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Featured Application: The proposed drift detector can be applied in areas such as intrusion
detection, fraud detectors or monitoring and forecasting traffic.

Abstract: A data stream can be considered as a sequence of examples that arrive continuously and are
potentially unbounded, such as web page visits, sensor readings and call records. One of the serious
and challenging problems that appears in a data stream is concept drift. This problem occurs when
the relation between the input data and the target variable changes over time. Most existing works
make an optimistic assumption that all incoming data are labelled and the class labels are available
immediately. However, such an assumption is not always valid. Therefore, a lack of class labels
aggravates the problem of concept drift detection. With this motivation, we propose a drift detector
that reacts naturally to sudden drifts in the absence of class labels. In a novel way, the proposed
detector reacts to concept drift in the absence of class labels, where the true label of an example
is not necessary. Instead of monitoring the error estimates, the proposed detector monitors the
diversity of a pair of classifiers, where the true label of an example is not necessary to determine
whether components disagree. Using several datasets, an experimental evaluation and comparison is
conducted against several existing detectors. The experiment results show that the proposed detector
can detect drifts with less delay, runtime and memory usage.

Keywords: concept drift; data stream mining; semisupervised environment

1. Introduction

Data stream classification is a challenging task due to three properties of data streams [1]: speed
and size, which are concerning to a restricted amount of memory and time, forcing the learning
algorithms to hold the incoming data temporarily and operate on them not more than once, and the
third, which is the most critical, is variability, which indicates the evolving nature of data streams.
The event of evolving incoming data is known as a concept drift [2,3]. Informally, concept drift occurs
when the class labels of a set of examples change over time. The underlying distribution might change
Di 6= Dj, for any two time points i and j. Accordingly, the concept of the two points becomes unstable,
and the model will not be able to approximate the recent incoming data distribution. Consequently,
the essential task of streaming data analytics is finding any significant changes in incoming data [4].
Such a problem influences the classification accuracy of a model that is trained on data used previously.

The scenario of customers’ behaviour in an online shop could serve as a real example of concept
drift, where the behaviour of the customers may change over time. For example, a predictive model to
predict a weekly goods sale has been developed and works satisfactorily. However, several metrics
may affect sales such as promotions and the amount of money spent on advertising could be used as
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inputs. Consequently, the model is likely to become increasingly less accurate over time—this indicates
a concept drift. In addition, seasonal goods sales might be a reason for concept drift, where shopping
behaviour changes seasonally. For example, during the winter holiday season, there will be higher
sales compared to the summer.

Mining data streams in the presence of concept drift is generally classified into active
(trigger-based) and passive (evolving) approaches [5,6]. Active approaches are designed to detect
concept drift using different types of detectors. If concept drift exists, the model is updated. On the
other hand, passive approaches continuously update the model whenever new data become available,
regardless as to whether drift is occurring or not. The main task of both active and passive approaches is
the same, that is, keeping the model up to date, but the mechanisms by which they do this are different.

According to the authors of [7], most of the existing drift detection methods are based on fully
supervised learning and assume that the entire incoming data stream is completely labelled and these
labels can be served instantly. In addition, these methods have proven their effectiveness in their
application/domain. However, in real-world scenarios, labelled data are not always available or are
costly to obtain and time consuming. Therefore, in an environment where incoming data streams
appear at high speed, it is not always possible to manually label all the data as soon as they arrive.
Consequently, semisupervised learning could solve this problem by using the labelled and unlabelled
data together for the learning process. Detecting concept drift in a semisupervised environment has
received little attention from the research community [7]; thus, the main contributions of this paper
can be summarized as follows.

First, we propose a drift detector based on a Diversity Measure as a Drift Detection Method
(DMDDM) to detect concept drift in a semisupervised environment (DMDDM-S). The main advantage
of calculating diversity is that for binary classification, the true label of an example is not necessary.
Second, we apply the proposed drift detector to detect sudden drifts when class labels of incoming
data are not available. To the best of our knowledge, this is the first work that uses such a method to
detect concept drift. Third, we adopt k-prototype clustering as a solution to label the unlabelled data
and use the newly labelled data along with the labelled ones to retrain the model to be consistent with
the current concept. We show that the proposed drift detector using only 50% of labelled data can
detect drifts faster and with minimal consumption in terms of memory and run time than the existing
methods that use 100% of labelled data.

