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Abstract: The concept of virtual water, as a new approach for addressing water shortage and safety
issues, can be applied to support sustainable development in water-scarce regions. Using the
input-output method, the direct and the complete water use coefficients of industries categorized as
primary, secondary, or tertiary, and the spatial flow patterns of the inter-provincial trade in the Gansu
province region of China, were explored. The results show that in 2007, 2010, and 2012 the direct and
complete water use coefficients of the primary industries were the greatest among the three industry
categories, with direct water use coefficients of 1545.58, 882.28, and 762.16, respectively, and complete
water use coefficients of 1692.22, 1005.38, and 873.44, respectively; whereas, the direct and complete
water use coefficient values of the tertiary industry category were the lowest, with direct water
use coefficients of 16.65, 7.74, and 66.89 for 2007, 2010, and 2012, respectively, and complete water
use coefficients of 65.46, 66.89, and 72.81 for 2007, 2010, and 2012, respectively. In addition, study
results suggest that the volume of virtual water supplied to Gasnu province’s local industries has
decreased annually, while virtual water exports from the province have increased annually, with the
primary industry accounting for 95% of virtual water output. Overall, the virtual water of Gansu
province in 2010 showed a net output trend, with a total output of 0.506 billion m3, while in 2007
and 2012 it showed a net input trend with a total input of 0.104 and 1.235 billion m3, respectively.
Beijing, Shanghai, Guangdong, Ningxia and other water-scarce areas were the main input, or import
source for Gansu’s virtual water; during the years studied, these provinces imported more than
50 million m3 individually. Based on these results, it is clear that under the current structure,
virtual water is mainly exported to the well-developed coastal areas and their adjacent provinces or
other water-abundant regions. Therefore, Gansu province should (1) adjust the industrial structure
and develop water-saving and high-tech industries; (2) adjust the current trade pattern to reduce
virtual water output while increasing its input to achieve balanced economic development and water
resource security.
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1. Introduction

The concept of virtual water was first proposed by Tony Allan in 1993 [1] to refer to the amount of
water used in the production of goods and services [2]. Since 2002, the concept has received extensive
attention around the world [3,4]. In China, virtual water has been forwarded as a potential approach to
safeguard water resources, especially in water-scarce areas such as the northwest [5]. This interest has
prompted many empirical studies on the quantification of virtual water in global crop and livestock
products (2352 kg of water in 1 kg of crop, and 6333 kg of water in 1 kg of livestock product, respectively),
in Netherlands’s and Canada’s grain products (1000–2000 kg of water in 1 kg of grain), in Canada’s
beef products (16,000 kg of water in 1 kg of beef), in American computer chip products (16 kg of water
in 1 g of a 32-megabyte computer chip) [6–10], and in Brazil’s, Chile’s and American paper products
(1052.8 kg, 1227.3 kg, 3345.8 kg of water in 1 kg of paper, respectively) [11]. Virtual water studies have
also been completed for services, for example, the assessment of virtual water in the Spanish tourism
industry (9.7 kg of water per € 1 of tourism income in 2004) [12]. Virtual water trade, which refers
to the practice of transporting this hidden water from one country to another, has also been studied.
For example, studies have examined the amount and direction of virtual water in agri-food products
transported from Italy to China [13], and the factors influencing its characteristics [14]. When employed
appropriately, virtual water trade can be used to alleviate water shortages in water-scarce regions
and to ensure local water security through the import of water-rich products from water-abundant
regions [15,16]. Researchers have investigated the links between virtual water, food security [17],
and water footprints [18,19], which is different compared to carbon footprints [20,21]. The former
means the cumulative virtual water of all goods and services consumed by one individual or one
country [22], while the latter means a measure of the total amount of greenhouse gas emission directly
and indirectly produced by an activity or accumulated over the life stages of a product [23,24]. As there
is a mutual feedback mechanism between water and carbon footprint, an understanding of water
footprint can contribute to reflecting carbon footprint and proposing policies on the utilization of
energy resources, and to achieving sustainable development [25–27].

A review of the existing empirical studies on virtual water shows that most are large-scale in
scope, and focused on economically developed areas. There is a need for studies at the provincial scale,
particularly for the less developed, arid inland provinces of China. Gansu province is located in the
central region of northwest China and covers a total area of 425,900 km2. It is a typical arid and semi-arid
water-deficient area with a dry climate, sparse rainfall and severe water resource shortages. In addition,
the unequitable distribution of industrial water use, low utilization efficiency, and over-exploitation
of groundwater have resulted in a decrease in river water supply and an increase in desertification,
with significant negative consequences for regional social and economic development [28].

