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Abstract: Modern approaches to physical therapy often use electric currents induced by time-varying
magnetic fields. Although some of these methods are already commonly used, and only a few studies
are looking at applying particular techniques on exposed tissue. In this study, a high-induction
magnetic stimulation (HIMS) was applied to the chest area to affect the electrical conduction
system of the heart. The animal model Sus scrofa domesticus was used for the study. Standard
methods were used to make the subsequent analysis, i.e., heart rate variability in time and frequency
domain. Concerning the nonlinear character of the electrocardiographic signal and evaluating
complex variability (complexity), recurrent quantification analysis was used. The results show high
resistance to a physiologically working heart, but there are also specific changes concerning complex
variability. Thus, the results indicate that the HIMS application in the chest area may not pose
a significant risk to healthy individuals in terms of the short-term effect of this technique on cardiac
activity. However, cardiac activity is still, to some extent, affected by the HIMS application. In view
of this and the fact that the study was conducted on an animal model, further research in this area
would be appropriate.

Keywords: complex variability; complexity; heart rate variability; high-induction magnetic
stimulation; nonlinear analysis; recurrence quantification analysis

1. Introduction

With every scientific progress, numerous methods of physical therapy are being tested
and applied, including magnetic therapy. Commonly used devices produce a non-stationary,
time-varying, magnetic field. Such devices differ with set parameters, intended use and design.
In most cases, the time-varying pulsed magnetic flux is used. To date, the effect of either time-varying
or stationary magnetic field remains questionable. Although there is no consensus on whether such
devices have a positive impact on biological tissues, there have been scientific studies that indicate
a positive influence of induced electric field [1,2].
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Past decades have showed the importance of the low-frequency electromagnetic field
as a means in physical treatments used in the field of physical medicine and physiatry,
the use of which is also supported by recent findings [3–5]. Rarely, an alternating current waveform
with frequencies from the ELF (extremely low-frequency) band is applied. Whether the biological
tissues are conductive or not, the time-varying magnetic field induces an electric field. After the
electric field is induced in conductive tissues, the electric charge is carried by charge carriers such as
ions. Factors such as the current density of induced electric current have proven to have an effect
on tissue treatment because it also has the character of physical energy. The bounce of the induced
electrical voltage is caused as a result of a rapid and specifically defined change in time of the
high-intensity magnetic field, ergo causing the bounce of induced magnetic electric current (formed
in the manipulated/treated tissues). Current densities of the order of tens to hundreds of A ·m−2

induced in such magnetic field have the required therapeutic ability to affect the sensational and
locomotive system [6].

Specific stimulation is achieved by currently available technologies on the medical devices market.
Sensory neural pathways are activated due to the application of the magnetic field. This fact causes
the sensitivity threshold to be exceeded [7]. Perceived nociception is only minimal due to very
specific stimulation, although the afference is very strong in the treated area. Many remedial theories
are linked to the evoked afference such as the local trophic effect, a response of neurophysiological
mechanisms in segmented and distant polysynaptic reflexes. This fact provides the magnetotherapy
(not only) with an analgesic effect, but if applied locally, it also causes the improvement of blood flow
and lymphatic functions in treated tissues. In the case of distant application of the magnetic field,
treated tissues are affected by the autonomic nervous system network, specifically by the sympathetic
nervous system. Nerves restoration in denervated areas and the recovery of damaged or injured
tissues is accomplished/facilitated by the afference and its succeeding efference due to the application
of the magnetic field [8,9].

The high-induction magnetic stimulation (HIMS) attracts considerable interest due to its
significant impact in a short time, i.e., for the time of the HIMS application procedure. HIMS triggers
motor effects through contractions in muscle fibers, without the device touching treated area of muscles
[10]. Denervated muscles suffer from atrophies and paralyzes. Still, the stimulation of the motoric
system can stop further muscle loss. Recent findings regarding the high-induction magnetic stimulation
indicate that it is an effective treatment of functional immobilization initiating the atrophy
of particular muscles or whole muscle groups as well as pareses and plegia of organical origins.
The high-induction magnetic stimulation has proven to have a great treatment impact on hypertonic
muscle spasms and muscle spasticity in general. In fact, HIMS could affect hypertonic muscles to relax
and thus, decrease muscle spasticity [1,4,11,12].

As previously outlined, pathologies in the locomotor system varying from minor to degenerative
(structural) disorders and paralyzes [13], treating perfusion pathologies [14], are assumed to be treated
by the HIMS. A notable benefit of the HIMS application is that it is a much quicker procedure than
magnetic pulse therapy, distance electrotherapy, or other physiological treatment.

Within the next few years, HIMS is likely to become an important therapeutic treatment
in physical medicine and rehabilitation. However, despite the procedure’s advantages, there are
several hazards linked to the powerful magnetic field. There are several situations when it is unsafe
to undergo such procedure—subjects with an implant in the area of magnetic field application,
with a cardiac stimulator, being pregnant, etc. In fact, current studies have not proved other significant
contraindications. High-induced current density could affect the autonomous regulation of the heart
activity and influence the electrical conduction system of the heart when applied in the thoracic
or near-thoracic area. The safety of the application of the magnetic field in the chest area has
(so far) been neglected. Therefore, the effects remain unclear whether and how the magnetic field
affects the biophysical stimulation from the safety point of view.
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Regarding monitoring and evaluating of cardiac activity or its influencing by HIMS application
is necessary to choose a suitable method. The heart rate variability (HRV) is considered to be
an indicator of the activity of the autonomous nervous system. First studies were carried out already
in the 1960s, and since then, the clinical impact of HRV was a subject of various research. It is well
known that by choosing a suitable analysis of the HRV, we can get a picture of sympathovagal
balance. For these reasons, the analysis of HRV is also used in clinical applications for cardiac activity
evaluation. Therefore, there are standard procedures regarding the HRV, but not only for the purpose
of how to perform analysis but also how to make records [15]. Based on the available studies, we can
claim that HRV is a suitable indicator of both the autonomous nervous system as well as pathological
conditions [15].

