‘I’) or exhalation (‘E’), a binary vector A = [A(1), A(2), ..., A(N)] is formed where for each one of
the frames the label ‘I’ is changed by ‘1’ and the label ‘E’ by ‘0’, and N corresponds to the number of
frames of the video. In Figure 4 we show an example of the binary vector A.

0

1

D1 D2 DP-1 DP

A1 N

Figure 4. Example of the distances computed (number of frames) for an inhalation–exhalation cycle to
form the binary vector A, each color represents a different cycle.

Next, we measure the distances (in number of frames) D(k) that the signal takes to complete
each one of the breathing cycles (see Figure 4), e.g., from inhalation (‘1’) to exhalation (‘0’), and we
calculated an average distance Dmean as follows:

Dmean =
1
p

p

∑
k=1

D(k), (10)

where p is the number of D(k) calculated distances.
Finally, the breath rate RR (in bpm) is calculated using Equation (11):

RR =
(60)(N)

(T)(Dmean)
, (11)

where T is the duration in seconds of the video.

2.3. Experimentation

2.3.1. Parameters Setting

Before applying the Hermite transform–motion magnification method to the datasets,
the following parameters must be defined: the size of the Gaussian window, the order maximum
of the spatial decomposition, the cutting frequencies in the temporal filtering, and the amplification
factor used.

In Appendix A.1, we present the suitable values to the Gaussian window and consequently,
the maximum expansion order 2N of the Hermite transform; thus, to avoid the blur artifacts in the
reconstruction step, we used a Gaussian window of 5× 5 pixels (N = 4), which allows us a maximum
order of the expansion of 8 (2N = 2 × 4) giving a perfect reconstruction of the image sequence.
A Gaussian window of 3× 3 pixels (N = 2) also would avoid the blurring effect in the edges but
would limit the expansion order to 4, giving a less quality of the reconstructed images.

On the other hand, in [37] was presented a multi-resolution version of the Hermite transform,
which allows us to analyze the spatial structures in the image at different scales. This multi-resolution
analysis is independent to the reconstruction process, whence we performed a spatial decomposition of
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8 levels of resolution with a sub-sampling factor of 2 without affecting of the quality of the reconstructed
image sequence.

For motion magnification, we applied a temporal band pass filter to the Hermite coefficients
through the difference of two IIR (Infinite Impulse Response) low-pass filter as in [22], where the
cutting frequencies for the band pass filter were fixed to 0.15–0.4 Hz corresponding to 9–24 breaths per
minute. This range is sufficient to detect breathing rate in healthy subjects at rest.

The amplification factor α was set to 20, in such a way that allowed effortlessly seeing the
respiratory movements in the thorax. In Appendix B, we describe the value limit of the amplification
factor, the relation of it with the spatial wavelength of the image sequence, and how it is applied in
each level of the spatial decomposition.

For the approach including a ROI, the user selects a point in the thoracic region, and a window
of size (48× 64 pixels ) centered in the selected point is created, the size of the ROI window must be
equal or higher to 28× 28 pixels, since the CNN resizes the input images to correspond with 28× 28
pixels. The size of the original frame video, as mentioned above, is 480× 640 pixels. The size of the
ROI was chosen experimentally but in relation to the distance of the camera and the spatial resolution.
In this case the size of the ROI is 1

10 of the size of the image frame. This manual strategy allows choice
of a zone including the thoracic area where its motion is clearly appreciated facilitating in this way the
classification to the algorithm.

2.3.2. Experiment Settings

Two kinds of experiments were carried out: the CNN-ROI proposal using 5 trials (5 subjects in
‘LD’ position) and the CNN-whole-image proposal using 25 trials (ten subjects, 6 in ‘LU’ position,
8 in ‘LD’ position, 6 in ‘LF’ position and 5 in ‘S’ position). For this last experiment, we tested three
different approaches for detecting the two phases of breathing: (i) using the original video without
any processing, (ii) using the magnification component video, and (iii) using the magnification video,
i.e., original video added to the magnification components.

