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Abstract: At the present stage, China’s energy development has the following characteristics:
continuous development of new energy technology, continuous expansion of comprehensive energy
system scale, and wide application of multi-energy coupling technology. Under the new situation,
the accurate prediction of power load is the key to alleviate the problem that the planning and
dispatching of the current power system is more complex and more demanding than the traditional
power system. Therefore, firstly, this paper designs the calculation method of the power load demand
of the grid under the multi-energy coupling mode, aiming at the important role of the grid in the
power dispatching in the comprehensive energy system. This load calculation method for regional
power grid operating load forecasting is proposed for the first time, which takes the total regional
load demand and multi-energy coupling into consideration. Then, according to the participants
and typical models in the multi-energy coupling mode, the key factors affecting the load in the
multi-energy coupling mode are analyzed. At this stage, we fully consider the supply side resources
and the demand side resources, innovatively extract the energy system structure characteristics under
the condition of multi-energy coupling technology, and design a key factor index system for this
mode. Finally, a least squares support vector machine optimized by the minimal redundancy maximal
relevance model and the adaptive fireworks algorithm (mRMR-AFWA-LSSVM) is proposed, to carry
out load forecasting for multi-energy coupling scenarios. Aiming at the complexity energy system
analysis and prediction accuracy improvement of multi-energy coupling scenarios, this method
applies minimal redundancy maximal relevance model to the selection of key factors in scenario
analysis. It is also the first time that adaptive fireworks algorithm is applied to the optimization of
adaptive fireworks algorithm, and the results show that the model optimization effect is good. In the
case of A region quarterly load forecasting in southwest China, the average absolute percentage error
of a least squares support vector machine optimized by the minimal redundancy maximal relevance
model and the adaptive fireworks algorithm (mRMR-AFWA-LSSVM) is 2.08%, which means that this
model has a high forecasting accuracy.

Keywords: multi-energy coupling; load forecasting; adaptive fireworks algorithm; least squares
support vector machine; integrated energy system

1. Introduction

In China’s “13th Five-Year” energy revolution, the promotion of electrification, renewable energy
utilization, and distributed energy utilization has been emphasized again. The construction of
comprehensive energy system is an effective way to achieve this goal. It solves the problems of
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renewable energy utilization and energy efficiency by comprehensively utilizing various forms of
energy and the difference between supply and demand. With the support of China’s energy policy and
social capital, the construction of comprehensive energy system is also continuously increasing [1,2].
However, the volatility, uneven distribution and seasonal changes of renewable energy bring great
challenges to the reliable supply of renewable energy power, and directly affect the economic benefits
and industrial development of the power industry [3]. Accurate load forecasting can assist power
planning and decision-making, and is an important means to solve the problem of reliable power
supply when multi-energy coupling sources are involved [4,5].

We need to consider its key influencing factors and model selection for load forecasting [6,7]. For
example, in the scenario of charging and discharging forecasting of electric vehicles, researchers take
charging facilities, users, policies, and markets as key factors and apply cloud computing, big data,
artificial intelligence, and other technologies to design forecasting models [8]. Each of these works
contributed to the development of the field and provided appropriate models and algorithms. However,
these models and algorithms also have certain limitations. For example, any combination of prediction
algorithms cannot meet the needs of multi-energy coupling scenarios. For the multi-energy coupling
scenario, we also need to consider the load influencing factors and forecasting model architecture of
the multi-energy coupling scenario. However, in the existing load forecasting research results, few of
them are consistent with the multi-energy coupling scenario. Therefore, we need to analyze the scene
characteristics and key load influencing factors according to the development status of multi-energy
coupling, and then build an appropriate load forecasting model according to the analysis result and
aiming at the multi-energy coupling scenario.

Comprehensive energy system is the main application scenario of multi-energy coupling
technology, which has different structures and energy efficiency due to differences in energy
composition, supply stability, load type, demand flexibility, and other factors [9–12]. For example, in
the cold-heat-electricity system proposed by Ali Ehsan et al., they use the mutual conversion technology
of cold-heat-electricity and energy storage equipment to ensure the stable supply of regional cold,
hot, and electric loads. At the same time, they also realize the absorption of part of renewable
energy [13]; according to the multi-energy complementary system proposed by Xuebin Wang et al.,
which mainly focuses on renewable energy, they reduce the volatility of thermal power generation
and improve the absorption capacity of new energy through adaptive adjustment of hydropower [14].
In the demand response system proposed by Dan Wang et al., they achieved 80%–90% renewable
energy absorption and 18.76% energy expenditure savings through accurate control of electric heating,
interactive competition strategy of supply and demand in the power retail market, and economic
means [15]. There is no doubt that these research results have made important contributions to the
efficiency improvement and structural optimization of integrated energy utilization. However, they
have not comprehensively analyzed the overall characteristics and energy flow characteristics of
multi-energy coupling scenarios from the view of supply side and demand side, and have not pointed
out the impact of multi-energy coupling on the stable supply of grid energy.

Many studies have been conducted on electric load forecasting. The construction of load
forecasting model is different according to the forecast scenario and forecast content. For example,
Yi Liang et al. constructed the EMD-mRMR-FOA-GRNN model (a hybrid model which combines
empirical mode decomposition (EMD)), minimal redundancy maximal relevance (mRMR), general
regression neural network (GRNN) with fruit fly optimization algorithm (FOA)) aiming at the
nonlinearity and randomness of power load series, which is a short-term load forecasting method, and
its forecasting error is [−1%, +1%] [16]; Jianzhou Wang et al. constructed a model in which the extreme
learning machine (ELM), support vector machine (SVM), and least squares support vector machine
(LSSVM) were used to forecast the short-term wind speed for short-term wind power forecasting,
aiming at the stochastic and intermittent nature of wind power [17]. It is not difficult to find that the
artificial intelligence algorithm can achieve relatively accurate load forecasting, and researchers usually
improve the forecasting accuracy through trend decomposition or algorithms combination, which does
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not explain the impact of its key impact factors on the load sequence from the perspective of internal
relations. The summary of partial load forecasting methods is shown in Table 1.

Table 1. Introduction of partial load forecasting methods.