Finally, according to the authors of [8], four requirements need to be met by a model that operates
in a nonstationary environment. Any predictive models must (i) detect a concept drift in a short time,
(ii) differentiate noise from drift and be adaptive to changes but robust to noise, (iii) process in less
time than incoming data arrival and (iv) use no more than a constant amount of memory. A good data
stream model/classifier should be able to combine these four requirements. Therefore, we ensure that
the evaluation of this work is in line with these requirements.

The remainder of this paper is organized as follows. We present the basic concepts and related
work in Section 2. We describe the proposed DMDDM-S algorithm in Section 3. Section 4 presents the
evaluation process and experiment results. Finally, we conclude the paper and discuss future work
in Section 5.

2. Problem Definition and Related Work

According to the Bayesian decision theory [9], a classification model can be described by the prior
probabilities of classes p(y) and class conditional probabilities p(x|y) for all classes y ∈ {K1, . . . , Kc},
where c is the number of predefined classes. A data point xi ∈ X has yj for all classes y ∈ {∅, 1, . . . , C}.
If a data point xj ∈ X has yj = ∅, then it is unlabelled. Therefore, the classification decision for instance
X at equal costs of mistake is made based on maximal a posteriori probability, which for class y can be
represented as p(y|X) = p(y)p(X|y)/p(X) where p(X) = ∑c

y=1 p(y)p(X|y).
In nonstationary environments, changes in a data stream are reflected by the probability

distributions in an event called concept drift. Concept drift means that the concept about which the
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data are being collected may shift after some minimal stable period [8]. Formally, concept drift between
time point t0 and time point t1 can be defined as follows.

Definition 1. For a given data stream S, we say that concept drift occurs between two distinct points in time,
t and t + ∆, i f f ∃ x: pt(x, y) 6= pt+∆(x, y) where pt denotes the joint distribution at time t between the set of
input attributes and the class label.

By considering this, any changes in incoming data can be characterized by changes in components
of the Bayesian decision theory [10]:

• Prior probabilities p(y) are prone to changes.
• Probabilities p(X|y) of class conditional are also prone to changes.
• Consequently, posterior probabilities p(y|X) may/may not change.

Based on the cause and effect of these changes, as shown in Figure 1, two types of drift are
identified: real drift and virtual drift [8,11,12]. Real drift is defined as changes in p(y|X). Note that
such changes can occur with or without changes in p(x); thus, they may or may not be visible from
the data distribution without knowing the true class labels. Virtual drift is defined as changes in
the p(x) or class p(y) distributions that do not affect p(y|X). As we are mostly interested in the
effect of concept drift on classification, we focus on methods that use true class labels to detect drift.
We, therefore, concentrate mainly on real drift, regardless of whether they are visible from the input
data distribution p(x).

Figure 1. Types of drifts: circles represent instances, different colors represent different classes.

Furthermore, in terms of class distribution, researchers differentiate how these changes happen,
as shown in Figure 2. A sudden/abrupt drift happens when the source distribution in St at a moment
in time t is suddenly substituted by another distribution St+1. Gradual drift is connected with a slower
rate of change and it refers to a transition stage where examples of two different distributions Pj and
Pj+1 are mixed, whereas in recurring drift, after a period of time, previous concepts may reappear again.
We emphasise that the proposed drift detector has been designed mainly for sudden/abrupt drift.
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Figure 2. Concept Drift Patterns.

Existing Concept Drift Detection Methods

This section describes some well-known drift detectors that are related to our work:
DDM: Drift Detection Method. This method, developed in [13], is the most recognized work

in this field. The method uses a classifier error that is normally reduced as more training examples
are used. When an increase in the number of training examples also increases the classifier error,
the model must be rebuilt. This indicates that sudden drift might have occurred. This model introduces
a warning level when the error rates have increased to a certain level. Upon reaching the warning
level, incoming new examples will be treated in a special window. If within this special window the
error keeps increasing to a drift level, then the current classifier is rebuilt by learning from examples
within the special window.

EDDM: This method, proposed by the authors of [14], is an adjustment of DDM. The same warning
alarm mechanism that is used by DDM is used in EDDM, however; instead of monitoring error rate,
EDDM monitors the distance between two sequential errors. Consequently, when the concepts of
incoming data are stable, the distance between the two sequential errors decrease; otherwise, warnings
and drifts are signalled.

FHDDM [15] is a method for detecting drifts using Hoeffding’s inequality through a window
of size n. This window detects a drift if a considerable variation is observed between the current
probabilities and the maximum of correct predictions. By using the error’s probability (δ, default
10–7), FHDDM finds the variations among the probabilities (∆P) and the threshold (∈). Consequently,
FHDDM will signal a drift if ∆P ≥∈.