The current paper analyzes virtual water content, the primary virtual water export industries and
their export destinations, and the spatial patterns of virtual water in Gansu province between 2007 and
2012. The results of this study can be employed to support the sustainable use of water resources and
the optimization of industry and trade structures in Gansu province.

2. Statistics and Methods

2.1. Inter-Regional Input-Output Model

In 1936, American economist W. Leontief proposed the input-output method to describe the
relationships between inputs and outputs in all sectors of an economic system [29,30]. To inform
the rational use of water resources, researches have applied the regional input-output method to the
analysis of water consumption [31,32]. By compiling the resulting input-output tables and establishing
mathematical models, researchers can identify the amount of virtual water in a system, the current
direction of its movement [33], and calculate the ultimate water consumption and environmental
emissions involved in product production [8,34].
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The inter-regional input-output model (IO model) was first proposed by Isard [35] to reflect product
trade between regions in a more systematic and comprehensive way compared to the single regional
input-output model. The calculation of virtual water trade volumes in a certain area (Figure 1, specific
meaning of each formula is presented in Table A1) is based on the assumption that an inter-regional
input-output model contains n regions, and that each region has m sectors, so that the mathematical
structure of the inter-regional input-output model contains m × n linear equations [36].

Figure 1. Flow chart of virtual water calculation [36].



Appl. Sci. 2020, 10, 586 4 of 15

2.2. Data Sources and Processing

Due to technical limitations and other difficulties associated with data acquisition, compiling
the inter-regional input-output tables is demanding in terms of time and resources. These challenges
can contribute to delays and irregularities in input-output table publication schedules. In China,
for example, the initial data acquisition process for the regional virtual water input-output assessment
was initiated in 1987 and has since been repeated at 5-year intervals. Within this process, input-output
tables are launched every 3-years, however, these are usually presented 2–6 years after data acquisition
for the cycle. The current study utilizes the input-output tables for 2007, 2010 and 2012.

Water consumption data for all industries in Gansu province were derived from the Gansu Water
Resources Bulletin in 2007, 2010, and 2012 [37–39]. Forty-two industry sectors were classified into
primary, secondary and tertiary industries according to the Industry Classification Regulations [40].
Primary industries include agriculture, forestry, animal husbandry and fishery; secondary industries
consist of those in the manufacturing and construction category, while the remaining industries were
classified as tertiary (Table A2 presents industry specific classifications). The complete and direct
water use coefficients, with the former referring to the water demand of the entire economic system
from the perspective of product life cycles, and the latter referring to water used in the production of
intermediate products [41,42], were calculated and the volume of virtual water exported from Gansu
to other provinces was inferred.

3. Results and Discussion

3.1. Industrial Virtual Water Consumption in Gansu Province between 2007 and 2012

3.1.1. Water Consumption Coefficients of Various Industries

Across all three industry categories, the complete water use coefficients are higher than the
corresponding direct water use coefficients; this is expected as the concept of complete water use
includes both direct and indirect water use (Table 1). In comparison to the secondary and tertiary
industries, the complete water use coefficient of the primary industry category is much higher, and the
difference between the complete water use coefficient and that of its direct water use coefficient
is relatively insignificant, because large quantities of water are directly consumed by many of the
industries in the primary industry and their production processes requiring few resources from the
secondary and tertiary industries [40]. The secondary and tertiary industries complete water use is
significantly higher than direct water use due to the high indirect water use of many of the composite
industries that require considerable indirect water use [43,44]. The catering and lighting industries,
for example, consume large amounts of agricultural and electrical products, respectively, resulting in
large amounts of indirect water consumption during production. Consequently, these industries are
labeled the “invisible water-consuming industries” [45,46]. In comparison with the tertiary industry
class, the direct water use coefficient of the secondary industry category is relatively large. Secondary
industries like the steel and electricity industries consume large amounts of direct water for cooling
and rinsing [47,48]. These results suggest that improving water use efficiency in primary industries,
and decreasing the use of primary industry products in secondary and tertiary industries, be employed
to effectively reduce water consumption across all three industry classes [49]. From 2007 to 2012,
the complete and direct water use coefficients of both the primary and secondary industries showed a
trend of continuous decline. The decline in the complete water use coefficient in the primary industry
is mainly related to the decline in the direct water use coefficient, while for the secondary industry
the complete water use coefficient was influenced significantly by both direct water use and the
use of water-abundant products of the primary industry [40,50]. The requirements of increasing
water use efficiency and water recycling in Gansu province by the 11th Five-Year Plan (Outline of
the Eleventh year plan for National Economy and Social Development in the People’s Republic
of China) from 2006 to 2010 with “six necessaries” principles, including maintaining steady and
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rapid economic development, accelerating transformation of economic growth modalities, improving
self-directed innovation capabilities, promoting the coordinated development of urban and rural
areas, strengthening the construction of a harmonious society, and deepening reforms openings [51],
also contributed to the decline of direct water use in the primary and secondary industries. It is
estimated that about 43 provincial-level pilot projects were designed to promote water-saving, through
optimized and upgraded agricultural and industrial sectors [52]. These measures had significant
results. Primarily, Gansu focused on promoting water-saving agricultural techniques specific to local
conditions [53]. These techniques contributed to a marked decrease in the agricultural irrigation quota,
an increase in grain output, and a significant reduction in the direct water use coefficient of primary
industry [54]. The success of promoting appropriate local techniques should be noted - since the
impacts of technical and infrastructure changes often vary from region to region, it is suggested that
each city in Gansu establish context specific measures towards the promotion of coordinated economic
and ecological development province-wide.