In the two experiments, we develop a CNN-model using the information of all the subjects
(depending of the experiment), splitting data in 70% training and 30% testing sets. For implementation
purposes, we trained the CNN using the stochastic gradient descent algorithm with initial learning
rate of 1E-6, regularization coefficient of 1E-4, maximum number of epochs 200, and mini-batch size
of 128. The binary classification response (inhalation/exhalation) of the CNN is evaluated using the
accuracy metric as shown in Equation (12), where TP and TN are the true positives and true negatives,
and FP and FN are the false positives and false negatives.

accuracy =
TP + TN

TP + TN + FP + FN
(12)

For the two approaches, we compute the Mean Absolute Error (MAE) to evaluate the estimation
of the RR as:

MAE =
‖RRre f − RR‖

RRre f
× 100 (13)

The reference RRre f was obtained visually from the magnified video.

3. Results

3.1. Training of Convolutional Neural Networks

For the CNN-ROI proposal the dataset was split in 70% training (7867 samples) and 30% (3372
samples) testing sets. Table 2 shows the evaluation results when testing ROI images as inputs to the
CNN-model. As shown, the accuracy obtained was 98.42± 0.173% (mean ± standard deviation),
representing that 98% of the time the estimation is the same as the targets.
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For the CNN-whole-image proposal, we tested three different approaches for detecting the two
phases of breathing, depending on the input images to the CNN: (i) the CNN-model with original
video (OV) without processing, (ii) the CNN-model with the reconstructed magnified components
video (MCV), and (iii) the CNN-model with the magnified video (MV). In the three cases, we split the
data into a 70% training set (34,660) and a 30% (14,854) testing set. Table 3 summarizes the performance
of the CNN models using the testing set, where the subject and his/her pose are listed in the first two
columns. As shown, the least accurate CNN-model corresponds to the one using the original video
without any processing (83.33± 4.92% for OV approach) while the other two approaches look similar
in response (97.30± 1.32% for MCV approach and 97.66± 1.26% for MV approach).

Table 2. Performance results for the CNN-ROI proposal.

Subject Accuracy (%)

2 98.25
3 98.35
5 98.30
7 98.56
8 98.65

Mean 98.42
SD ±0.173

Table 3. Accuracy results of the CNN, in testing, using different approaches.

Subject Pose OV Video (%) MCV (%) MV (%)

1 LU 81.36 94.13 93.54
1 LF 80.79 97.86 98.41

2 LD 76.77 97.92 98.88

3 LD 84.25 97.48 97.86
3 S 92.87 98.01 98.40

4 LU 88.46 98.05 98.57
4 LF 79.75 97.27 97.43
4 LD 76.44 98.11 98.46
4 S 85.24 97.71 98.15

5 LU 87.49 96.94 97.16
5 LD 78.42 98.35 97.97
5 S 76.57 97.54 97.54

6 LU 79.43 93.16 94.09
6 LD 80.09 95.10 97.03

7 LU 92.33 98.12 98.57
7 LF 87.53 98.63 98.21
7 LD 85.37 97.23 98.34
7 S 93.41 98.30 99.34

8 LU 84.56 96.04 97.85
8 LF 80.33 97.76 98.09
8 LD 84.06 98.27 98.33
8 S 81.34 97.32 97.65

9 LF 80.40 97.03 97.40
9 LD 80.20 98.28 98.50
9 S 87.33 97.65 97.77

10 LF 81.86 97.62 97.62

Mean 83.33 97.30 97.66
SD ±4.92 ±1.32 ±1.26
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3.2. Respiratory Rate Estimation Using CNN-ROI

We compared the CNN-ROI method with the IPM proposal [29]. For details of the IPM method
see [29,30].