PH Test: This method introduced in [16] is typically used for detecting drifts in applications
of signal processing. In this work, between the observed values and their mean till current time
T, a cumulative difference is represented as a variable mT. The variable of mT is calculated via
mT = ∑T

t=1(xt − x
′
T − δ), where x

′
T = 1

T ∑T
t=1 xt and δ matches to the changes in magnitude that are

allowed. The minimum mT which is denoted as MT , is also updated through MT = min(mT , t = 1 . . . T).
Subsequently, a concept drift is signalled when there is a considerable variation between mT and MT
i.e., PHT : mT −MT > λ where λ is a user predefined threshold. However, increasing the value of λ

causes fewer false alarms, but it increases the false negative rate.
SEED: This method, proposed in [17], within a window W, compares two sub-windows. The older

part of this window is dropped when there is a distinct average exhibited by the two sub-windows.
Hoeffding Inequality with Bonferroni correction is used by SEED to calculate its test statistic,
performing block compression in order to remove unnecessary cut points and then blocks that are
homogeneous in nature are merged.

STEPD: STEPD is a method proposed by [18] over two windows, namely, recent and older,
which calculates statistical tests with continuity correction. Within a concept, the accuracy of the
learner using the two windows is expected to be stable. When there is a significant difference in the
accuracy of the recent window, warning and drift are signalled.
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RDDM: This method, developed in [19], solves the problem of a performance losing of
DDM, which is caused by decreasing sensitivity which requires many examples for drift detection.
This method uses a mechanism to abandon older examples, regularly recalculating the statistics of
RDDM which are responsible for detecting drifts. The authors found that RDDM delivers higher
accuracy than DDM in most cases, by detecting drifts earlier, despite an increase in false positives and
memory consumption.

DetectA: This method proposed in [20] is a proactive approach called Detect Abrupt Drift
(DetectA) for sudden drift detection. Three steps are used to describe this method: (i) this method
labels the patterns from the test set using an unsupervised method; (ii) from the training and test
sets, some statistics will be computed, conditioned to the given class labels the training set; and
(iii) a multivariate hypothesis test used to compare the training and testing statistics. Finally, based on
this test, DetectA attempts to detect drift on the test set before the real labels are obtained.

NN-DVI: This method proposed by the authors of [21] uses a regional-density estimation as a
drift detection method, named nearest neighbour-based density variation identification (NN-DVI).
This method consists of three components: (i) k-nearest neighbour-based space-partitioning schema
(NNPS), which transforms unmeasurable discrete data instances into a set of shared subspaces for
density estimation; (ii) the density discrepancies are accumulated by a distance function in these
subspaces and quantifies the overall differences; (iii) the statistical test defines the confidence interval
to detect drift. Note that two windows of data are used by NN-DVI and these are compared to
detect drift.

HLFR: This method by [22] uses Hierarchical Linear Four Rates. HLFR runs using two layers:
the responsibility of detecting potential drifts belongs to the first layer, whereas the second layer
validates the detected drift and communicates this information back to the first layer. Layer one
observes the same four rates of the confusion matrix. Consequently, if a drift is detected, a permutation
test is applied by layer two to confirm if the detected drift is true or false. However, if the drift is false,
the testing process restarts.

FPDD, FSDD, and FTDD: These methods are proposed by [23]. Each of these methods uses a
different statistical test and then measures the difference in errors rather than correct predictions.
For example, when the number of errors or correct predictions is smaller than five, the Fisher’s
Exact test will be used by FPDD. On the other hand, instead of using the test of equal proportions,
the chi-square test for homogeneity of proportions is applied by FSDD.

3. The Proposed Approach

In nonstationary environments and in the presence of concept drift, existing drift detectors analyse
the prediction results of the base learner and apply a certain decision model to signal a drift when
changes are detected. Generally, most of the existing drift detectors, including the aforementioned
methods, evaluate prediction results by analysing the error rate (accuracy) and its corresponding
standard deviation, and find the difference between the means of the sub-windows or compare the
accuracy of a model with different time windows, etc. [7]. This evaluation method is a measure of
the classification performance to evaluate learning algorithms. Conversely, the drift detection method
proposed in this paper for a nonstationary environment is quite different.