Table 1. Direct and complete water consumption coefficients of primary, secondary, and tertiary
industries in Gansu province from 2007 to 2012.

Water Use Coefficient in 2007 Water Use Coefficient in 2010 Water Use Coefficient in 2012

Direct Complete Direct Complete Direct Complete

Primary Industry 1545.58 1692.22 882.28 1005.38 762.16 873.44
Secondary Industry 32.69 450.32 20.21 371.90 17.08 309.87

Tertiary Industry 16.65 65.46 7.74 66.89 5.09 72.81

Unit: m3/million yuan.

During the study period, the complete water use coefficient of the tertiary industry class exhibited
an increasing trend, while the direct water use coefficient decreased with time. This increase in the
complete water use coefficient can be attributed primarily to infrastructure development in the western
region of Gasnu Province in response to the ‘develop-the-west’ strategy under the 11th Five-Year Plan,
in which tertiary industry consumed a large number of water-consuming products [48].

3.1.2. Virtual Water Flow and Water Resource Use among Primary, Secondary, and Tertiary Industries

Between 2007 and 2012, the majority of virtual water in Gansu province flowed towards tertiary
industry and the smallest portion flowed towards primary industry (Figure 2). Under the ‘develop-the-west’
strategy of the 11th Five-Year Plan, Gansu focused on the development of infrastructure, basic industries
and the tourism belt along the Silk Road. The “One Belt and One Road” has been one of the most
important parts of China’s strategy of domestic economic and social development, as well as an
important part of China’s foreign strategy. The “One Belt” refers to the Silk Road Economic Belt,
and the “One Road” refers to the 21st Century Maritime Silk Road [55,56]. During this project,
the transportation component of the tourism industry has consumed a large amount of water resources
to this day [57].

The total volume of water resources demanded by the region is expressed in terms of gross, or
total virtual water; this includes locally produced virtual water and that imported from other regions
(Table 2) [58]. Compared to 2007, Gansu’s primary industry virtual water use decreased by 16.63%
in 2010. This reduction is attributed primarily to the emphasis on “grain for green” (conversion of
farmland to forests) in the ‘develop-the-west’ strategy [59], which not only supports reduced virtual
water consumption by primary industry, but also affects consumption in the other industry classes that
consume raw materials from primary industry. In 2012, the total amount of virtual water increased
significantly; this can be ascribed to the continuous development of the national economy which has
brought about significant changes in the income level and consumption structure of Gansu residents,
and thus contributes to an increase in water resource consumption [48,60]. In addition, the emergence
and advancement of the production and service industries has contributed to increased virtual water
use across all three industry categories themselves [61].
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Figure 2. Virtual water flow momentum of primary, secondary, and tertiary industries in Gansu
province from 2007 to 2012.

Table 2. Total virtual water consumption of primary, secondary, and tertiary industries in Gansu
province from 2007 to 2012.

Total Virtual Water in 2007 Total Virtual Water in 2010 Total Virtual Water in 2012

Local Production Field Input Local Production Field Input Local Production Field Input

Primary Industry 210.92 1.11 175.84 1.11 226.64 1.61
Secondary Industry 56.13 12.94 65.05 19.68 80.40 57.40

Tertiary Industry 8.16 2.07 11.70 3.73 18.89 27.65
Total 291.33 277.11 412.59

Unit: 100 million m3.