Results of the RR estimation in breaths per minute (bpm) are shown in Table 4. It shows the
respiratory rate estimation from the five subjects. In column one, the subject is displayed, in column
two the ground-truth of respiratory rate, in column three and four the respiratory rate estimation
using the CNN estimation method and the associated error in percentage. In column five and six the
respiratory rate estimation and the associated error using the IPM method is displayed. The mean
average error (MAE) obtained by the CNN proposal is 1.830± 1.610% and MAE obtained by the
IPM method is 2.470± 2.300%. Bland–Altman analysis was carried out for our CNN-ROI approach
obtaining a MOD of 0.163 and LOAs of +1.01 and −0.68. The 95% of limits of agreements were defined
as the mean difference ±1.96σ, where σ is the standard deviation of the differences. The bias is then
0.16± 0.85 bpm (MOD± 1.96σ), PCC = 0.99, SCC = 0.91 and RMSE = 0.41 as shown in Table 5.

Table 4. Results of respiratory rate estimation (bpm) using the CNN-ROI proposal.

Subject Ref. CNN Err. CNN (%) IPM Err. IPM (%)

2 15 15.009 0.06 15.153 1.002
3 21 20.678 1.533 22.320 6.285
5 13 13.453 3.366 13.270 2.034
7 13 12.926 0.569 12.957 0.386
8 20 20.752 3.625 20.545 2.629

Mean 16.42 16.56 1.83 16.84 2.47
SD ±3.84 ±3.86 ±1.61 ±4.31 ±2.30

Table 5. Metrics quality to evaluate the estimation of the RR.

RMSE
(bpm)

MAE
(bpm) MAE (%) MOD (bpm) LOAs (bpm) MOD ±

1.96σ (bpm) SCC, PCC

Brieva et al. [29] - - 2.47± 2.30 - - - -

Massaroni et al. [20] - 0.39 - −0.01 +1, −1.02 −0.01± 1.01 -

Al-Naji et al. [30] - - 1.314 0.21 +0.88, −0.46 0.21± 0.67 0.956, 0.966

Ganfure [24] - - 15.34 - - - -

Alinovi et al. [25] 0.05 - - - - - -

Alam et al [26] - - 20.11 - - - -

Chen et al. [18] - 3.02 - - - - -

Our proposal
using ROI 0.41 0.32 1.83± 1.61 0.16 +1.01, −0.68 0.16± 0.85 0.91, 0.99

Our proposal
without ROI 0.85 0.56 3.28± 3.33 0.347 +1.8, −1.1 0.347± 1.45 0.975, 0.977

3.3. Respiratory Rate Estimation Using CNN-Whole-Image

In Figure 5, we show the tagged results obtained for each approach with Trial 1 of Patient 7 in
‘LF’ position. The first row shows the tagged reference, where the x-axis indicates the frame number
where the breathing changes from inhalation (‘I’) to exhalation (‘E’) or vice versa. The next rows show
the tagged estimation for each approach, where both the MVC and MV approaches overcome the
approach that uses the original video as input to the CNN.
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Figure 5. Tagged results obtained for the trial 1 of patient 7 in ‘LF’ position.

Later, we applied Equation (11) to the estimated temporal vectors obtained from the CNN.
Results of this process are summarized in Table 6. The subject and the pose are listed in the first and
second columns, respectively. Then, in columns three, four and five the estimations of RR from the
reconstructed magnified components video (MCV) as input, the magnified video (MV) as input and the
original video (OV) as input, respectively, are shown. Then, the reference RR for each subject is reported
in column six. After that, it is the MAE for the three approaches in columns seven, eight, and nine.
The MEA obtained by the CNN-Whole-Image proposal in the three approaches are 3.28± 3.33 for the
MCV, 3.15± 5.04 for the MV and 6.84± 9, 79 for the OV. The MAE obtained using the MCV strategy for
different positions of the subject are: for the ‘LD’ position 2.14± 1.17%, for the ‘S’ position 1.51± 1.10%,
for the ‘LU’ position 6.14± 4.21% and for ‘LF’ position 4.63± 4.51%.