This paper proposes a data stream model that reacts quickly to sudden drift, consuming minimal
time and memory compared to the state-of-the-art. In a novel way, we combine a diversity measure
called a disagreement measure known from static learning in streaming scenarios with a modified
PH test. Instead of monitoring the error estimates, DMDDM-S monitors the diversity of a pair of
classifiers, where the true label of an example is not necessary to determine whether components
disagree. In addition, we adopt k-prototype clustering as a solution to label the unlabelled data and
use the newly labelled data with the labelled ones to retrain the model to be consistent with the current
concept. In this paper, DMDDM-S is proposed to judge diversity based on an examination of classifier
responses to changes in incoming data.
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3.1. Pairwise Diversity Measures

Diversity is an important characteristic of ensembles in the standard, static data context.
Measuring diversity can be useful to analyse the effectiveness of a diversity-inducing method.
Therefore, many researchers consider diversity to prune a number of component classifiers [24,25],
measure the diversity in decision forests [26] or characterize the diversity between classifiers [27].

In addition, there have been scant attempts at promoting diversity. For example, the authors
of [28] discuss the impact of diversity on online ensemble learning and reactions to drift by modifying
the Poisson distribution used in online bagging. However, by doing so, they only measure the accuracy
of the modified ensemble, not its diversity. Recently, another work considers diversity [29] in an
experiment using sliding windows. Therefore, to the best of our knowledge, our approach is the first
semisupervised drift detection method to measure the diversity of component classifiers directly and
use it as a base for drift detection. In contrast, the previous approaches used classification accuracy to
detect drifts.

Informally, for a pair of classifiers in a binary classification problem, each component gives one
of two possible predictions for each example, let us say 0 (negative class) or 1 (positive class). If we
take the predictions of each component, we can calculate the disagreement between these predictions.
Therefore, it is about the disagreement between the predictions of pairs of component classifiers,
regardless of the true labels.

Formally, the diversity of component classifiers (e.g., disagreement) can be calculated in pairs,
for example, let X = x1, . . . , xn be a labelled data set and y′v = [y′v (x1), . . . , y′v (xn)] an n-dimensional
binary vector that represents the output of a classifier hv, such that y′v (xj) = 1, if hv correctly predicts
the class label, and 0 otherwise. Table 1 presents all the possible outcomes for a pair of classifiers
hu and hv, such that hu = hv, where Nab is the number of instances xj ∈ X for which y′u (xj) = a and
y′v (xj) = b. Therefore, all the probabilities of Nab are as follows.

• N10 number of examples where hu predicts class 1 and hv predicts class 0.
• N01 number of examples where hv predicts class 1 and hu predicts class 0.
• N11 number of examples where hu predicts class 1 and hv predicts class 1.
• N00 number of examples where hu predicts class 0 and hv predicts class 0.

Table 1. The correlation of a pair of classifiers (2 × 2).

hu = hv hucorrect(1) huincorrect(0)

hvcorrect(1) N11 N10

hvincorrect(0) N01 N00

Formally speaking, the disagreement measure is defined as the ratio of the number of inconsistent
decisions over the total number of observations. Also, we can say it is the ratio between the number of
observations for which one classifier is correct and the other is incorrect. Consequently, the diversity
measure reflects the variety of responses of classifiers to changes of incoming data. The disagreement
measure is probably the most intuitive measure of diversity between a pair of classifiers [30]. Thus,
calculating the diversity between two base classifiers (hu and hv) using the disagreement measure is
measured by Equation (1):

Du:v = N10 + N01 (1)

On the other hand, the PH test considers a variable mT which measures the accumulated
differences between observed values e (error estimates). Two basic approaches to calculate these
values prequentially are fading factors and sliding windows. Over time, the fading factors deduct
outdated information via multiplying the former summary by a factor and then adding a new value
calculated using the incoming data. Other approaches use the sliding windows to hold at each time
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point a set of d most current examples in order to limit the amount of analysed examples. According to
the authors of [16], the fading factors approach uses less time and memory compared with the sliding
windows approach. Therefore, the fading factors approach is the one that is used in this work.

Using the fading factor, we calculate the fading sum Sx,α and fading increment Nα at time t from a
stream of objects x, as follows,

Sx:α(t) = xt + α× Sx:α(t− 1) (2)

Nα(t) = 1 + α× Nα(t− 1) (3)

where Sx:α(1)/Nα(1) = x1 and α (0� α 6 1 ) is a constant determining the forgetting factor of the sum,
which should be close to 1 (for example 0.999). Then, the fading average is computed at observation i as

Mα(t) =
Sx:α(t)
Nα(t)

(4)

Consequently, in this work, we use the studied diversity measures as the observed value instead
of the error rate. By applying the value of diversity from Equation (1) in Equation (2), we have the
following equations.