The aim of this study is to examine and analyze the cardiac activity, to be precise, the ECG
signal. Variation of heartbeats interval, the Heart Rate Variability (HRV) will be evaluated during the
HIMS application in the chest area of an animal model. The biophysical stimulation before, during,
and after the HIMS application is going to be analyzed by standard HRV evaluation methods, such as
time and frequency domain. In addition to the standard approach to the HRV assessment and the
results interpretation, an evaluation by nonlinear methods is going to be included. The assessment
is important to evaluate not only the heart rate variability but also its complexity. The reason for
the evaluation is that it appears that the most complex signals are generated by organisms that are in
their most adaptive (healthy) state. The complexity of a signal relates to its structural richness and
correlations across multiple time scales [16].

Current methods focus on the use of nonlinear evaluation methods such as Poincaré plot
(a short-term and long-term variability dependency of the monitored time series) [17], an investigation
of entropy [16,18], a use of detrended fluctuation analysis or other methods of symbolic dynamics
analyses [18]. Such methods evaluate the unpredictability of the time series emerging from the
complexity of mechanisms regulating the HRV. Nonlinear parameters relate to specific measurements
in the time and frequency domain. These parameters are described in more detail in [19].

Especially in medical research, the use of nonlinear signal analysis, which is based on the
reconstruction of trajectory in phase space, is increasing. Methods based on the phase space
reconstruction are quite recent—their development is linked to the delay embedding theorem
discovered by the mathematician Takens [20] in 1981. Recurrence quantification analysis is one of the
nonlinear methods based on the chaos theory [21].

The recurrence quantification analysis enables visualization of the recurrence of dynamic
systems (for more see [21–23]). to visualize the recurrence one data set of time series is needed.
No requirements such as length, stationarity or distribution are imposed on the time series data set [23].
The recurrence quantification analysis is a multidimensional method which allows monitoring the
dynamics of a whole system [23].

Based on the above mentioned, standard assessment methods in time and frequency domain will
be used to research the influence of the HIMS on the regulation of the cardiac activity. Moreover,
the standard assessment methods, the basic nonlinear methods and recurrence quantification analysis
will be used to describe the monitored system dynamics.

2. Materials and Methods

2.1. Subjects

The experimental verification of the safety of the high-induction magnetic stimulation and its
direct effect on cardiac activity was carried out on the animal model Sus scrofa domesticus. The frontal
part of the thoracic cage was selected as an area of application, see Figure 1.
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Figure 1. Sus scrofa domesticus without muscle contraction (A) and with muscle contraction
(B) during the application of high-induction magnetic stimulation procedure (1—high-induction
magnetic stimulation device, 2—control and indicative display, 3—applicator, 4—Sus scrofa domesticus,
5—anesthesia and intubation equipment, 6—electrocardiograph electrode).

The animal was handled following the European Directive for the Protection of Vertebrate animals
Used for Experimental and Other Scientific Purposes (86/609/EU). The experiments were approved
by the Committee for Experiments on animals of the Charles University Faculty of Medicine in Pilsen.
Nine domestic piglets (Prestice Black-Pied pigs) of both sexes and of similar weight (25–40 kg) were
used for experiments. After premedication with i.m. Atropine (1 mg), ketamine 200 mg (5–10 mg·kg−1)
and azaperone 160 mg (2–8 mg· kg−1), general anesthesia was induced by continuous administration
of propofol and fentanyl through a peripheral or central venous catheter in the following total average
doses: propofol (1% mixture 5–10 mg·kg−1·h−1) and fentanyl (1–2 µg·kg−1h−1). In general, anesthesia
is associated with an inhibition of the autonomic nervous system and, consequently, of heart
rate variability. Effects of fentanyl and propofol used for anesthesia in this study were repeatedly
addressed in patients, and a reduction of overall autonomic nervous system modulation, perhaps with
dominant inhibition of sympathetic branch, was found [24–26]. However, since in this study, the entire
experiment was performed under stable deep anesthesia, we assume that although the absolute levels
of heart rate variability may differ between conscious and anesthetized animals, the pattern of HRV
changes induced by HIMS should be similar.

Electrocardiogram (lead II) was recorded continuously throughout the entire experiment using
a Biopac system (Biopac Systems, Inc., Goleta, CA, USA). At the same time, the ECG record was
sampled with a sampling rate of 512 Hz.

2.2. Experimental Setup and Data Acquisition

A contactless magnetic stimulation device SALUTER MOTI (Embitron, Ltd., Vochov, Czech
Republic) was used for the purpose of this study. This device is designed to target deep and
large muscles and axons in plexuses, organs, and tissues. The parameters of the stimulative
magnetic field are enabling activation of sensory neural pathways by which a sensitivity threshold
is exceeded. However, this device generates a very specific stimulation ensuring that the perception
of nociceptive pain is provoked only minimally. The SALUTER MOTI instrument produces
high-quality, nonpainful, exceptionally strong and deep high-induction magnetic stimulation of a wide
range of frequency modulations.