The Bland–Altman method was used to assess the level of agreement between the experimental
results obtained from the proposed system and those obtained from the reference. The 95% of limits
of agreements were defined as MOD ±1.96σ, where σ is the standard deviation of the differences.
The bias is then MOD ±1.96σ. In addition, the relationship between the estimated values and
the reference was evaluated using Pearson’s correlation coefficient (PCC), the Spearman correlation
coefficient (SCC) and the root mean square error (RMSE). The Bland–Altman plots and the statistics for
RR measurements based on our CNN-whole-image proposal are shown in Figure 6. This was obtained
for the MCV strategy a MOD of 0.347 with limits of agreement of +1.8 and −1.10 corresponding to a
bias of 0.347± 1.45 bpm with statistics PCC = 0.977 , SCC = 0.975 and RMSE = 0.805 as shown in
Table 5. For the MV strategy a MOD of 0.33 was obtained with limits of agreement of +2.43 and −1.76
corresponding to a bias of 0.33± 2.1 bpm and statistics PCC = 0.956, SCC = 0.965 and RMSE = 1.1.
Finally, for the OV strategy, a MOD of −0.01 was obtained with limits of agreement or +3.469 and
−3.496 corresponding to a bias of −0.01± 3.468 bpm and statistics SCC = 0.836, PCC = 0.858 and
RMSE = 1.74. When the results are compared between the three strategies, with the use of the MCV
strategy, the higher correlation (PCC = 0.977, SCC = 0.975) is obtained, along with the smallest error
(RMSE = 0.805) and the least limits of agreement (+1.8 and −1.10). Concerning the position of the
subject, using the MCV strategy, a MOD of 0.157 was obtained for the Bland–Altman analysis and the
statistics for the ‘S’ position, with limits of agreement of +0.899 and −0.583 corresponding to a bias
of 0.157± 0.742 bpm with statistics SCC = 0.910, PCC = 0.994, RMSE = 0.38; for the ‘LD’ position a



Appl. Sci. 2020, 10, 607 13 of 20

MOD of 0.108 with limits of agreement of +0.957 and −0.741 corresponding to a bias of 0.108± 0.84
bpm with statistics SCC = 0.964, PCC = 0.991 and RMSE = 0.42; for the ‘LU’ position a MOD of
0.620 with limits of agreement of +2.834 and −1.592 corresponding to a bias of 0.620± 2.21 bpm with
statistics SCC = 0.91, PCC = 0.98 and RMSE = 1.19 and for the ‘F’ position a MOD of 0.602 with
limits of agreement of +2.407 and −1.203 corresponding to a bias of 0.602± 1.8 bpm and statistics
SCC = 0.954, PCC = 0.965 and RMSE = 1.04. The Bland–Altman plots and the statistics are shown
in Figure 7. It is observed that the less RMSE, the less limits of agreements are obtained for the ‘S’
position (RMSE = 0.38, +2.407, −1.203) and the ‘LD’ position (RMSE = 0.42, +2.407, −1.203).

Table 6. Error (bpm) of the CNN-whole-image proposal using the three approaches.

S Pose RR MCV RR MV RR OV RR Reference MCV % MV % OV %

1 LU 21.2 24.08 21.65 19 11.579 26.737 13.947
1 LF 13.243 13.235 19.388 13 1.869 1.808 49.138

2 LD 15.367 15.358 14.041 15 2.447 2.387 6.393

3 LD 20.69 20.69 20.442 21 1.476 1.476 2.657
3 S 17.024 17.045 16.092 17 0.141 0.265 5.341

4 LD 17.387 17.459 16.422 17 2.276 2.700 3.400
4 LU 13.664 13.699 13.623 14 2.400 2.150 2.693
4 LF 18.859 17.811 17.067 18 4.772 1.050 5.183
4 S 21.563 21.976 21.451 22 1.986 0.109 2.495