Su:v:α(t) = Du:v + α× Su:v:α(t− 1) (5)

Mα(t) =
Su:v,α(t)

Nα(t)
(6)

Equation (6) can be used with the PH test to monitor the diversity of a pair of classifiers. Then,
Equation (7) is used to calculate the cumulative difference mT between the observed values and their
mean till the current moment t where x

′
T = 1

T ∑t
t=1 xt and δ corresponds to the magnitude of changes

that are allowed. The minimum value of this variable is also computed via Equation (8). As a final
step, the test monitors the difference between MT and mT via Equation (9). When this difference is
greater than a given threshold (λ), a drift is signalled.

mT =
T

∑
t=1

(xt − x
′
T − δ) (7)

MT = min(mt, t = 1 . . . T). (8)

PHT = mT −MT (9)

3.2. K-Prototype Clustering

To label the unlabelled data, it is worth mentioning some semisupervised learning methods. Some
of these are appropriate for processing data streams incrementally, namely co-training, tri-training,
self-training and K-prototype clustering. Considering incoming data have both numeric and categorical
values, we propose to adopt K-prototype as a solution to our semisupervised drift detector, though a
number of unlabelled data are extracted from the incoming data. Then, by applying K-prototype
clustering to these data, we can get labels for all these unlabelled data.

The work in [31] proposes an algorithm based on the k-means paradigm but removes the numeric
data limitation whilst preserving its efficiency. The K-prototype algorithm integrates the k-means
and k-mode algorithms to deal with mixed data types. Therefore, the k-prototype algorithm is more
useful practically because data collected in the real world are of mixed types. Assume a set of n
objects, X = {X1, X2, . . . , Xn}; Xi = {Xi1, Xi2, . . . , Xim} consists of m attributes. The goal of clustering
is to partition n objects into k disjoint clusters C = {C1, C2, . . . , Ck}, where Ci is an i-th cluster center.
The distance d(Xi, Cj) between Xi and Cj can be calculated as follows,

d(Xi, Cj) = dr(Xi, Cj) + γdc(Xi, Cj) (10)
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where dr(Xi, Cj) is the distance between numerical attributes, dc(Xi, Cj) is the distance between
categorical attributes, and γ is a weight for categorical attributes.

dr(Xi, Cj) =
p

∑
i=1
|xil − Cjl |2 (11)

dc(Xi, Cj) =
m

∑
i=p+1

δ(xil−Cjl
) (12)

In Equation (11), dr(Xi, Cj) is the squared Euclidean distance measure between cluster centres
and an object on the numerical attributes; whereas, in Equation (12), dc(Xi, Cj) is the simple
matching dissimilarity measure on the categorical attributes, where δ(xil − Cjl) = 0 for xil = Cjl
and δ(xil − Cjl) = 1 for xil 6= Cjl .

3.3. The DMDDM-S Algorithm

The DMDDM-S approach is presented in Algorithm 1 and its framework is shown in Figure 3.
First, the algorithm processes each example from the data stream and obtains the predictions for a
pair of classifiers on each example line (lines 1–3). Then, the algorithm builds the outputs, as shown
in Table 1. As shown in Table 1, we need to find the two cases (N10 and N01) where the pair of classifiers
performs differently. Once we observe this disagreement, we count the number of observations on
which one classifier is correct and the other is incorrect, shown in lines 4 to 9, respectively. These steps
represent the first phase of the DMDDM-S framework (prediction phase).

Phase two (concept drift detection phase) uses these observed predictions using a disagreement
measure with the PH test to detect drifts. In line 10, we apply the disagreement measure (Equation (1))
by aggregating these observations and dividing it by the number of component classifiers. Then,
the fading factor approach is applied from lines 11 to 13 (Equation (5), Equation (3) and Equation (6)).
In lines 11 and 12, the fading sum and fading increment are calculated, respectively. With the fading
sum and fading increment, we use the value of diversity from line 10 as the observed value instead of
the error estimates that were used in the original PH test. In line 13, the fading average is calculated.
To monitor the diversity of a pair of classifiers from lines 14 to 19, the modified PH test considers
a variable mT , which measures the accumulated difference between the observed value of diversity
and their mean up to the current moment (Equation (7)). After each observation, the PH test checks
whether the difference between the current mT and the smallest value up to this moment MT is greater
than a given threshold (Equation (9)). If the difference exceeds the predefined threshold, a drift is
signalled. When there is a drift, we need to label the current unlabelled data to use them to retrain the
model and keep it consistent.