SALUTER MOTI device meets basic requirements of the Medical Device Directive EU 93/42/EEC
laying down technical requirements for medical devices as amended and in accordance with applicable
technical standards and regulations. The properties, type, nature, and parameters of the medical
device correspond with the intended use and are in line with current clinical knowledge.

The technical solution is based on a controlled resonant circuit producing high-current impulses
generating strong and time-varying magnetic fields around a special applicator. Actuation and
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indication are ensured by a control computer with a touchscreen. Apart from the device’s number
of preprogrammed procedures, it also offers the possibility to customize the procedure parameters
according to the patient’s specific needs and medical prescription.

With the use of the described device, the setup for HIMS was characterized by generating 0.5 Hz
pulses (see Figure 2) for a magnetic induction of 2.5 T, resulting in an induced current of 270 A/m2.
The procedure took 3 min (a total of 90 pulses). The aim was to influence the electrical conduction
system of the heart with perspective ventricular fibrillation. However, this effect was not observed
during or after the procedure. In addition to the predicted contraction of M. pectoralis), no pathological
change in cardiac activity was found in the area of application, according to the ECG record (see
Figure 2).
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Figure 2. Example of electrocardiogram during high-induction magnetic stimulation procedure with
detailed ECG curve with applied pulses.

The above mentioned was the reason for performing a more in-depth heart rate variability
analysis. This analysis was performed by using standard evaluation methods of RR interval time
series. As a reference time series for the evaluation, a 5-min segment before the procedure was
compared with a 5-min segment after the procedure. At first, the application data had to be filtered.
By knowing the frequency of applied pulses, individual pulses were filtered out. At the same time,
it was necessary to supervise the execution of data filtering to prevent the loss of information
regarding the cardiac activity, i.e., loss of the detected R-waves. Therefore, individual signals were
filtered by the finite impulse response (FIR) filter due to their linear phase characteristic. We used
a notch filter with limiting frequencies 0.3 and 0.7 Hz to eliminate the 0.5 Hz part.

2.3. Data Processing and Data analysis

From the cardiac activity pre-processed records with a 0.5Hz component filtered, we separated
three sections of corresponding segments of measurements, one before the HIMS application
(Group A), one during the HIMS application (Group B), and one after the HIMS application (Group C).
All records had the same length. Subsequently, we used the Pan-Tompkins method to identify
the R-waves [27]. Furthermore, we obtained individual RR interval vectors, i.e., time intervals
between individual R-waves. We processed collected data sets of RR intervals by standard methods,
i.e., time-domain analysis, and frequency analysis [19] and by nonlinear analysis—The Recurrence
quantification analysis (RQA) [28].

Concerning the time-domain analysis, parameters of mean RR interval (meanRR) and mean heart
rate values (meanHR) were obtained. In this case, these are the standard arithmetic means of the
given parameters. Moreover, we got long-term variability parameters through the standard deviation
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of NN (normal-to-normal) intervals (SDNN) and the standard deviation of heart rate (SDHR) [19].
The number of adjacent RR intervals differing by more than 50 ms (NN50), the number of such
intervals to the total number of RR intervals (pNN50), and Root mean square of successive RR
interval differences (RMSSD) were selected as further parameters. These parameters are used for
longer signals [19] but are stated to get the complete standard analysis.

Frequency analysis uses the power spectral density (PSD), which is based on the conversion
of signals into the frequency spectrum using a Fourier transform (FT), or more precisely, a Discrete
Fourier transform (DFT) because of the discrete signal. Standard FT, or rather DFT, considers
an equidistantly sampled signal. Thus, in the case of HRV, this requirement is not met. For this
purpose, a so-called Lomb periodogram is used, which was developed for the modification
of non-equidistantly sampled data. The acquired power spectrum of HRV is then divided into
frequency bands, each of which is associated with different functional effects on RR intervals [29].

In the case of the frequency analysis, outputs in individual frequency bands defined for HRV
in the range of low frequencies (LF), i.e., absolute power of low-frequency band (0.04–0.15 Hz) and
in the band of high frequencies (HF), i.e., absolute power of the high-frequency band (0.15–0.4 Hz),
were monitored. An LF and HF ratio (LF/HF) was obtained by mentioned parameters, and it is
used as an indicator of sympathovagal balance, i.e., a balance indicator of the sympathetic and
parasympathetic activity of the neural system [19].

Given the nonlinear nature of biological signals, data were further evaluated using the method
based on the chaos theory method—the RQA, described further [28].

Monitored parameters, or more precisely, their values were statistically compared before and
after the HIMS application. We rejected the null hypothesis of normal distribution based on the
Jarque–Berra test [30]. Regarding the rejection and the fact that paired data were compared, a Friedman
test, which is the non-parametric alternative to the one-way ANOVA with repeated measures and
post-hoc analysis (Dunn and Sidak’s approach [31]), was carried out to statistically compare the state
before, during and after the HIMS application [32]. Statistical significance is presented in the form
of p-values, where p < 0.05 indicates a statistically significant difference between compared groups
because data were tested at the significance level of α = 5 %. Individual p-values represent the result
of Friedman’s test. The p-value indicates that there is a statistically significant difference between
the pairs of study groups. However, the Friedman test itself does not determine between which
particular pairs these differences exist. Therefore, mentioned post-hoc analysis was used. The results
of the post-hoc analysis are presented in the form of confidence intervals providing complementary
information which p-values are not able to . A null value indicates that the group means equal. If the
confidence interval does not contain null, then compared groups are significantly different. The width
of the interval shows how precise the estimation is —The narrower the width is , the higher is the
precision [33]. Individual limits of confidence intervals are presented in the results further in the paper.