3.1.3. Benefit Analysis of Virtual Water in Gansu Province

The results of the current study show a large gap in virtual water use between the three industry
categories in Gansu between 2007 and 2012, but the total combined water use did not change
significantly during this period. These findings indicate that, although Gansu province has made
advances in various industries, inequitable distribution of water resources among the industries is still
an issue. Upon examination of both gross production value and virtual water distribution, it appears
that water consumption remains stable for each individual industry class, but that gross production
value increases, suggesting an improvement in utilization efficiency. The primary industry class
consumed the highest proportion of virtual water but exhibited the lowest production value, while the
secondary and tertiary industry classes showed the opposite trend (Figure 3).

The added value of primary industries in Gansu province between 2007 and 2012 (17.063, 19.412
and 20.079 billion yuan, respectively) was lower than the added value of the national primary industry
class (27.075, 37.895 and 49.391 billion yuan, respectively) [62–67]. This trend is related to grain
output and prices; Gansu province’s grain output and grain prices were lower than the national level,
further indicating that the virtual water distribution in Gansu province in the primary industry is
not appropriate. It is suggested that, to remedy this result, Gansu should adjust the distribution
of water according to specific conditions (e.g., spatial distribution of water resources within Gansu
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province) through trade within the province, encourage the development of water-saving and profitable
industries, and reform those industries that are water-consuming and less profitable [68,69].

Figure 3. Comparison of the total water production and virtual water consumption in Gansu province
from 2007 to 2012.

3.2. Virtual Water Trade in Gansu Province from 2007 to 2012

3.2.1. Spatial Patterns of Virtual Water Flow in and around Gansu Province

Patterns of virtual water supply and demand between Gansu province and other regions are
important to consider. The results of the current study show that, in comparison with 2007, the use of
locally produced virtual water in Gansu decreased by 2.262 billion m3 in 2010 (Table 2). According to
the Gansu Provincial Water Resources Bulletin in 2007 and 2010, in 2010 the water-saving irrigated
area reached 3 million mu (1/15 ha) more than that in 2007. In 2012, the total amount of virtual water
contained in products was 41.259 billion m3, and 32.593 billion m3 of virtual water was provided for
local use, accounting for 79.00% of the total. On the basis of 2007 and 2010 statistics, the use of locally
produced virtual water increased by 50.72 and 7.334 billion m3, respectively in 2012 (Table 2); this is
related to the increase in virtual water consumption across all three industry categories. The proportion
of virtual water employed locally verses total virtual water decreased annually from 94.8%, 89.52% to
81.43%, while exports have been mounting, from 5.2%, 10.48%, to 18.57% (Table 3). This trend suggests
that the increase in total virtual water may be due to a rise in the import of products with high virtual
water content, rather than to the decline of virtual water exports. The industries with the highest
direct water use are the dominant exporters, such as those in the primary industry category (Table 4).
Therefore, Gansu should focus on improving water use efficiency and minimizing the development of
industries with high direct water use to alleviate the pressure on water resources.

Table 3. The proportion of local usage and output of virtual water in Gansu province from 2007 to 2012.

2007 2010 2012

Total amount of virtual water 100% 100% 100%
Local usage ratio (%) 94.80% 89.52% 81.43%

Output ratio (%) 5.2% 10.48% 18.57%

Table 4. Export of virtual water from Gansu and import of virtual water into Gasnu across primary,
secondary, and tertiary industries.

2007 2010 2012

Output Input Output Input Output Input

Primary Industry 14.62 1.11 28.62 1.11 72.15 1.61
Secondary Industry 0.32 12.94 0.70 19.68 1.67 57.40

Tertiary Industry 0.16 2.09 0.26 3.73 0.49 27.65
Total 15.10 16.14 29.58 24.52 74.31 86.66

Unit: 100 million m3.
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Between 2007 and 2012, virtual water in Gansu mainly flowed towards developed coastal cities
(Figure 4) such as Beijing, Shanghai, Guangdong and Tianjin. This is partially due to the encouragement
of advances and reforms in emerging and traditional industries, and the implementation of virtual
water strategies in these centers [70,71]. Over 80 million m3 of virtual water flowed to the provinces of
Jiangsu, Zhejiang and Hebei in 2007, 2010, and 2012, respectively. Gansu, as a water-scarce province,
consistently exported large volumes of virtual water to water-rich areas from 2007 to 2012. Such a
trade pattern no doubt increases the pressure on water resources and affects economic development in
Gansu [72,73]. The spatial pattern of virtual water trade in Gansu province was developed by ranking
the output volume of virtual water flowing from Gansu to different export regions. The export area
included China’s eastern coast along with the central, western, and northeast regions. Virtual water
output volume was divided into three ranges: less than 80 million m3, 40 million to 80 million m3,
and higher than 40 million m3.