No. Reference Forecast Scenario Forecast Model Scope of Application

1 [16] Electricity market
transaction EMD-mRMR- FOA-GRNN Short-term load

forecasting (STLF)

2 [17] Wind power generation ELM, SVM, and LSSVM Short-term wind power
forecast

3 [18] Electricity market
transaction Gaussian process regression STLF

4 [19] Regional power
planning

Box-cox transformation
quantile regression and load
relation factor identification

Medium and long term
load forecasting and load

probability density
forecasting

5 [20] —-

SVM forecasting based on
cointegration—granger

causality test and seasonal
decomposition

Monthly load forecast

6 [21] Greenhouse gas
emissions Adaptive grey model Annual greenhouse gas

emissions

7 [22] —-

A combined method that is
based on the fuzzy time series

(FTS) and convolutional
neural networks (CNN)

STLF

8 [23] Generation planning and
scheduling

EMD-mRMR-PSO (particle
swarm optimization)-LSSVM STLF

9 [24] China’s energy efficiency
Three-dimensional

decomposition model and
small-sample hybrid model

Annual energy efficiency
forecast

10 [25] Energy consumption EEMD-ISFLA (Shuffled Frog
Leaping Algorithm)-LSSVM

Annual energy
consumption forecast

11 [26] Electric power
dispatching

CNN-LSTM (long short term
memory) STLF

12 [27] Algorithm SVM Classification and
forecasting problems

13 [28]
Power planning,

operation and
maintenance

MFO (Moth-Flame
Optimization algorithm)

-LSSVM
Annual load forecast

14 [29]
Electricity market

trading and electricity
distribution plan

Empirical mode
decomposition, seasonal

adjustment, PSO, and LSSVM
model

STLF

15 [30] Power assisted decision
making

Weighted LSSVM based
approach for time series

forecasting
Annual load forecast

16 [31] Demand for electricity Deep learning framework
Seasonal and diurnal

power demand
forecasting
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Due to its short development history, the medium- and long-term power load demand forecasting
under the multi-energy coupling scenario is characterized by a small number of samples, many
influencing factors and complex interrelationships. The feature vector selection method can preliminary
weaken the problems that there are many influencing factors and their interrelationships are
complex [16,23]. What is more, LSSVM has excellent fitting effect for data with small samples and
high latitude, and is applicable to the scenarios in this paper [27,30]. Compared with traditional
forecasting methods, such as gray forecasting and time series, LSSVM has strong learning performance,
and compared with emerging algorithms, such as the neural network algorithm, it has more strict
data basis. In the application of LSSVM in load forecasting, Cunbin Li et al. proposed a moth flame
optimization least-squares support vector machine model (MFO-LSSVM) for annual load forecasting,
and its forecasting error was within ±3% [28]. Yanhua Chen et al. proposed to comprehensively
optimize the least squares support vector machine by empirical decomposition, seasonal adjustment
and particle swarm optimization (ESPLLSVM), and proved that this combinatorial optimization
model was significantly superior to the single optimization model [29]. Current research results
prove that swarm intelligence algorithm has good optimization ability for LSSVM, which can improve
its forecasting accuracy. However, it is not a forecasting method aiming at multi-energy coupling
scenarios, and its calculation efficiency can be improved. Adaptive fireworks algorithm (AFWA) is a
new type of swarm intelligence algorithm. Its explosiveness and diversity make it highly applicable
to complex scenarios such as multi-energy coupling scenario [32,33]. In this paper, we use AFWA
to optimize the LSSVM model, which as the load forecasting optimization method for multi-energy
coupling scenario.

For the first time, we designed a load forecasting method for multi-energy coupled scenarios, and
proposed an efficient and accurate load forecasting model. Grid companies and power generation
groups can benefit from this, in order to determine the optimal power planning scheme and equipment
operation and maintenance scheme; At the same time, the subjects involved in the electricity market
trading can use the forecast results to assist the medium- and long-term trading decisions. Specifically,
this paper designs a load calculation method to meet the demand of power grid for the scenario of
multi-energy coupling; The energy coupling relationship and effect under the multi-energy coupling
scenario are analyzed comprehensively; and a load forecasting model of mRMR-AFWA-LSSVM for
multi-energy coupling is proposed.

The first section of this paper is the introduction, discusses the development of the research
content; The structure of other parts of this paper is as follows: Section 2 is the demand analysis of
power load for multi-energy coupling scenario, and put forward the key influence index system of load.
Section 3 briefly describes mRMR algorithm, AFWA algorithm and LSSVM algorithm, and a complete
load forecasting framework is constructed. Section 4 verifies the accuracy and calculation performance
of the model by combining the load-related data of a certain region in southwest China, and makes
a comparative analysis and brief conclusion of the model. Section 5 makes a further discussion and
summarizes the full text.

2. Power Load Demand Analysis

2.1. Calculation of Power Load Demand

In China, power grid companies are mainly responsible for the dispatch of stable and reliable
electricity supply. Power load forecasting with power grid as calculation caliber is the most suitable
method for load forecasting demand under the scenario of multi-energy coupling. Thus the load
forecasting in this paper is aimed at the demand of power dispatching under the condition of
multi-energy coupling, which uses the power grid as the calculation aperture. In the multi-energy
coupling mode, partial energy self-sufficiency is realized, which makes the load demand of the region
to the power grid reduce compared with the load demand without multi-energy coupling mode.
Then the regional load demand should be the difference between the total power demand and the
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multi-energy coupling self-sufficient energy. The calculation method of power demand based on this
scenario is shown in Equation (1).

Lt = Ln − Lc, (1)

where, Lt is the load demand required by power grid dispatching, i.e., the expected result of the
forecasting model in this paper; Lt is the total demand of all loads; and Lc is the energy self-sufficiency
that is not a part of power grid dispatching in the case of multi-energy coupling.

Under the background of the continuous development of Chinese society, the total load demand
will increase with the continuous growth of economy, and the self-sufficiency of multi-energy coupling
energy will increase with the technological progress and social investment. Due to its advantages
in new energy consumption, power expense payment, policy support and other aspects compared
with the electricity provided by the grid, the society and users will give priority to the multi-energy
coupling self-sufficiency to meet the load demand. The results shown in Figure 1 can be obtained by
qualitative analysis of load changes.