5 LD 13.44 13.419 14.279 13 3.385 3.223 9.838
5 LU 10.49 10.508 10.514 11 4.636 4.473 4.418
5 S 14.086 14.055 14.063 14 0.614 0.393 0.450

6 LD 18.912 18.728 18.761 19 0.463 1.432 1.258
6 LF 20.432 18.905 13.969 18 13.511 5.028 22.394

7 LD 12.911 12.911 12.05 13 0.685 0.685 7.308
7 LU 14.251 13.195 13.579 13 9.623 1.500 4.454
7 LF 15.634 16.311 15.376 16 2.288 1.944 3.900
7 S 15.162 15.135 15.162 15 1.080 0.900 1.080

8 LD 20.715 19.344 19.054 20 3.575 3.280 4.730
8 LU 20.499 21.2 19.042 20 2.495 6.000 4.790
8 LF 22.835 22.898 24.098 22 3.795 4.082 9.536
8 S 21.453 21.526 20.385 21 2.157 2.505 2.929

9 LD 18.445 18.462 18.388 19 2.921 2.832 3.221
9 LF 18.284 18.254 18.388 18 1.578 1.411 2.156
9 S 21.659 21.649 21.669 21 3.138 3.090 3.186

10 LF 15.929 15.91 15.817 16 0.444 0.562 1.144

Mean 17.46 17.45 17.10 17.11 3.28 3.15 6.84
SD ±3.42 ±3.59 ±3.40 ±3.21 ±3.33 ±5.04 ±9.79
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(a) (b)

(c)

Figure 6. Bland–Altman plot obtained considering all the subjects: black line is the MOD, red lines
are the LOAs. (a) Using the original video. (b) Using the magnified video. (c) Using the reconstructed
motion components.

(a) (b)

(c) (d)

Figure 7. Bland–Altman plot obtained for each position: black line is the bias, red lines are the Limits
of agreements. (a) ‘LD’ position. (b) ‘LU’ position. (c) ‘S’ position. (d) ‘F’ position.

4. Discussion

The proposed system succeeded in measuring RR for subjects at rest in different positions.
In Table 5 the quality metrics used in the reviewed works and in our proposal are shown. It is clear that
using the MCV strategy, estimation was in close agreement (≈98%, bias = 0.347± 1.45 bpm) with the
reference obtained by visual counting in contrast to the MV, where the agreement fell to ≈97% (bias =

0.33± 2.1 bpm) and to the OV strategy, where the agreement fell to ≈96% (bias = −0.01± 3.468 bpm).
Hence, it is observed that the difference error with respect to the reference based on the MCV strategy
fell to < ±2 bpm with a MAE of 3.28± 3.33% while the MV strategy fell to < ±3 bpm with a MAE of
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3.15± 5.05% and the OV strategy fell to < ±4 bpm a MAE of 6.84± 9.79%. We observe then that the
use of the magnification process and particularly the use of magnifying components instead of the
original video or the magnified video improves detection. The use of the magnification process can
produce artifacts in the video, but if we take only the magnified components, the presence of these
artifacts is minimized. Concerning the position of the subject using the MCV strategy, the results were
in close agreement for the ‘S’ position (≈99%, bias = 0.157± 0.742 bpm) and ‘LD’ position (≈99%,
bias = 0.108± 0.84 bpm) and fall for ‘F’ position (≈98%, bias = 0.602± 1.80 bpm) and ‘LU’ position
(≈97 %, bias = 0.620± 2.21 bpm). These results confirm that our strategy can be used for different
positions despite some variability in the agreement.