2.4. RQA

The first step is to create a multidimensional system relating to the original phase system.
It is about the phase space reconstruction and the construction of a distance matrix (DM). Subsequently,
points, although distant in time, but which are neighbors in space on a particular radius, are identified,
and thus a recurrence plot (RP) is created. The last step is the quantitative assessment
of RP—A recurrent quantification analysis (RQA) [28].

2.4.1. Phase Space Reconstruction

The trajectory in phase space represents the time development and system dynamics. With defined
variables, every system is possible to describe. These variables form the trajectory in time and
n-dimensional space, or precisely in the phase space [34].

In many cases, it is not possible to record or measure all the variables of the system’s state.
The phase space, however, based only on one state variable, might be constructed. A widely and most
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frequently used method is an embedding dimension and time delay method by Dutch mathematician
Takens, see equation below [34].

xi = (ui, ui+τ , ..., ui+(m−1)τ)
T (1)

where u is observed state variable, τ is time delay and m is inserted dimension.
The reconstructed phase space does not entirely match the original phase space, but in case that the

inserted dimension is sufficiently large, its topological properties remain the same [34]. The inserted
dimension should be at least twice the size of the attractor’s dimension, precisely m > 2d + 1 [34,35].
There are several opinions on the input parameters (dimension, time delay) setup. The optimal
setup of these parameters is important when reconstructing the phase space, which will fully depict
system dynamics.

Time delay sets the distance between neighboring elements. If the value of time delay was too
big, the states of reconstructed phase space might appear independent, and thus the reconstructed
trajectory will seem to be a random process. In contrast, if the value of time delay was small,
the difference between individual states of the reconstructed phase space will be negligible.

In the past, to choose time delay, an autocorrelation function was used. Unfortunately,
this method did not take into account the possibility of nonlinear processes [35]. Recent studies
indicate that the method convenient for choosing the specific time delay is the mutual information
[35,36]. The mutual information represents the information of mutual dependency of two dependent
parameters. Higher mutual information means that the variables are more dependent on each other.
The most suitable length of time delay is the first minimum value of mutual information. During the
monitoring x(ti + τ) in time ti + τ, on average the first minimum value presents the highest information
contribution with regard to the information from the monitoring x(ti) in time ti. The mutual
information of two variables A and B might be defined through the entropy as:

I(A, B) = H(A) + H(B)− H(A, B) (2)

where H(A) and H(B) are entropy and H(A, B) is joint entropy of A and B.
After the selection of the optimal time delay, it is necessary to choose the optimal dimension

of an embedment. A frequently used method for selecting the optimal embedded dimension
is a method of false nearest neighbors, and that is because of the fact that after projecting a system
trajectory of the original phase space into space with low-dimension, there is a self-crossing of the
trajectory. Because of the self-crossing, the false nearest neighbors, the number of which diminishes as
the dimension increases, are formed. A disadvantage of using this method is that a threshold must be
set to consider neighbors as false. An interesting modification of false nearest neighbors method that
eliminates the mentioned disadvantage was described by Cao [37], who used the Euclidean quotient
distances of two closest neighboring states in the dimension m and dimension m + 1, see Formula (3).

a(i, m) =
||yi(m + 1)− yn(i,m)(m + 1)||
||yi(m)− yn(i,m)(m)|| (3)

where || is Euclidean distance, yi(m) is the i-reconstructed vector of m and yn(i,m) is the closest
neighbor yi(m).

Furthermore, a variable called the average of all value E(m) is introduced [37]:

E(m) =
1

N −mτ

N−mτ

∑
i=1

a(i, m) (4)
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The average E(m) is dependent on dimension m and time delay τ. To determine the deviations
of m from m + 1, the ratios of averages of the dimension m and dimension m + 1 are also defined,
see Formula (5) [37].

E1(m) =
E(m + 1)

E(m)
(5)

The value of the variable E1(m) stops changing after the dimension m is greater than the value
of the attractor’s dimension m0. The minimum value of the embedded dimension is then equal
to m0 + 1 [37].

2.4.2. Recurrence Plot

A trajectory visualization in phase space with more than three dimensions is challenging.
Therefore, Eckmann [38] presented the so-called recurrence plots. These plots are a fundamental
RQA tool that enables the visualization of multidimensional phase space in a two-dimensional plot.
In the plot, the recurrence states recorded by “ones” are recorded in the matric format. Those states
that are not recurrent are recorded with “zeros”. The recurrence state is possible to determine by the
set threshold distance ε, see Formula (7). According to the [34], it is possible to express the recurrence
plot as:

Ri,j = Θ(ε− ||xi − xj||), for i, j = 1, 2, ..., N, (6)

where Θ is Heaviside function, can be a value 1 and 0 according to Formula (7):

Ri,j = 0 for ||xi − xj|| > ε; and Ri,j = 1 for ||xi − xj|| ≤ ε, (7)

where Ri,j marks a point in a matrix R in time i and other time j, xi and xj are individual states of the
system, N is the total number of states, ||.|| is a distance of two states in a phase space and ε

is a threshold distance [34].
A graphic representation of matrix R is the recurrence plot. Points with value 1 in the matrix

represent the recurrence states. It is possible to encounter also a non-binary (colored) version
of the recurrence plot, in which the distances in between the individual states (points) in the phase
space are placed and, at the same time, the Heaviside function was not used. This procedure avoids
entering a threshold distance, i.e., a graphic representation of the distance matrix. In the graph legend,
there is a so-called colormap that defines what color corresponds to what distance.