Figure 1. Relative changes of load demand under the scenario of multi-energy coupling. (a) Scenarios
in which multiple coupling technologies are evolving slowly; (b) Scenarios in which multiple coupling
technologies are developing at a moderate rate; (c) Scenarios in which multiple coupling technologies
are evolving rapidly.

When the growth rate of total load demand is faster than that of multi-energy coupled self-
sufficient power, the relative change trend of load is shown in Figure 1a. When the growth rate of
multi-energy coupled self- sufficient power is faster than the growth rate of total load demand, the
relative change trend is shown in Figure 1c. With the same growth rate, its relative change trend is
shown in Figure 1b.

2.2. Multi-Energy Coupling Analysis

2.2.1. Subject Analysis

Load supplier generally refers to the corresponding power producer. At present, the main body
of multi-energy coupling supply refers to the ways of wind, light, water, fire, storage, and other energy
complementary power generation and the combined supply of cold, hot, and electricity. This is a
typical way to realize the full utilization of energy resources through the collaborative supply of various
energies under the background of energy Internet. It breaks the existing mode in which traditional
energy supply system is independently planed and independently operated.

The main sources of load demand include commercial users, industrial users, residential users,
agricultural users, government agencies, public utilities, and traffic rails. They inevitably need to
use a variety of energy sources in production and life, including electricity, heat, cold, gas, coal, oil,
and so on. In the context of the continuous development of integrated energy sources, multi-energy
coupling sources can usually be converted to each other. Based on the different demand characteristics
of different users in terms of energy type, structure proportion, time distribution, spatial distribution
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and other aspects, the multi-energy coupling mode on the demand side can be designed, which is the
complementary of multi-energy on the demand side.

Under the interactive coupling mode of supply and demand, the main body is still the
corresponding body of supply and demand, but the boundary between supply and demand is
not obvious in this process [9,10]. Participants in this process include pumped storage power station,
hydrogen energy storage, virtual power plant, electric vehicle, adjustable load, etc. They reduce load
and increase output during peak load period, and increase electricity consumption and reduce output
during trough load period, so as to improve resource utilization efficiency and ensure energy supply.

There must be one or more of the above multi-energy coupling modes and two or more participants
in a comprehensive energy system. Generally, there are multiple comprehensive energy systems in
a region. Therefore, the power demand distribution structure based on the multi-energy coupling
scenario is shown in Figure 2.

Figure 2. Schematic diagram of power supply and demand structure in the case of
multi-energy coupling.

2.2.2. Multi-Energy Coupling of Typical Scenarios

With the rapid development of comprehensive energy at home and abroad, different types of
multi-energy coupling utilization modes have been established in various places. This section analyzes
three common multi-energy coupling utilization scenarios. Through analyzing these scenarios, we
could conclude the most appropriate characteristics of the multi-energy coupling system, and analyze
the key influencing factors of the multi-energy coupling energy supply.

• Coupling utilization of renewable energy

The easy access, clean and low carbon performance of renewable energy provides a foundation
for its wide application in comprehensive energy systems. Wind power, hydropower, photovoltaic,
distributed energy, energy storage, and other systems realize the development and utilization of
renewable energy through multi-energy coupling, coordination, and complementarity.

Take the grid-connected micro-grid demonstration project of Luxi Island as an example [34]. Built
on Luxi Island off the southeastern coast of China’s Zhejiang province, the project is equipped with wind
power of 780 kW, photovoltaic power of 300 kWp, an energy storage system of 2 MW, and residents of
the island are equipped with a small single-family distributed power supply of small fans, small solar
panels, and batteries. The project is built into an intelligent power supply system through wind power
generation system, photovoltaic power generation system, energy storage system, single-household
micro-grid system, and energy monitoring and management system. Luxi is energy self-sufficient
and has the freedom to operate off-grid or off-grid. For the Luxi Island project, the integrated energy
system reduces energy demand for the grid through multiple forms of energy-coupled supply.
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Renewable energy sources such as wind power and photovoltaic often have large output volatility
and seasonal differences. Under the influence of the geographical environment, Luxi Island has
relatively stable wind power generation, which can be used as the main power supply source. At the
same time, the energy storage equipment and the distributed energy at the user’s house provide a
guarantee for its power stability, and it can operate independently under certain conditions, in which
case the power grid is not required to provide power. Therefore, the production of renewable energy
needs to be fully considered before the construction of this type of multi-energy coupling system, and
the resulting energy supply of the multi-energy system will eventually affect the power supply of
the grid.

• Energy conservation in energy-intensive enterprises

Multi-energy coupling is often designed to achieve efficient and low-cost operation of the
organization, mainly serving system functions. Therefore, many multi-energy coupling application
scenarios are energy saving and consumption reduction. They improve energy efficiency through
supply-side energy coupling or multi-stage energy utilization, so as to reduce energy consumption per
unit product. Taking a typical industrial base as an example, the comparison of energy flow before and
after the multi-energy coupling design is shown in Figure 3.

Figure 3. Energy flow comparison diagram of high energy consuming enterprises. (a) No multi-energy
coupling system; (b) Multi-energy coupled system.

Electricity is the most efficient type of energy, with the smallest proportion of energy loss. Coal
and natural gas work by converting chemical energy into heat. In this conversion process, there is
energy loss caused by energy conversion efficiency, and energy loss taken away by residue and waste
gas after conversion [15]. Without multi-energy coupling design, its energy flow is shown in Figure 3a.
In high energy consuming enterprises with multi-energy coupling, we could improve energy efficiency
by using energy saving systems to generate power with residual heat and voltage, and realize cascade
utilization of energy resources. Their improvements in energy efficiency are shown in yellow in
Figure 3b. Finally, the energy cost of the system is reduced, and the total load demand is reduced while
the output of the product remains.

In this system, the coupling effect of multi-energy system is to improve the efficiency of energy
utilization through multi-stage energy utilization and reasonable coordinated energy dispatching.
The magnitude of the improvement in energy efficiency is largely related to the structural design of
energy systems.
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• Digital platform

In this mode, the controllable power supply and load are controlled by a digital platform.
It generally includes comprehensive control platform, adjustable load, energy storage equipment,
power supply equipment, and so on. Its advantage lies in the use of information control system and
artificial intelligence technology to give full play to the flexibility of the system.