Compared to other recent works using Bland–Altman analysis, the work of Massaroni et al. [20]
obtains an agreement of ≈98% (bias = −0.01 ± 1.01) falling to a difference error with respect of
the reference < ±2 bpm, consistent with our results. The work of Al-Naji et al. [30] obtains an
agreement of ≈99% (bias = 0.21± 0.62) falling to a difference error with respect to the reference < ±1
bpm, consistent with our work. The two latter methods are dependent on the choice of the ROI in
contrast to our CNN-Whole-Image strategy, which is independent of the choice of the ROI. In addition,
our approach uses the tagged inhalation and exhalation frames as reference for training the CNN as
opposed to other strategies that use a reference obtained by means of a contact standard sensor. Some
reviewed works did not use the Bland–Altman analysis as quality metric to compare to other strategies.
As shown in Table 5, Alinovi et al. [25] obtained a RMSE of 0.05 consistent value compared to our
ROI strategy (RMSE = 0.41) and to our CNN-Whole-Image strategy (RMSE = 0.85). Alam et al. [26]
proposed a method that did not need to use a ROI to obtain a MAE of 20.11% greater than our
CNN-Whole-Image strategy with a MAE of 3.28± 3.33%. Ganfure et al. [24] proposed a method based
on an automatic choosing of the ROI obtain a MAE of 15.4% greater than our two strategies. Finally,
Chan et al. [18] obtained a MAE of 3.02 bpm greater than our ROI strategy (MAE = 0.32 bpm) and
to our CNN-Whole-Image strategy (MAE = 0.56 bpm). Some of the limitations of this work are the
limited number of subjects for the statistical analysis. The influence of the distance of the camera for all
the tests was not studied. The influence of the kind of clothes of the participants, for example the use
of a close-fit or loose-fit t-shirt, and the influence of some motions of the participant were not taken
into account. Further strategies must be carried out to address these points. Our approach is simple
to implement, using a basic CNN structure and requiring only the classification of the stages of the
respiratory cycle. The conditions of acquisitions take into account not only the thorax area but the
surrounding environment, thus it would work in some routine medical examinations where RR in
controlled conditions is only required.In addition, we show that our CNN-Whole-Image strategy that
did not need the selection of a ROI is competitive to all the strategies using a ROI.

5. Conclusions

In this work, we implemented a new non-contact strategy based on the Eulerian motion
magnification technique using the Hermite transform and a CNN approach to estimate the respiratory
rate. We implemented and tested two different strategies to estimate the respiratory rate, a CNN-ROI
method that needs a manual ROI definition, and a CNN-Whole-Image strategy without requiring
ROI. We proposed a CNN training method using the tagged inhalation and exhalation frames as
reference. Our proposal, based on the CNN estimation, does not require any additional processing on
the reconstructed sequence after the motion magnification instead of other video processing methods.
The proposed system has been tested on healthy participants in different positions, in controlled
conditions but taking into account the surroundings of the subject. The experimental results of the
RR were successfully estimated at different positions obtaining a MAE for the automatic strategy
of 3.28 ± 3.33% agreement with respect to the reference of ≈98%. For future work we must test
our approach in different kinds of scenarios, such as in the presence of some simple motions of the
subject during acquisition, different camera distances, and different kind of clothes for the participants.
This method can be tested for monitoring during longer periods of time.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network
ROI Region of interest
Seat S
Lying face down LD
Lying face up LU
Lying in fetal LF
IPM Image processing methods
HT Hermite Transform
MAE Mean average error
MV Magnified video
MCV Magnified components video
OV Original Video
LOA Limits of agreement
RR respiratory rate

Appendix A. The Hermite Transform

Hermite transform [38,39] is an image model bio-inspired in the human vision system (HVS).
It extracts local information of an image sequence I(X, t) at time t, by using the Gaussian window:

v2(X) =

(
1

σ
√

π
exp (− X2

2σ2 )

)2

, (A1)

where X = (x, y)> are the spatial coordinates.
Some studies that suggest that adjacent Gaussian windows separated by two times the standard

deviation σ represent a good approximation of the overlapping receptive fields in the HVS [40].
Then, a family of polynomials, orthogonal to the window, is used to expand the localized image

information yield the Hermite coefficients:

Im,n−m(X, t) =
∫ ∞

−∞

∫ ∞

−∞
I(X, t)Dm,n−m(X)dX, (A2)

where m and (n−m) denote the analysis order in x and y respectively, n = 0, . . . , ∞, m = 0, . . . , n.
Dm,n−m(X) = Dm(x)Dn−m(y) are the 2D Hermite filters, which are separable due to the radial

symmetry of the Gaussian window. Thus, the 1D Hermite Dk of kth order for the coordinate x is
given by:

Dk(x) =
(−1)k
√

2kk!