Therefore, line 20 combines the two windows of the labelled (Wld) and unlabelled data (Wuld) and
sends the result to K-prototype clustering in order to label the unlabelled data in line 21, the third
phase of the DMDDM-S framework. When there is a drift, phase four (drift understanding) starts,
which evaluates the detected drift in terms of delay detection, true detection, false alarm and false
negative. The evaluation method is explained in Figure 4.

Then, lines (22–24) incrementally train the current model and keep it up-to-date with the newly
labelled data (Nld). Lines (26–39) check and handle the availability of each class, phase five (class
is missing?). With each observation of xt and whether there is a drift or not, we need to check if xt

is labelled or not. If the class of xt is missing, first line 27 checks if (Wuld) reached the pre-defined
probability, removes the oldest instance in (Wuld) and adds the newest one to (Wuld); otherwise, xt is
added to (Wuld) directly, line 30. On the other hand, if the class is not missing, line 33 will incrementally
train the current model with the current labelled instance. Finally, lines (35–39) check the dynamic
window of labelled data (Wld), If the size of this window reaches the pre-defined probability, we start
removing the oldest one and add the newest labelled; otherwise, xt is added to (Wld).
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Algorithm 1: Pseudocode of Diversity Measure as a Drift Detection Method in a Semi-
Supervised Environment (DMDDM-S)

Require: S: data stream of examples (labelled),
Forgetting factor α : 0 <<α <−1
Admissible change: δ = 0.1,
Drift threshold: λ = 100
Base Classifiers (Hoeffding Tree, Perceptron): L = 2
MT : 1.0D
|Wld| = 100
|Wuld| = 100
b, c = 0
Result: Drift ∈ {TRUE, FALSE}

1 for each example xt ∈ S do
2 Cv prediction = get prediction using xt;
3 Cu prediction = get prediction using xt;
4 if Cv prediction = 0.0 and Cu prediction = 1.0 then
5 b++;
6 end
7 if Cu prediction = 0.0 and Cv prediction = 1.0 then
8 c++;
9 end

10 Disagreement, Du,v = b + c/L;
11 Su:v,α(t) = Du:v + α× Su:v,α(t− 1);
12 Nα(t) = 1 + α× Nα(t− 1);

13 Mα(t) =
Su:v,α(t)

Nα(t)
;

14 SumDiversity = SumDiversity + Mα(t);
15 mT = (mT + Mα(t)− (SumDiversity/instancesSeen)− δ);
16 MT = min(MT , mT);
17 PHtest = mT −MT ;
18 if PHtest > λ then
19 Return TRUE ;
20 Wld ←−Wld ∪Wuld ;
21 Nld = K− PrototypeClustering(Wld) ;
22 for each example xt ∈ Nld do
23 train classifier Cv and Cu using xt

24 end
25 end
26 if class is missing then
27 if |Wuld| = |uld| then
28 remove oldest instance in Wuld and add xt to Wuld
29 else
30 Wuld ←−Wuld ∪ xt

31 end
32 else
33 Incrementally train classifier Cv and Cu using xt

34 end
35 if |Wld| = |ld| then
36 remove oldest instance in Wld and add xt to Wld
37 else
38 Wld ←−Wld ∪ xt

39 end
40 end
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4. Drift Detector Evaluation

The performance of DMDDM-S is evaluated against various drift detectors, namely, DDM, EDDM,
FHDDM, PH Test, SEED, STEPD and RDDM. The main reasons for choosing these supervised methods
over semisupervised methods are: (i) the limited access to the source code of some works, and (ii) we
want to show the strengths of DMDDM-S, which can detect drifts faster when only 50% of the data is
labelled with minimal consumption in terms of memory and run time than the existing methods that
use 100% of labelled data.

Following the literature [13–15], we use the three synthetic datasets (https://github.com/alipsgh/
data_streams) for the evaluation, namely Mixed, Sine1 and Sine2, with two classes and holding
100,000 instances. In addition, 10% of noise is added to each dataset. By doing this, we can determine
how robust a drift detector is against a noisy data stream. Thus, the main advantage of using a
synthetic dataset is that we are able to determine the true location of drifts in a data stream.

• Mixed: This dataset has two numeric attributes, x and y, uniformly distributed in [0, 1] as well as
two Boolean attributes v and w. The instances are classified as positive if at least two of the three
following conditions are satisfied: v, w, y < 0.5 + 0.3× sin(2πx).The classification is reversed
after drifts. Sudden drifts happen at every 20,000 instances.

• Sine1: This comes with two attributes (x and y), which are uniformly distributed in [0, 1].
Following a function y = sin(x) for classification, any instances below the curve are classified
as positive, while the others are classified as negative, till the first drift occurs. At every
20,000 instances, a drift will occur and then the classification is reversed.