Take the demonstration project of alternating current charging pile in Yangzhou, Jiangsu
province [35], China as an example. The region connects electric vehicle (EV) users, distributed
energy, and energy storage devices through energy routers charging piles, which manage and connect
external supply and load through the Internet of charging piles platform. Its structure is shown in
Figure 4.

Figure 4. Multi-energy coupling scenario based on digital platform.

In this demonstration project, when the charging pile energy router is connected to the electric
car, it can both charge and discharge, and can both fast charge and slow charge. With the permission
of electric vehicle owners, electric vehicles can be used as a special energy storage device with the
controlling of the digital platform. In the process of distributed energy consumption, if too much
electricity is generated, the digital platform can be used to control the fast charging of electric vehicles
or the energy storage to store distributed energy in a timely manner. On the contrary, the power is
absorbed through integrated control.

The main body of the multi-energy system is the EV charging pile, while the charging pile is used
as the media access system for other types of energy, including wind power, photovoltaic, energy
storage, and distributed energy. Of cause, the scale of the connected device needs to be limited. In the
process of operation, there may be imbalance between energy supply and demand, as for the instability
of renewable energy. In this case, in addition to the energy storage system to meet the scheduling
demand, EV charging pile operators can also achieve energy supply and demand balance through
reasonable charging and discharging regulation of EV. This kind of system will have an impact on the
power supply of the grid, but its fluctuation range can be controlled within a certain range. However,
for the quarterly load forecasting studied in this paper, we can directly study the quarterly generation
of various renewable energy sources and ignore the daily scheduling relationship between them.

2.2.3. Coupling Supply-Demand Mechanism Analysis

In a word, the coupling of multi-energy coupling is the integration of multi-energy resources by
virtue of such characteristics as a complementary effect, substitution effect, demand flexibility, and
real-time information interaction. Ultimately, we reduced energy costs and improved energy efficiency.
The results of mechanism analysis in the multi-energy coupling mode are shown in Table 2.
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Table 2. Multi-energy coupling mechanism analysis.

Multi-Energy on the
Supply Side

Multi-Energy on the
Demand Side

Interactive Coupling Mode
of Supply and Demand

Subject

All kinds of renewable
energy power generation

manufacturers,
cogeneration, energy
storage, triple supply
manufacturers, etc.

Commerce, industry,
agriculture, government,

public utilities, etc.

All kinds of energy suppliers,
all kinds of energy users,

Internet of vehicles, virtual
power plants, etc.

Coupling design
rationale

Spatial and temporal
differences of different

primary energy sources

Different loads vary in
time, flexibility, and

economic requirements

Spatio-temporal difference,
information interaction,

economy, and benefit
difference between supply and

demand

Typical coupling mode Multi-energy coupling
power generation

Multistage utilization of
energy

Interaction of supply and
demand

The coupling efficiency Energy self-sufficiency Energy saving Reduce dispatch difficulty and
improve economic benefit

2.3. Key Influencing Factors

The factors that affect the total load demand in the area are mainly the development law of load
itself and social and economic development [15,19]. For the multi-energy coupling self-sufficient
power, the main influencing factors are the direct offset effect of regional energy production, the energy
economic market, etc. Combined with the difficulty of data acquisition and the actual calculated data,
this paper sets the key influencing factors as shown in Table 3.

Table 3. Key influencing factors of load demand under the scenario of multi-energy coupling.

The Key Content Decomposition of Content Impact Factor

Total demand of all loads

Economic development GDP current value
Price index

Industrial structure
Contribution rate of primary industry

Contribution rate of secondary industry
Quarterly contribution rate of tertiary industry

Coupling efficiency Total fixed asset investment

Energy self-sufficiency

Renewable energy generation

Wind power generation
Solar power generation
Hydropower generation

Other renewable energy power generation

Gas turbine installations, Natural gas production
Other energy -

Energy economy Fuel price index
Investment

In the study of various energy supplies, this paper chose the directly related power indicators,
rather than the natural indicators such as climate, temperature, hydrology, and system indicators such
as composition and structure. The reasons are as follows: at the present stage, the comprehensive
energy system is widely distributed, the multi-energy coupling structure is not consistent, and the
system size is different. It is difficult to identify the characteristics of natural conditions, and the
statistical error is large, which is not conducive to forecasting. Based on the above reasons, its load
forecasting calculation framework in the case of multi-energy coupling is shown in Figure 5.
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Figure 5. Load demand calculation with the power grid as the calculation aperture.

3. Model Construction

The energy demand forecasting model in the multi-energy coupling scenario is mainly composed
of three parts, including the minimal redundancy maximal relevance (mRMR) model for the selection
of key influencing factors, the adaptive fireworks algorithm (AFWA) algorithm for the optimization of
key parameters, and the least squares support vector machine (LSSVM) model for the energy demand
prediction in the multi-energy coupling model [28,36,37].

3.1. Feature Selection Based on Minimal Redundancy Maximal Relevance (mRMR)

Mutual information (MI) is a method to evaluate the relationship between variables. Minimal
redundancy maximal relevance (mRMR) is a character selection method, which is based on MI. It
maximizes the relationship between characteristic variables and target variables, and minimizes the
redundant information [16]. Multi-energy coupling system often has complex system structure and
energy flow relationship, and has many influencing factors. The mRMR is used to select the most
important influencing factors for load forecasting under the multi-energy coupling scenario, so as to
ensure the accuracy of model calculation and improve the calculation efficiency. At the same time, the
basic principle of feature selection—maximum correlation information and minimum redundancy
information—ensures the robustness of the model.

3.1.1. MI Calculation

The MI calculation could be calculated as shown in Equation (2).

I(xi, y) =
x

p(xi, y)log
p(xi, y)

p(xi)p(y)
dxidy, (2)

where, I(xi, y) is the positive correlation between xi and y; xi is the characteristic variable, which
presents the i-th influencing factor; y is the target variable, which presents the load value; p(xi, y)
represent the joint probability density of xi and y respectively; p(xi) represent the probability density
of xi; and p(y) represent the probability density of y. Through mutual information calculation, the
correlation between each influencing factor and load value can be specifically measured, and the
greater the correlation, the greater the value of I(xi, y).
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3.1.2. Maximal Relevance

The maximal relevance could be calculated as shown in Equation (3).

maxD(S, y), D =
1
|S|

∑
xi∈S

I(xi, y), (3)

where, S is the set of influencing factors {xi}, |S| = m is the number of key influencing factors to be
selected, and D is the calculation result of correlation degree between m influencing factors selected
and load value. Through this process, we selected the set of m key influencing factors, which has the
greatest correlation with the load value.