1
σ
√

π
Hk

( x
σ

)
exp

(
− x2

σ2

)
, (A3)
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where Hn
( x

σ

)
= (−1)n exp

(
− x2

σ2

)
dn

dxn exp
(
− x2

σ2

)
represents the generalized Hermite polynomials

with respect to the Gaussian function.
To recover the original image I(X, t) an inverse Hermite transform is applied to the Hermite

coefficients by using the reconstruction relation [38]:

I(X, t) =
∞

∑
n

n

∑
m=0

∑
(X0)∈S

Im,n−m(X0, t) · Pm,n−m(X− X0), (A4)

where S is the lattice of sampling and Pm,n−m are the synthesis Hermite filters which are defined by:

Pm,n−m(X) =
Dm,n−m(X)

V(X)
(A5)

and V(X) is a weight function:

V(X) = ∑
(X0)∈S

v2(X− X0) 6= 0. (A6)

Appendix A.1. The Discrete Hermite Transform

The expansion of the image sequence I(X, t) of Equation (A2) requires convolution of the image
at time t with an infinity set of Hermite filters Dm,n−m with n = 0, . . . , ∞, m = 0, . . . , n, in the discrete
case, we limit the number of Hermite coefficients by [38]:

n = 0, . . . , 2N
m = 0, . . . , n, (A7)

whereN + 1 is the size of the Gaussian kernel, thus, the maximum order of the expansion is limited by
the size of the discrete Gaussian window. For large values of N the discrete Gaussian kernel reduces
to the Gaussian window.

Furthermore, instead of recovering the original image, we obtain an approximation of the original
image Î(X, t), where the quality of this reconstruction improves by increasing the maximum order
of the expansion 2N , i.e., the size of the Gaussian window N + 1 [38]. In terms of the artifacts in the
approximated image Î(X, t), small values of the Gaussian windows causes “speckles”, while high
values result in Gibbs-phenomenon-like artifacts such as ringing and blur [41].

Thus, to determine the maximum order or the expansion 2N and consequently the size of the
Gaussian window N + 1, in [41] van Dijk and Martens determined that using an expansion of the
Hermite transform equal to 3, the reconstructed image will contain the largest quantity of AC energy
(84%) according to Parseval’s theorem. In general, with 2N ≥ 3 we can obtain a good reconstruction
and with much greater values we will obtain a perfect reconstruction of the image, e.g., 2N = 8.

Appendix B. Factor Amplification Calculation

To define the factor α used in the magnification, it is considered that the Eulerian motion
magnification method is valid for small motions and for slow changes in the image function, i.e.,
where the first-order Taylor series approximation in Equation (4) is fulfilled. Thus, as reported in [22]
there is a direct relationship between the amplification factor and the spatial wavelength (λ) in the
current level of the image decomposition:

(1 + α)W(t) <
λ

8
, (A8)
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To overcome this limitation, a maximum αmax factor must be proposed. Then, in each pyramid
level j a new amplification factor αj is calculated as follows:

αj =
λj

8W(t)max
− 1, (A9)

where λj is the representative spatial wavelength for the lowest spatial frequency band j and W(t)max

is the maximum displacement for the spatial wavelength of interest λs in the image sequence:

W(t)max =
λs

8(1 + αmax)
(A10)

Thus, the amplification factor used in each level of the spatial decomposition is defined by:

α =

{
αmax if αj > αmax

αj another case
(A11)
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