• Sine2: This comes with two attributes (x and y) which are uniformly distributed in [0, 1]. Following
a function 0.5 + 0.3 × sin(3× π× x), instances under the curve are classified as positive while the
other instances are classified as negative. At every 20,000 instances, a drift will occur and then the
classification is reversed.

Furthermore, the proposed algorithm and the ones used for comparison are implemented in Java
as part of the Massive Online Analysis (We had to remove the label from some training instances
(50%) to simulate a semisupervised environment. Where a semisupervised setting assumes some
input (training), the instances will not be labelled) (MOA) framework [32]. The experiments are
conducted on a machine equipped with Intel Core i7 @ 3.4 GHz with 16GB of RAM running windows
10. To make the comparison more meaningful, we set the same parameter values for all the algorithms.
For DMDDM-S, due to an experiment not mentioned in this work, we use the Hoeffding tree (HT)
and Perceptron (PER) as our incremental classifiers. Because of their incremental nature, they are
high-grade at describing changes over time. In addition, we use the PH test parameters (λ = 100,
δ = 0:1) as proposed in [16] and Forgetting factor (α = 0.9996). For base classifier consistency, all the
compared drift detectors are run using Hoeffding tree (HT) and Perceptron with the default parameters
as set in MOA (or as in the original papers).

Regarding the evaluation process, recall the four requirements which need to be met by a model
that operates in a nonstationary environment, hence we evaluate our detector and the competitors
as shown in Figure 4. Figure 4 illustrates the DMDDM-S evaluation. The straight arrow represents
the main stream of incoming data and the crosses show the real position of drifts. We calculate the
delay of drift detection by defining a value ∆ that represents the length of an acceptable drift delay.
This value works as a threshold to locate the distance of the detected drift from the real position of the
drift. Therefore, by considering this value ∆, we describe the following measures.

• Detection Delay (Delay) : The number of examples between the actual position of the drift and
the detected one.

• True Detection (TD): Detects a drift occurring at time t and within [t + ∆].
• False Alarm : A detector falsely signals a drift outside [t + ∆].

https://github.com/alipsgh/data_streams
https://github.com/alipsgh/data_streams
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The length of the acceptable drift delay ∆ is set to 250 on the synthetic datasets as used in [15].
In addition to the above measures, the detection runtime (in milliseconds), memory usage (in bytes)
and accuracy are also considered as shown below. Finally, in all the experiments, incoming data are
processed prequentially, which means testing the instances first and then using them to train the model.
In this direction, we run each detector 100 times and average the results.

• Detection Runtime (Time): The time required to detect the drift.
• Memory Usage : Memory requirement.
• Accuracy : Accuracy of classifiers after the drift is detected (calculated by counting the number of

correct predictions). This value is displayed by MOA.
• MeanAccuracy: Mean accuracy over the data stream (also by MOA).

Experiment Results and Analysis

This section presents the results of the experiments and the analyses of each drift detector,
where Tables 2–4 show the results of the experiments using Sine1, Sine2 and the Mixed datasets.
The results of the Sine1 and Mixed datasets are similar. For example, the method that detects drift the
fastest is STEPD, followed by our proposed method, DMDDM-S, and then FHDDM, SEED and RDDM
in ascending order of delay detection. In addition, all methods detect all the drifts correctly. In relation
to Sine2, DMDDM-S has the lowest average delay detection followed by STEPD, FHDDM, and SEED,
respectively. In relation to computational time and memory usage, it is clearly seen that SEED,
RDDM and FHDDM have the highest memory usage compared to the others. This is because
these methods require more memory for storing the prediction results in the sliding windows or
repositories and they use more computational time due to subwindow compression or reservoir
sampling procedures. In addition to obtaining first and second place in delay detection, DMDDM-S
has the lowest computational time and memory usage. The main reason for this is because DMDDM-S
maintains a small number of variables compared with the others, which results in less memory usage
and less execution runtime to update these variables.

Table 2. Results of Sine1 dataset with (10% noise).

Sine1 (A) Sine1 (B)

Classifier Detector Delay TP Time Memory MeanAccuracy

HT & Pre DMDDM-S 36.375 4 1.6 168 86.631

HT

FHDDM 47.375 4 7.7 1048 85.242
DDM 196.225 2 3.3 472 66.633

PHTest 238.275 1.2 2.1 1240 66.211

STEPD 27.05 4 6.4 936 87.047

SEED 58.4 4 12 3572.588 86.969

RDDM 93 4 2.6 8656 86.894

EDDM 244.525 0.1 1.6 144 83.34

Pre

FHDDM 46.562 4 7.75 1048 87.177
DDM 154.636 4 2.545 472 86.870

PHTest 249.568 0.090 1.363 1240 72.199

STEPD 27.35 4 5.2 936 87.199

SEED 56.8 4 11.5 3593.608 87.098

RDDM 99.875 4 2.6 8656 87.075

EDDM 250 0 1.6 144 72.181
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Table 3. Results of Sine2 dataset with (10% noise).