Figure 4. Cont.
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Figure 4. Spatial pattern of interprovincial flow of virtual water from Gansu province from 2007 to 2012.

3.2.2. Industrial Structure of Virtual Water Inter-Provincial Flow Direction from Gansu Province

The inter-provincial trade of virtual water is carried out using industrial and agricultural products
as carriers [74]. From 2007 to 2012, the largest virtual water exporter was primary industry, exporting
1.462 billion m3, 2.862 billion m3 and 7.215 billion m3 of virtual water in 2007, 2010, and 2012, respectively,
accounting for 96.81%, 96.78%, and 97.13% of the total output (Table 4). As such, the virtual water
flow of the primary industry determines the trend of the virtual water current in Gansu province as a
whole [75]. Because the agricultural sector dominates in Gansu province, it is the main contributor
to virtual water exports. From 2007 to 2012, virtual water from primary industries mainly flowed to
Beijing, Shanghai, Guangdong, Tianjin, Jiangsu, Zhejiang and Hebei, and the total output volume was
over 80 million m3, consistently increasing over time. These large export destinations are also the
principal virtual water sinks, further supporting the concept that the basic pattern of virtual water
output in Gansu province is affected by the trade flow of primary industry products [76]. However,
most virtual water produced in Gansu province was consumed there, as agriculture, the primary
industry of the province, suffers from low utilization efficiency in terms of irrigation water and
rainfall [52,54].

In Gansu province, the secondary industry imported the highest virtual water volume from 2007
to 2012 (Table 4), at 1.294, 1.968 and 5.740 billion m3, accounting for 80.17%, 80.26% and 66.24% of
the total virtual water import, respectively. This virtual water stream flowed from Jiangsu, Zhejiang,
and Henan, each of which retained more than 80 million m3 during the study time period. This trend
increased consistently, as these regions, in the midst of industrialization, consumed large amounts of
water for industrial processes [77,78].

3.2.3. Variations and Rationality Analysis of Inter-Provincial Virtual Water Trade in Gansu Province

A net import trend was observed for all virtual water trade in Gansu province in 2007 and
2012; however, in 2010 virtual water displayed a net export trend (Table 4). Gansu province received
104 million m3 of virtual water in 2007 because the import volume in the secondary and tertiary
industry was higher than the export volume of the primary industry. The ‘develop-the-west’ strategy
required the mid-eastern regions to provide facilities, resources, and techniques for the west during
that period [55]. The volume of virtual water imported from the primary industry in 2010 was similar
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to that of 2007, yet the import volume from the secondary and the tertiary industries increased by
52.09% and 78.47%, respectively.

The export volume of virtual water for the three industry categories combined was two-times
greater in 2010 than in 2007; net output of virtual water in 2010 was 506 million m3. There are two
primary reasons for this; first, although the number of export destinations were reduced, the export
volume is extremely large, and second, Gansu increased intermediate inputs and final product exports
to other provinces.

Net imports of virtual water were observed in 2012, with a virtual water import volume of
1.235 billion m3. The output of the three industry classes combined was twice that of 2010, with
the import of the second and tertiary industries, respectively, reaching 2.92 and 7.41 times that of
their 2010 counterparts. This is likely related to the policy orientation, industry distribution and
state of development of Gansu province, along with the important position of Gansu province in the
construction of the “One Belt and One Road” [55].

The distribution of water resources in China is extremely unbalanced. Water resources are
more plentiful, and the average annual precipitation is much higher, in coastal areas than in inland
areas [79]. The main receivers of Gansu’s virtual water exports include Zhejiang, Guangdong and
other water-abundant areas, as well as Inner Mongolia, Chongqing, Shaanxi; all regions with more
water storage than Gansu [72,80]. Conversely, Ningxia, Beijing, Shanghai and other regions with low
water reserve capacity have been exporting water resources to Gansu province. These patterns reflect
the regional failure to match the inter-provincial flow of virtual water trade with water source storage.