A disadvantage of the recurrence plots is their mathematical complexity due to the paired
t-test of all states. N2 tests are counted for N states. In its very nature, the recurrence plot is always
symmetrical, according to the main diagonal line. In addition, basic structures appear. These structures
include separate points, diagonal lines, and vertical and horizontal lines, respectively. Each of these
structures has its meaning [34].

Distant points represent unique points in the phase space, in which the system does not remain
long. Diagonal lines mark the trajectories going through the same area in the phase space at a different
time. Diagonal lines are characteristic of its determinism. Vertical and horizontal lines mark system
remaining in one point or that might change very slowly [35]. Recurrence plot topology is depicted in
Figure 3.
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Figure 3. Example of a recurrence plot (left) and a distance matrix (right).

The most important part when creating the recurrence plot is choosing the right threshold
value. Recent studies discuss the optimal threshold value [39–41] because only the slightest change in
threshold distance might dramatically affect the outcomes [40]. A frequently used method of setting
the threshold distance is setting the threshold distance value percentually from the maximal distance
in the phase space. Another used method focuses on such value that would not exceed 10% of the
average or maximal distance in the phase space [39]. A fixed percentage of recurrence points is another
method of setting the threshold value. To ensure this exact percentage of recurrence points, a certain
threshold distance value is set [39]. Often, this value is 1% [39,40]. It is possible to see also different
setting, e.g., 5% [42].

Other recommended settings include the threshold value ε = 0.1σ (σ is the standard deviation
of signal input). This setting was set by Prof Marwan as a result of an experiment [41].

2.4.3. Quantitative Analysis of Recurrence Plots

So that the recurrence plots were not only a visual tool but would contribute with its evaluation
apparatus, it is necessary to describe the parameters precisely and subsequently quantify them.
Therefore, we used the recurrence quantification analysis, which was presented by Zbilut and Webber
[21,43] and extended by Prof Marwan [22]. Lower, is a set of parameters describing the recurrence
plot statistically.

The percentage of recurrent points RR is the percentage of recurrent points creating the plot.
This parameter matches the probability that a particular state will repeat. Higher recurrence means
lower system (sinus rhythm) variability and vice versa [23,35,42]:

RR =
1

N2

N

∑
i,j=1

Ri,j. (8)

Determinism DET is a parameter representing the percentage of recurrence points forming
diagonal lines. This means that the system is getting back to previous states at a different time,
i.e., increase of DET indicates the more frequent return of system (sinus rhythm) to previous states.
The predictability of system dynamics and determinism parameter are linked to each other [23]:

DET =
∑N

l=lmin
lP(l)

∑N
i,j Ri,j

(9)

where P(l) is a histogram of length of l diagonal lines.
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The Lmax parameter represents the longest diagonal line. Its inverse value is then referred
to as divergence DIV. Shorter diagonal lines indicate a faster deviation of the phase trajectory
segments, thus a higher degree of divergence (increase in the DIV parameter). The L parameter,
which represents the average length of the diagonal lines, is also used to supplement the system
information [28]:

L =
∑N

l=lmin
lP(l)

∑N
l=lmin

P(l)
(10)

where P(l) is a histogram of length of l diagonal lines. Increase of Lmax and L or decrease of DIV,
indicate lower variability of the system (sinus rhythm), i.e., lower HRV.

Laminarity LAM labels the percentage of points forming the vertical lines. This parameter
is used to detect the laminar states, i.e., states when the system is changing or changes only very
little [22,23]:

LAM =
∑N

v=vmin
v P(v)

∑N
v=1 v P(v)

, (11)

where P(v) is the histogram of length of v vertical lines.
The trapping time TT is a parameter that marks the average length of the vertical lines.

The parameter labels the time—how long the system continues to stay in a specific state. In addition,
it also contains information about the frequency and length of the laminar states [22,23]:

TT =
∑N

v=vmin
v P(v)

∑N
v=vmin

P(v)
. (12)

A low value of LAM and TT labels the complex variability (complexity) of the system,
i.e., complexity of sinus rhythm. The system returns to previous states only for a very short
time [42]. The Vmax parameter, which represents the maximal length of the vertical lines and thus the
maximum of all laminar state duration, is also used to indicate laminar states [22]. Increase of these
three parameters then indicates that the system (sinus rhythm) stays in its previous state for a longer
time which results in lower complexity.

One of the fundamental indicators of complexity is the Shannon entropy ENT, defined by
Formula [22]:

ENT = −
N

∑
l=lmin

p(l)lnp(l), (13)

where [22]:

p(l) =
P(l)
N(l)

(14)

and N(l) is a number of diagonal lines in the recurrence plot. The increase of ENT indicates higher
information in system which means higher complexity [28]. Therefore, increasing the ENT parameter
increases system complexity while decreasing complexity reflects decrease and ability to further
regulate cardiac activity is reduced system adaptability to external stimuli.