3.1.3. Minimum Redundancy

The minimum redundancy could be calculated as shown in Equation (4).

min R(S), R =
1

|S|2
∑

xi,x j∈S

I
(
xi, x j

)
, (4)

where, R is the result of redundancy calculation. Through this process, the set of m key factors with
the minimum information redundancy among the influencing factors was selected.

3.1.4. mRMR Criteria

The mRMR criteria could be calculated as shown in Equation (5).

max φ(D, R),φ = D−R, (5)

mutual information difference (MID) criterion was selected here. Based on this criterion, we used
incremental search to identify the key factors, if there is already m− 1 feature in the hypothesis S, the
selection basis of the m-th feature is shown in Equation (6).

max
x j∈X−Sm−1

I(xi, y) −
1

m− 1

∑
xi∈Sm−1

I
(
x j, xi

). (6)

3.2. Adaptive Fireworks Algorithm (AFWA)

Fireworks algorithm is a new search algorithm that simulates the explosion process of fireworks
to conduct multi-point simultaneous explosion search [34]. Adaptive fireworks algorithm (AFWA)
optimizes the algorithm by calculating the adaptive explosion range. AFWA has distributed parallelism
and good adaptability [38], which is suitable for multi-energy coupling scenarios. We applied it
to the optimization of kernel function width parameters and penalty parameters of LSSVM. In
multi-energy scenarios, AFWA can obtain more stable and accurate calculation results compared with
other algorithms [39].

3.2.1. FWA

The main calculation components of fireworks algorithm include explosion operator, mutation
operation, mapping rule, and selection operation. For optimization problem, we could usually translate
the problem into the following form:

min f (X)

s.t. gt(X) ≤ 0(t = 1, 2, · · · , m)
, (7)
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where, f (X) is the objective function, gt(X) is the constraint function, and X is the n-dimension
optimization variable. Here, the objective function was set as the minimum error between the predicted
value and the actual value of load. Based on this, we interpreted the flow of AFWA algorithm.

• Initialize data

The initialization data content is Formula (8).

xi j(0) = xL
ij + rand(0, 1)

(
xU

ij − xL
ij

)
, (8)

where, xi j(0) is the spatial position of the i-th primary fireworks in the j-th dimension, xU
ij and xL

ij are
the upper and lower bounds of dimension respectively, and rand(0, 1) represents the random number
generated in the direction greater than 0 and less than 1, i = 1, 2, · · · , N, j = 1, 2, · · · , n. In this paper,
xi(0) represents the width parameters and penalty parameters of LSSVM,

• Explosion operator.

The explosion operator mainly includes the explosion intensity, explosion amplitude, and
displacement variation, among which the explosion intensity is reflected as the number of sparks. The
calculation method is as follows.

Ni = N̂•
Ymax − f (Xi) + ε

N∑
i=1

(Ymax − f (Xi)) + ε

, (9)

where, Ni is the number of sparks in the i-th fireworks, N̂ is the constant controlling the total number
of sparks, Ymax = max( f (Xi)) is the adaptive value of the individual with the worst fitness, f (Xi) is
the fitness value of the individual Xi, and ε is the minimum constant preventing the denominator from
being 0. Meanwhile, to prevent too many or too few sparks, we set the following rules:

Ni =


round(Nmin), Ni < Nmin
round(Nmax), Ni > Nmax

round(Ni), others
, (10)

where, round() is the integer function.

Ai = Â•
f (Xi) −Ymin + ε

N∑
i=1

( f (Xi) −Ymin) + ε

, (11)

where, Ai is the range of explosion amplitude of the i-th fireworks, Â is the constant limiting the
maximum explosion amplitude, and Ymin = min( f (Xi)) is the adaptive value of the individuals with
the best fitness.

Then, the fireworks are moved from all dimensions:

∆xi j = xi j + rand(0, Ai). (12)

• Mutation operator

Here we mainly used Gaussian variation.

xi j = xi jg, (13)

where g ∼ N(1, 1) is the Gaussian distribution with mean and variance of 1.
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• Mapping rules

The mapping rule is an algorithm that maps sparks beyond the boundary to the limited range
by some method. It mainly includes the modular operation rule, specular reflection rule, random
mapping rule, and so on. The modular operation rule was adopted here.

xi j = xL
ij +

∣∣∣∣xL
ij

∣∣∣∣%(
xU

ij − xL
ij

)
, (14)

where, % represents modular operation, xi j represents the position of the i-th individual in the j-th
dimension, and xU

ij , xL
ij represents the upper and lower boundary of the j-th dimension respectively.

• Select operation

The selection operation in this paper adopted distance-based selection and random selection, and
Euclidean distance was adopted to calculate and select the distance between two individuals.

R(Xi) =
K∑

q=1

d
(
Xi, Xq

)
=

K∑
q=1

∥∥∥Xi −Xq
∥∥∥, (15)

where, R(Xi) represents the sum of the distance between Xi and all other individuals, d
(
Xi, Xq

)
represents the Euclidean distance between any two individuals Xi, Xq, and K is the location set of all
sparks after Gaussian compilation. q ∈ K.

p(Xi) =
R(Xi)∑

q∈K
R(Xi)

, (16)

where, p(Xi) represents the probability of Xi being chosen. In this process, we selected the individual
in the area where fireworks and sparks are most concentrated, as the optimal individuals are most
likely to emerge from them.

3.2.2. Adaptive Adjustment

Aiming at the rationality of the calculation method of explosion radius of traditional fireworks
algorithm, the adaptive fireworks algorithm uses the generated sparks to calculate the optimal fireworks
explosion radius and realize the adaptive adjustment of explosion radius. The explosion radius is the
distance between a specific individual and the optimal individual:

ŝ = arg
si

min(d(si, s∗)), (17)

f (si) > f (X), (18)

where, d is the calculation of some distance, si is all the sparks, s∗ is the most adaptable individual of
all the sparks and fireworks, and X is the fireworks. Equations (17) and (18) show that the explosion
radius is the distance satisfying the following two conditions: (1) The selection distance is the shortest
distance from the candidate to the optimal individual and (2) the candidate is an individual with worse
fitness than this generation of fireworks.