4. Conclusions and Recommendation

The current paper systematically explored virtual water flow among industries in Gansu province
as well as the inter-provincial virtual water trade patterns. The results of this research indicate that
the dynamic variations in virtual water patterns in Gansu province were mediated primarily by the
primary and secondary industries from 2007 to 2012. During this period, virtual water for local use
decreased, while virtual water exports to developed and water-abundant coastal areas, increased.
In addition, it was found that a significant imbalance in virtual water distribution exists across primary,
secondary, and tertiary industries, with the majority of virtual water flowing towards tertiary industries,
and the smallest volumes flowing towards primary industries.

In view of the imbalance between virtual water distribution across the three industry categories,
and the mismatch of inter-provincial virtual water trade with their water resources storage, it is
suggested that Gansu emphasizes the promotion of water-saving agricultural techniques, adjusting
the structure of the industrial sector by encouraging water-saving and highly-profitable industries,
and reducing virtual water export while broadening their import paths, especially from water-abundant
areas such as the import of virtual water from adjacent water-abundant areas (Shanxi province and
Inner Mongolia), through the establishment of long-term cooperative relationships using appropriate
economic policies, to reduce the proportion of water-reliant productions in all industries.
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Appendix A Calculation of the Direct and Complete Water Use Coefficient and Virtual Water Use

Table A1. Calculation of the direct and complete water use coefficient and virtual water use [35,36].

Formula Explanation

xR
i =

m∑
s=1

n∑
j=1

xRS
ij +

m∑
s=1

f RS
i

xR
i is the total output of the R area i department; xRS

ij is the
intermediate input of the R area i department to the S area j

department; f RS
i is the R area i department’s input to the final

demand of the S area.

aRS
ij = xRS

ij /xS
j

The direct input coefficient aRS
ij indicates the direct input of the

i-sector products of the R region when the unit j department
produces the unit products.

xR
i =

m∑
s=1

n∑
j=1

aRS
ij xS

j +
m∑

s=1
f RS
i

XR = ARSXR + FRS

A variation of xR
i =

∑m
s=1

∑n
j=1 xRS

ij +
∑m

s=1 f RS
i containing aRS

ij and

its matrix representation, where XR, ARS and FRS are respectively
the output matrix, the direct input coefficient matrix, and the final

demand matrix.

xR =
(
I −ARS

)−1
FRS

BRS =
(
I −ARS

)−1
=

[
bRS

ij

]
(
I −ARS

)−1
is the inverse of the Leontief matrix; its matrix element

bRS
ij indicates the amount of input to the R-region i department that

is needed to meet the final demand of the j-sector in a unit S region.
Through the Leontief inverse coefficient matrix, the relationship

between demand and output is finally established.

EB =
[
eB

j

]
eB

j = wB
j /xB

j

In order to further establish the output relationship between water
consumption and input, it is necessary to determine the direct

water use and complete water use coefficient. Among them, EB is
the direct water use coefficient matrix of B area; eB

j is the direct

water use coefficient of department j of B area; wB
j is the direct

water consumption of department j of B area; xB
j is the total output

of department j of B area.

δ =
∑
j

eB
j × bBR

ij

The complete water use coefficient δB
j can be obtained by

multiplying the direct water use coefficient by the Leontief inverse
coefficient matrix, that is, the water consumption of the product in
the B area by adding one unit of the final demand product. Among
them, R indicates other areas outside the B area of the study area,
and bBR

ij indicates the complete water use coefficient of the R area B
in other areas.

TB = tB
j ; tB

j = δB
j × f BR

i

The virtual water volume is calculated from the complete water
use coefficient. TB is the virtual water matrix of the province B

output; tB
j is the virtual water of the j department, f BR

i is the final
use amount of the R area to the B area.

Table A2. Industry Specific Classification.

Primary Industry Agriculture, Forestry, Animal Husbandry, Fishery Services.

Secondary Industry

Coal mining, Petroleum and gas, Metal mining, Nonmetal mining, Food
processing and tobaccos, Textile, Clothing, leather, fur, etc. Wood processing and
furnishing, Paper making, printing, stationery, etc. Petroleum refining, coking,

etc. Chemical industry, Nonmetal products, Metallurgy, Metal products, General
and specialist machinery, Transport equipment, Electrical equipment, Electronic
equipment, Instrument and meter, Other manufacturing, Electricity and hot water

production and supply, Gas and water production and supply, Construction.

Tertiary Industry Transport and storage, Wholesale and retailing, Hotel and restaurant, Leasing
and commercial services, Scientific research, Other services.
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