Trend (TND) represents the RP drift towards its edges and is formulated as [22]:

TND =
∑Ñ

i=1(τ − Ñ/2)(RRτ − 〈RRτ〉)

∑Ñ
i=1(τ − Ñ/2)2

(15)

where Ñ is maximal number of diagonals parallel to the line of identity (central diagonal) which will
be considered for the calculation of TND. The TND is thus an indicator of system (sinus rhythm)
non-stationarity [28]. Therefore, increasing values of TND indicated complexity of system (sinus
rhythm) and values close to 0 reflects system homogeneity [44].
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The last parameter is RATIO, which is the ratio between RR and DET. RATIO is used
to detect specific transitions in the system, i.e., conditions where RR changes but the DET remains
constant [28]. During physiological transitions, this parameter is increased, and then stabilized in
the case of a quasi-stable state. Increasing the RATIO parameter thus indicates system transitions,
i.e., transitions in sinus rhythm [21].

Based on what was already mentioned, the time delay was set automatically for each data set
based on mutual information. The embedding dimension was also calculated separately for each
dataset by using the method designed by Cao [37]. We set the threshold according to the fixed
percentage of recurrent points in the resulting plot in a way that the resulting RR = 5 % (in reality,
the value is around the mentioned value, so it is the closest possible value meeting the condition
RR ≥ 5%).

3. Results

We used time, frequency, and recurrence quantification analysis to monitor the condition before,
during, and after the HIMS application in the chest area. Results from the time-domain analysis
provided us with 7 standard parameters used for the HRV analysis. Frequency analysis delivered
additional 4 parameters relating to standard bands used in the HRV frequency analysis. The RQA
delivered a total of 11 parameters relating to the structures occurring in the recurrence plot, and which
describe the dynamics of the system.

To get statistics, we compared all the obtained parameters to monitor statistically
significant differences in the state before, during, and after the HIMS application, see Table 1.
Distribution of individual parameters among 3 datasets depicted in Figures 4-6.

Table 1. Result summary of Friedman’s test in the form of p-values along with results of post-hoc
analysis, where the upper and lower limits of confidence intervals to compare the parameters
monitored before and during (A-B), before and after (A-C) and during and after (B-C) the HIMS
application are depicted.

Analysis Parameter Confidence Intervals p-Value

Time

meanRR A-B (−0.684;1.573), A-C (−1.573;0.684), B-C (−2.017;0.240) 0.169
SDNN A-B (−1.240;1.017), A-C (0.094;2.351), B-C (0.094;2.351) 0.016

meanHR A-B (−1.573;0.684), A-C (−0.684;1.573), B-C (−0.240;2.017) 0.169
SDHR A-B (−1.351;0.906), A-C (0.094;2.351), B-C (0.316;2.573) 0.004
NN50 A-B (−1.025;1.136), A-C (0.197;2.358), B-C (0.142;2.303) 0.006

pNN50 A-B (−1.469;0.692), A-C (−0.025;2.136), B-C (0364;2.525) 0.004
RMSSD A-B (−1.462;0.795), A-C (−0.129;2.129), B-C (0.205;2.462) 0.013

Frequency

VLF A-B (−1.240;1.017), A-C (−0684;1.573), B-C (−0.573; 1.684) 0.459
LF A-B (−1.573;0.684), A-C (−0.351;1.906), B-C (0.094;2.351) 0.032
HF A-B (−1-684;0.573), A-C (−0.573;1.684), B-C (−0.017;2.240) 0.062

LF/HF A-B (−1.017;1.240), A-C (−0.573;1.684); B-C (−0.684;1.573) 0.459

RQA

RR A-B (−2.906;-0.649), A-C (−2.351;-0.094), B-C (−0.573;1.684) 0.001
DET A-B (−1.351;0.906), A-C (−1.906;0.351), B-C (−1.684;0.573) 0.236
DIV A-B (−2.017;0.240), A-C (−1.573;0.684), B-C (−0.684;1.573) 0.169

LAM A-B (−1.240;1.017), A-C (−0.351;1.906), B-C (−0.240;2.017) 0.121
RATIO A-B (−1.351;0.906), A-C (−1.906;0.351), B-C (−1.684;0.573) 0.236

TT A-B (−0.891;1.335), A-C (−0.502;1.724), B-C (−0.724;1.502) 0.412
TND A-B (0.316;2.573), A-C (−0.240;2.017), B-C (−1.684;0.573) 0.008

L A-B (0.205;2.462), A-C (−1.129;1.129), B-C (−2.462;-0.205) 0.005
VMAX A-B (−0.224;2.002), A-C (−0.168;2.057), B-C (−1.057;1.168) 0.074
LMAX A-B (−0.240;2.017), A-C (−0.684;1.573), B-C (−1.573;0.684) 0.169
ENT A-B (0.094;2.351), A-C (−0.684;1.573), B-C (−1.906;0.351) 0.032
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Figure 4. Distribution of the time-domain HRV parameters before (A) during (B) and after (C) the
HIMS application with highlighted outliers (red crosses). Symbol * means p < 0.05 vs. group A, †
means p < 0.05 vs. group B, ‡ means p < 0.05 vs. group C.