3.3. Least Squares Support Vector Machine (LSSVM)

Support vector machine (SVM) has been widely used in forecasting scenarios and has achieved
many achievements [18,30]. It has excellent processing capacity for small samples and high latitude
data [32], which means that it has a good applicability to the situation where the multi-energy coupling
quarterly data is relatively small and the system structure is relatively complex. The least square
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support vector machine (LSSVM) has a significant improvement in the prediction accuracy compared
with the traditional support vector machine. Therefore, LSSVM is applied to the main load prediction
algorithm under the multi-energy coupling scenario in this paper.

Nonlinear regression support vector machine (SVM) uses kernel function to change input data
in sample space to high-dimensional linear eigenspace with nonlinear transformation. The linear
method is used to solve nonlinear problems in the characteristic space and the global optimal solution
is obtained. On the basis of standard support vector machine, the least squares support vector
regression machine changes inequality constraints into equality constraints to accelerate calculation
and improve accuracy.

The optimal decision function after nonlinear mapping (ψ(x) = (ϕ(x1),ϕ(x2), · · · ,ϕ(xn))) is as
Equation (19).

f (x) = wT
•ϕ(x) + b, (19)

where, w ∈ Rk(k > d) is the weight vector of high-dimensional features, which reflects the way in which
each of the key impact factors affects the load and the extent to which it affects the load, xi ∈ Rd is the
input of d-dimensional training samples, yi ∈ R is the output of training samples, and b ∈ R is the
bias. We searched for the optimal w and b based on the principle of structural risk minimization, and
obtained the solution equation of the optimization problem as Equation (20).

min
1
2

wTw + r
n∑

i=1

ξi
2, (20)

where, r > 0 is the penalty parameter and ξi is the relaxation variable.
Compared with the standard support vector machine algorithm, there are differences in

constraint conditions.
y
[
wT
•ϕ(xi) + b

]
= 1− ξi, i = 1, 2, · · · , n, (21)

apply Lagrange function to solve the optimization problem, then:

L = 1
2 wT
•w + r• 1

2

n∑
i=1

ξ2
i −

n∑
i=1

αi
{
yi
[
wT
•ϕ(xi) + b

]
− 1 + ξi

}

s.t.



w =
n∑

i=1
αiyiϕ(xi)

n∑
i=1

αiyi = 0

αi = rξi

yi
[
wT
•ϕ(xi) + b

]
− 1 + ξi = 0

, (22)

where, αi is the vector of Lagrange multiplier, αi > 0 and i = 1, 2, · · · , n. The final forecasting function
can be obtained as shown in Equation (23).

f (x) =
n∑

i=1

αiK(x, xi) + b, (23)

where, K
(
xi, x j

)
= ϕ(xi)

Tϕ
(
x j

)
is the kernel function satisfying Mercer condition. The kernel function

in this paper is the radial basis kernel function, as shown in Formula (24).

K(x, xi) = exp
(
−
‖x− xi‖

2

2g2

)
, (24)

where g is the width coefficient of kernel function.
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3.4. mRMR-AFWA-LSSVM Model

We applied mRMR to select the most important feature impact factor, and then put the selected
feature impact factor data content into the AFWA optimized LSSVM model for prediction. Among
them, AFWA improved the model accuracy by optimizing the important parameters of support vector
machine—penalty parameter and kernel function width parameter.

The main contents of this process include:

• Analyzing the possible influencing factors according to the system structure of the multi-energy
scenario, collecting the corresponding data content, and conducting preliminary processing of the
data. The operation here is mainly data normalization, and the dimensionless data retains the
internal meaning while facilitating the calculation of the model.

• The mRMR feature factor selection process, which selects the key influencing factors at the
top of the score, and they have the maximum load forecasting correlation and minimum
information redundancy.

• Optimizing its width coefficient and penalty parameters by embedding AFWA into the
LSSVM model.

• The training and forecasting process of LSSVM, through which the quarterly forecasting quantity
of total load demand and multi-energy coupling energy supply can be obtained respectively, and
the predicted value of load needed to be provided with the grid can be obtained by making the
difference between them.

Finally, the energy demand forecast under the multi-energy coupling model was completed, and
the forecast results could be analyzed. The model structure of mRMR-AFWA-LSSVM model for load
demand forecasting is shown in Figure 6.

Figure 6. Load demand forecasting model under multi-energy coupling (least squares support vector
machine optimized by the minimal redundancy maximal relevance model and the adaptive fireworks
algorithm—mRMR-AFWA-LSSVM). mRMR: minimal redundancy maximal relevance; LSSVM: minimal
redundancy maximal relevance.
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4. Case Analysis

This paper made an empirical analysis of the grid load change in A region of southwest China from
the first quarter of 2004 to the first quarter of 2019 (as project requirements, the data were processed).
The original total load demand and multi-energy coupling supply are shown in Figure 7. It can be
seen that the self-supporting amount of multi-energy coupling energy accounts for a relatively small
proportion of the total quarterly load data, but it has developed rapidly in recent years, showing the
characteristics of rapid development speed and drastic changes within the year. With the popularization
and rapid development of multi-energy coupling, the stability of supply and demand will have higher
and higher requirements on the planning and dispatching of the power grid.

Figure 7. Aggregate demand data and multi-energy coupling data.(a) The original total load demand;
(b) Multi-energy coupling supply.

4.1. mRMR Key Factor Analysis

Based on the results of multi-energy coupling scenario analysis, we obtained the corresponding
load forecasting index system (as shown in Section 2.3 in this paper). First, we needed to screen the
key influencing factors for load forecasting, so as to improve the efficiency of load forecasting. The
incremental search method was adopted to select the feature influence factor according to Formula (6),
and the selection results are shown in Tables 4 and 5. It can be seen that for the local multi-energy
coupling self-load supply, the main impact is the wind and hydropower; and the main factors that
affect the total load demand are price index, domestic production, and fixed self-check investment.