Sine2 (A) Sine2 (B)

Classifier Detector Delay TP Time Memory MeanAccuracy

HT & Pre DMDDM-S 23.75 4 1.7 168 78.294

HT

FHDDM 52.125 4 9.2 1048 79.834
DDM 209.2 3.6 1.5 472 77.399

PHTest 230 0 1.9 1240 57.738

STEPD 33.1 4 6.4 936 79.855

SEED 62.4 4 11.4 3638.354 79.729

RDDM 134.575 4 3.8 8656 79.55

EDDM 250 0 2 144 57.738

Pre

FHDDM 56.675 4 10.5 1048 74.843
DDM 246.25 0.3 2.1 472 74.269

PHTest 250 0 1 1240 49.882

STEPD 41.725 4 6.5 936 74.851

SEED 70.4 4 10.6 3688.576 74.813

RDDM 189.625 3.4 2 8656 74.623

EDDM 250 0 1.4 144 74.256

Table 4. Results of Mixed dataset with (10% noise).

Mixed (A) Mixed (B)

Classifier Detector Delay TP Time Memory MeanAccuracy

HT & Pre DMDDM-S 36.45 4 1.2 168 83.171

HT

FHDDM 48.1 4 9 1048 72.767
DDM 214.575 1.8 1.9 427 69.828

PHTest 236.025 1.3 1.6 1240 67.876

STEPD 28.7 4 7.6 936 83.373

SEED 60 4 11.1 3609.606 83.294

RDDM 100.125 4 3.4 8656 83.265

EDDM 250 0 2.1 144 57.858

Pre

FHDDM 47.45 4 7.6 1048 82.125
DDM 220.925 2.1 1.9 427 79.316

PHTest 246.55 0.2 1.4 1240 76.743

STEPD 30.725 4 7 936 82.143

SEED 60 4 11 3641.589 82.065

RDDM 117.575 4 2.5 8656 82.006

EDDM 244.65 0.1 1.5 144 76.483

Regarding false alarm, DMDDM-S has relatively high readings, due to the parameter sensitivity
of DMDDM-S. For example, as shown in Figure 5a,c, increasing λ (100–200–300) will entail fewer false
positives (as shown in Figure 5a) but might delay change or miss detection (as shown in Figure 5c),
resulting in a trade-off between false positives and delay change detection.

Even with this increase, DMDDM-S is one of the highest in terms of delay detection and incurs
the lowest time and memory consumption.
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Furthermore, despite this trade-off, the accuracy of DMDDM-S is constant over the sensitivity of
parameters, as shown in Figure 5e. As mentioned in [16], the trade-off exists with the use of the PH
test; consequently, one possible solution to overcome this trade-off is to control the diversity of the
disagreement method using two fading factors instead of one as used in this work. Such a solution is
left for future work. Moreover, Figure 5b,d,f shows the stability of each detector in terms of accuracy
and mean accuracy over the data stream, where DMDDM-S is among the highest and most stable
compared to the others.
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Figure 5. Changing DMDDM-S threshold (a,c,e) and the stability of each detector’s accuracy (b,d,f).
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5. Conclusions

In this work, we introduced a new drift detector, called DMDDM-S, which adapts the
disagreement measure and uses its calculations with the PH test to detect concept drift. DMDDM-S
is proposed to calculate the diversity of classifier responses according to the evolving incoming data.
Therefore, instead of monitoring the error estimates, DMDDM-S monitors the diversity of a pair of
classifiers using the fading factor. In this way, the PH test is triggered whenever the predictions
of components (hu and hv) start to disagree in an unusual way. The results of the experiments on
the synthetic datasets indicate that with a lack of class labels, DMDDM-S detects drifts with shorter
delay and with minimal detection runtime and memory usage compared to the existing methods.
In the future, there is potential to improve DMDDM-S. DMDDM-S is designed for binary classification
problems. For multiclass classification problems, the current method may fail to measure the differences
between classifiers that incorrectly predict the same instance using different labels. Consequently, we
plan to extend the proposed method using multiclass classification problems.
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