Figure 5. Distribution of the frequency-domain HRV parameters before (A) during (B) and after (C)
the HIMS application with highlighted outliers (red crosses). Symbol * means p < 0.05 vs. group A, †
means p < 0.05 vs. group B, ‡ means p < 0.05 vs. group C.

Figure 6. Distribution of the recurrence quantification analysis parameters before (A) during (B) and
after (C) the HIMS application with highlighted outliers (red crosses). Symbol * means p < 0.05 vs.
group A, † means p < 0.05 vs. group B, ‡ means p < 0.05 vs. group C.
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The results show that in the case of time-domain analysis there was a significant change between
the state before and after the application of HIMS in 2 parameters (SDHR, NN50), and then also
between the state during and after the HIMS application in 5 parameters (SDNN, SDHR, NN50,
pNN50, RMSSD). The distribution of the individual RQA parameters is shown in Figure 4.

Frequency analysis showed only one statistically significant transition, and that was in the
low-frequency band between the state during and after the HIMS application. The distribution of the
individual RQA parameters is depicted in the Figure 5.

The RQA showed statistically significant transitions between 4 parameters. The transition
between the state before and during the HIMS application proved to be significant for 4
parameters—RR, TND, L, and ENT. A statistically significant difference between the before and
after HIMS application was observed in the RR parameter. A significant difference between the state
during and after the HIMS application was observed in the L parameter. The distribution of individual
RQA parameters is shown in Figure 6.

4. Discussion

No pathological change in the ECG record was found by supervising physician during the
measurement. This statement is also supported by the results where most parameters did not show
a statistically significant difference between the compared time series. Therefore, there are no obvious
changes in records before, during, and after the HIMS application.

However, in the case of long-term variability parameters, i.e., SDHR parameter, a statistically
significant difference among data obtained before, during, and after the HIMS application was
observed. Similarly, in the case of the RMSSD parameter, significant differences are observed.
The RMSSD parameter is then linked to a short-term variability, i.e., variability between individual
heartbeats [19]. Furthermore, significant differences were observed in the NN50 and pNN50
parameters, which also relate to variability [19]. Thus, it is becoming clear that the signal variability
varied during the experiment, and therefore the HIMS application affects the variability of the heart
rhythm in some way, although this is not obvious at first sight.

Looking at the results related to frequency analysis, it is evident that there are almost no
significant transitions. The only significant transition had shown between the state during and after
the HIMS application in the low-frequency band. This band is mainly related to parasympathetic
activity [19]. We can declare, however, that it is not possible to form conclusions on influencing
the heart rhythm of HIMS application based on the frequency analysis, and from the perspective
of frequency analysis, it appears that the HIMS application may not have a more substantial influence
on cardiac activity.

As was previously mentioned, biological processes are burdened with fluctuations, and therefore
linear analysis does not seem to be an appropriate choice [45]. On the other hand, these results can
be used as a baseline for further progress. By using the standard methods, it is possible to assume
the influence on the variability of the heart rhythm through parameters that correspond to short and
long-term variability. For these reasons, we carried out a recurrence quantification analysis.

The analysis is based on chaos theory and takes into account the nonlinear behavior of the
signal [23]. In the case of the RQA, particularly transitions between states pre and during the HIMS
application were observed. This was the case with the RR parameter, which indicates the variability
of the system. The results show that in the case of the dataset with the application of HIMS,
there is an increase of RR and, thus, a decrease of variability. Other transitions were found in
the parameter L, representing the average time at which 2 segments in the phase space are close
together [23], in the ENT parameter or rather Shannon entropy indicating the degree of chaos in
the system [46], and finally in the TND parameter quantifying the stationarity of the system [23].
Taking into account the fact that RQA parameters are used as indicators of complexity, or in other
words, complex variability [22], especially the ENT, it is clear that the HIMS application in the chest
area can induce some changes in complexity. On the other hand, there were relatively few significant
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transitions, and it seems that the subjects’ hearts (i.e., hearts functioning without any pathologies)
appeared to be highly resistant to the HIMS application.

The high resistance of the physiologically functioning electrical conduction system of the heart
and the minimal possibility of affecting the operation of the sinoatrial node by low-frequency
electromagnetic fields in a healthy heart is evident. The explanation for this phenomenon can be
hypothetically found in the excellent electrical conductivity of the pectoral muscles as well as of the
conductive serous fluids found between the pleura parietalis and the pleura visceralis, as well as between
the pericardium and epicardium. These well-electrically conductive environments can concentrate
a more significant part of the induced electrical currents, where their current paths can close, create
a high-current density, and thus the heart itself can be largely shielded from the effect of the induced
electrical currents. Another hypothesis is the idea of the “resilience” of the sinoatrial node and
the entire electrical conduction system of the heart against the effects of external electromagnetic
fields. It should be stressed, however, that these are the effects of an explicitly low-frequency,
not the high-frequency impact of electromagnetic fields, known in physical medicine from the use
of diathermy.

At the same time, however, certain changes can be observed based on complex variability.
The results support the safety aspect of the high-induction magnetic stimulation but do not in
any way imply that high-induction magnetic stimulation could be applied risk-free to the heart area
where it is usually contraindicated, especially in cardiac patients or in risk patients. The presence
of a pacemaker or other electronic surrogate in the body is a primary contraindication not only to the
HIMS application but also to distance electrotherapy and any other application of induced electric
currents and electromagnetic fields that could adversely affect the pacemaker or any other electronic
surrogate with a fatal effect.