Table 4. mRMR calculation results of multi-energy coupled.

Characteristic
Factor

Solar Power
Generation (10
Million KWH)

Natural Gas
Production (100
Million Cubic

Meters)

Wind Power
Generation
(Billions of

KWH)

Hydropower
Generation
(Billions of

KWH)

Other Renewable
Energy Power

Generation
(Billions of KWH)

Investment
($10

Thousand)

Fuel Price
Index

MRMR criterion 0 −0.16 1.63 0.94 0.52 0.62 0.60
Rank 6 7 1 2 5 3 4



Appl. Sci. 2020, 10, 584 17 of 24

Table 5. mRMR calculation results of total load demand.

Characteristic
Factor

Contribution
Rate of Primary

Industry (%)

Contribution
Rate of

Secondary
Industry (%)

Quarterly
Contribution

Rate of Tertiary
Industry (%)

Total Fixed Asset
Investment (100
Million Yuan)

GDP
Current

Value ($100
Million)

Price Index

mRMR
criterion 0 −0.066 0.73 0.96 0.94 1.30

Rank 5 6 4 2 3 1

The influence factors of the first three multi-energy coupling characteristics were input into the
AFWA-LSSVM model for further calculation.

4.2. Load Forecasting With AFWA-SVM

The selected result data set of mRMR was randomly divided into test set and training set.
Parameters of adaptive fireworks algorithm are set as shown in Table 6. After optimization by AFWA,
the corresponding parameters are shown in Table 7.

Table 6. Parameter settings of adaptive fireworks algorithm.

The Parameter Name Values

The population size 5
The number of fireworks in gauss explosions 5

The total number of sparks 200
Spark upper bound parameter 100
Spark lower bound parameter 0.1

Blast amplitude control parameters 100
Data dimension 2

Function evaluation number 1
The number of iterations 1

Table 7. LSSVM parameter settings after optimization.

Penalty Parameters (c) Width Parameter of Kernel
Function (g)

Multi-energy coupled forecasting 30.9715 60.4294
Total load forecasting 26.4350 61.0462

After the training, we respectively used the test set and training set to make forecasting, and the
predicted results are shown in Figure 8. In terms of the graph fitting effect, the model fitting degree
was good and the forecasting accuracy was high. In the coupling forecasting results, the training set:
MSE = 0.840196, RMSE = 0.916622, R2 = 0.998780, MAE = 0.744482, MAPE = 1.770936 and the test set:
MSE = 0.661562, RMSE = 0.813365, R2 = 0.997686, MAE = 0.711322, MAPE = 2.013296. In the demand
forecasting results, the training set: MSE = 2168.757653, RMSE = 46.569922, R2 = 0.984562, MAE =

37.545733, MAPE = 3.482320 and the test set: MSE = 4455.127204, RMSE = 66.746739, R2 = 0.957014,
MAE = 51.794724, MAPE = 4.518415. It is not difficult to find that the forecasting accuracy was good,
and the forecasting accuracy of the training set and the forecasting set was similar, thus there was no
overfitting phenomenon.
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Figure 8. Model forecasting results.

4.3. Comparative Analysis and Conclusions

In order to verify the effect of the model, this paper calculated the multi-energy coupling forecasting
results, total load demand forecasting results and load calculation results of mRMR-AFWA-LSSVM,
AFWA-LSSVM, LSSVM, and AFWA-SVM four models respectively. The final forecasting results of
the model are shown in Table 8, and in order to show the model fitting effect more intuitively, we
presented the results as shown in Figure 9. Among them, mRMR-AFWA-LAAVM and AFWA-LSSVM
model had the best fitting effect, LSSVM model was the second, and AFWA-SVM was the last.

Figure 9. Forecasting results of four models.
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Table 8. Forecasting results of four models.

Actual mRMR-AFWA-LAAVM AFWA-LSSVM LSSVM AFWA-SVM

Integrated
Energy

Total
Load Load Integrated

Energy
Total
Load Load Integrated

Energy
TOTAL
LOAD Load Integrated

Energy
Total
Load Load Integrated

Energy
Total
Load Load

43.53 1144.58 1101.05 44.01 1157.58 1113.57 43.57 1160.97 1117.41 43.10 1121.60 1078.50 46.09 1183.59 1137.50
23.02 583.70 560.68 23.63 618.07 594.44 23.59 619.31 595.72 25.10 692.72 667.62 26.33 620.27 593.93
20.87 606.83 585.96 21.49 610.35 588.86 21.86 607.40 585.54 24.07 738.53 714.47 24.83 631.58 606.75
68.93 1458.72 1389.79 69.64 1547.29 1477.65 70.62 1551.04 1480.42 72.72 1514.04 1441.32 70.83 1598.52 1527.69
81.54 1376.27 1294.73 79.71 1357.01 1277.30 78.75 1363.14 1284.39 69.52 1311.22 1241.70 78.68 1386.29 1307.60
42.79 1182.28 1139.49 44.34 1199.14 1154.80 43.86 1193.60 1149.74 45.17 1229.65 1184.48 47.09 1251.71 1204.61
34.81 885.21 850.40 33.62 765.90 732.28 33.18 767.00 733.83 34.43 811.78 777.35 36.28 740.13 703.85
33.71 864.45 830.74 33.82 927.19 893.37 34.55 929.36 894.81 37.95 939.57 901.62 37.67 895.39 857.72
59.35 1310.27 1250.92 59.26 1312.34 1253.08 59.82 1306.28 1246.46 61.08 1378.42 1317.34 62.48 1383.28 1320.79
74.12 1501.11 1426.99 76.71 1638.69 1561.98 77.44 1629.99 1552.55 81.30 1563.00 1481.70 78.64 1653.84 1575.20

100.27 1613.74 1513.47 99.54 1533.31 1433.77 98.85 1528.14 1429.29 89.01 1515.98 1426.98 96.34 1530.60 1434.26
52.79 1235.36 1182.57 53.38 1272.74 1219.35 53.66 1277.24 1223.58 54.05 1218.30 1164.25 56.57 1268.14 1211.57
69.93 1404.35 1334.42 73.15 1469.58 1396.43 72.84 1464.88 1392.04 75.90 1492.46 1416.55 74.69 1495.42 1420.73
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We compared and evaluated the performance of forecasting models from six aspects: model
calculation time (t), mean square error (MSE), root mean square error (RMSE), average absolute error
(MAE), average absolute percentage error (MAPE), determination coefficient (R2), and the first five
indicators are the smaller the better, but R2 is the larger the better. The calculation formula is as follows.