It is evident that at first look (and based on the basic descriptive statistics, i.e., meanRR and
meanHR parameters), changes in cardiac activity are not apparent. Still, certain significant transitions
show up in the parameters describing variability or complex variability (complexity). Therefore,
we can say that although it seems that HIMS has no effect on the electrical conduction system of the
heart based on the results of the fundamental analysis, the results indicate changes in variability,
which decreases during or after the HIMS application. Therefore, it can be assumed that the HIMS
application affects cardiac activity. Hence, there are changes in variability, but for more accurate results,
it would be necessary to include a larger number of subjects in the study and possibly to extend the
spectrum of applied pulses (with respect to their frequency).

5. Conclusions

High-induction magnetic stimulation is an effective form of electrotherapy without the need
for galvanic contact with the patients’ body, which is based on the effect of electric currents induced
in treated tissues through time-varying low-frequency magnetic field. Every biophysical therapeutic
method has its limitations, including the HIMS method, such as contraindication, risks, and possible
side effects. However, with more research in this field, a considerable amount of new knowledge
is being presented, including new contraindications, or on the other hand, some already known
contraindications may be proved irrelevant. Some of the contraindications are obvious concerning
the presented biophysical therapeutic method, such as a cardiac pacemaker, insulin, and other
electronically controlled infusion pumps, implantable neurostimulators, cochlear implant, microchips
for the stimulation of N. vagus or intracranially implanted in the central nervous system, any biotic
electronically controlled implants or prostheses implanted in the location of patients’ body within
the range of magnetic field. Except for the above mentioned, it seems possible to also discuss the
metal orthopedic and other implants in the location of the magnetic stimulation application. Another
contraindication is pregnancy.

Due to the development of safety using these devices, it is necessary to consider also direct
undesirable effect of such therapeutic methods. Therefore, the primary aim of this paper was to study
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the impact of HIMS application in the area that might affect the electrical conduction system of a heart
in terms of short-term changes in cardiac activity, particularly with the aim of inducing ventricular
fibrillation. Although no pathological signs were found in the ECG record by the supervising physician,
the results of the presented study show that HIMS might affect the complex variability of heart
rhythm. Therefore, regarding the results of the performed nonlinear analysis and the implications
of parameters describing variability, it is quite clear that further study of the problem seems to be
appropriate.

For a deeper insight into this issue, it would be advisable to monitor the long-term effects
of HIMS on the electrical conduction system of a heart. To assess the long-term effects of HIMS,
it would be necessary to collect records of the cardiac activity of subjects through the Holter system
and to perform subsequent analysis of these records. In such a case, it would be possible to formulate
conclusions with regard to long-term changes in the HRV complexity, but in our records, where the
signals are 3 and 5 min long it, is not possible to formulate such conclusions regardless of the analysis
performed. However, as already mentioned, the study was not focused on monitoring long-term
changes, but mainly on inducing ventricular fibrillation (which did not occur) and monitoring the
acute condition. Another limitation is the relatively low number of monitored subjects, but the study
was conducted as a pilot study and serves as a basis for further research. Therefore, for a more in-depth
insight into the issue, it would be necessary to extend the sample of measured subjects, possibly
to extend the time of observation of measured subjects after the HIMS application or to use more
frequencies of HIMS pulses to influence the electrical conduction system of the heart.

Author Contributions: Conceptualization, J.P., V.S. And M.Š.; data curation, L.H., J.P., V.S.; formal analysis, L.H.
And V.S.; funding acquisition, J.P., V.S. And M.S.; investigation, L.H., J.P. And V.S.; methodology, J.P. And M.Š.;
project administration, J.P. And V.S.; resources, L.H., J.P., V.S., M.Š. And S.V.d.B.; supervision, J.P.; validation, L.H.,
V.S.; visualization, L.H., V.S.; writing—original draft, L.H., V.S., S.V.d.B; writing—review and editing, L.H., J.P.,
V.S. M.Š. And S.V.d.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Czech Health Research Council within the project no. 16-28784A “Affection
of the locomotive apparatus degenerative diseases symptoms by means of high-induction magnetic stimulation”
and by the Ministry of industry and Trade within the project no. FV20422 “Development of nanofibrous scaffolds
ensuring application of cellular products, including physical stimulation effect, with the intended purpose of the
treatment of chronic wounds”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANOVA analysis of variance
DET Determinism
DFT Discrete Fourier transform
DIV Divergence
DM Distance matrix
ECG Electrocardiogram
ELF Extremely low-frequency band
ENT Shannon entropy
FT Fourier transform
HF High-frequency band
HIMS High-induction magnetic stimulation
HR Heart rate
HRV Heart rate variability
L the average length of the diagonal lines
LAM Laminarity
LF Low-frequency band
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Lmax the maximal length of the diagonal line
PSD Power spectral density
RATIO Ratio between DET and RR
RMSSD Root mean square of the successive differences
RP Recurrence plot
RQA Recurrence quantification analysis
RR Recurrence rate
RR interval the time elapsed between two successive R-waves of the QRS signal on the electrocardiogram
SDNN Standard deviation of normal to normal
TND Trend
TND Trapping time
VLF band Very low-frequency band
Vmax the maximal length of the vertical lines
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