MSE =
1
N

N∑
n=1

(
X̂(n) −X(n)

)2
, (25)

RMSE =

√√√
1
N

N∑
n=1

(
X̂(n) −X(n)

)2
, (26)

MAE =
1
N

N∑
n=1

∣∣∣X(n) − X̂(n)

∣∣∣, (27)

MAPE =
1
N

N∑
n=1

∣∣∣∣∣∣∣X(n) − X̂(n)

X(n)

∣∣∣∣∣∣∣× 100%, (28)

R2 =
SSR
SST

=

N∑
n=1

(
X̂(n) −X(n)

)2

N∑
n=1

(
X(n) −X(n)

)2
, (29)

where, N is the number of forecasting data groups, n is the forecasting number group, X̂(n) is the
forecasting result, X(n) is the actual value, X(n) is the actual average value, SSR is the sum of squares of
the regression, and SST is the total sum of squares. The calculation results are as shown in Table 9.

Table 9. Model comparison and evaluation.

Time(s) MSE RMSE MAE MAPE% R2

Multi-energy
coupling

mRMR-AFWA-LSSVM 111.3100 2.050467 1.431945 1.103184 2.080982 0.996127
AFWA-LSSVM 145.9760 0.661562 0.813365 0.711322 2.013296 0.997686

LSSVM 10.5528 31.99167 5.656118 4.30042 7.468827 0.939572
AFWA-SVM 10.6015 12.61361 3.551565 3.418807 7.076095 0.976175

Total
demand

mRMR-AFWA-LSSVM 140.9960 4545.266 67.41859 52.3335 4.56392 0.956144
AFWA-LSSVM 151.3300 4455.127 66.74674 51.79472 4.518415 0.957014

LSSVM 8.9416 5877.982 76.668 70.22673 6.752522 0.943286
AFWA-SVM 17.5940 7298.541 85.4315 71.40998 6.138677 0.929579

By analyzing the calculation results, it can be found that, for the five indexes of MSE, RMSE,
MAE, MAPE, and R2, the forecasting accuracy effect was AFWA-LSSVM > mRMR-AFWA-LSSVM >>

LSSVM-AFWA-SVM. In the multi-energy coupling forecasting, their MAPE differs 0.07%, 5.39%, and
–0.90%; and in the total demand forecasting, their MAPE differs 0.05%, 2.19%, and 0.58%. However, in
the total computing time, LSSVM < AFWA-SVM << mRMR-AFWA-LSSVM < AFWA-LSSVM. The
time they spent was 8.94 s, 17.5 s, 140.99 s, and 151.33 s respectively.

After mRMR selection, AFWA-LSSVM’s forecasting accuracy decreased slightly and the forecasting
time consumption also decreased. This is because the indicators selected in the cases used in this paper
were selected according to experience, so mRMR results in a slight decrease in accuracy. However,
mRMR could greatly reduce the workload of data processing in the process of actual load forecasting
with large index system and abundant data in the multi-energy coupling scenario, and at the same
time, it will not have a great impact on the forecasting accuracy. Therefore, mRMR-AFWA-LSSVM is
still the optimal load forecasting model as a whole.

Finally, we could summarize the following model test results:
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• In terms of forecasting accuracy, AFWA effectively improved the forecasting accuracy of the LSSVM
model, increasing the multi-energy coupling supply forecast by about 5% and the total load forecast
by about 2%. In fact, the application of LSSVM significantly improved the prediction accuracy in
our experiment compared with the SVM model, which the multi-energy coupling supply forecast
increased by about 6%, and the total load forecast increased by about 4%. Compared with the
PSO-LSSVM model, the AFWA-LSSVM model had a certain degree of efficiency improvement,
with the multi-energy coupling supply forecast increasing by about 0.4% and the total load forecast
increasing by about 0.3%.

• In terms of computing efficiency, the application of mRMR significantly sped up the computing
speed of the model, and could assist scene analysis to a certain extent. Those with structural
connections or similar key nodes tended to have a large degree of redundancy, while those with
weak correlation had a small degree of correlation.

• At the same time, aiming at the optimization problem of future application of the model, we
could start from digging into the key influencing factors of demand prediction. The accuracy of
multi-energy coupling forecasting was better than that of total load forecasting, its better indicator
system was partly to blame.

• It could be found from the analysis that the total load demand was the most important factor
affecting the power network load supply, and also the main source of errors. The appropriate
influence factor selection and feature analysis would improve the accuracy of forecasting mode.

5. Discussion

In this paper, we proposed a least squares support vector machine optimized by the minimal
redundancy maximal relevance model and the adaptive fireworks algorithm to predict the power load
demand in the case of multi-energy coupling. Good results were obtained in the application of this
method to the multi-energy coupling scenario in A region of southwest China. This paper could be
concluded and analyzed with the following aspects:

• The power grid needs to meet the needs of power users, which will be impacted by the multi-energy
coupling energy supply. The difference between the total load demand and the multi-energy
coupling energy supply is the power the grid needs to provide.

• As the characteristics and energy flow of different multi-energy coupling scenarios were in great
difference, we had to conclude the series of key influencing factors that affect the total load demand
and multi-energy coupling supply from the energy flow of multi-energy scenarios.

• The minimal redundancy maximal relevance algorithm was applied to select the top-n critical
influencing factors from the series of key influencing factors, which effectively improved the
stability, accuracy, and calculation speed of the model.

• The least squares support vector machine model optimized by adaptive fireworks algorithm was
used for prediction, which was more accurate than other algorithms.

In addition, the proposed least squares support vector machine optimized by the minimal
redundancy maximal relevance model and the adaptive fireworks algorithm had a better prediction
effect than other models in terms of calculation accuracy, but its prediction accuracy still had the
possibility to be improved. As shown by the application of data in A region of southwest China, the
main source of error was caused by the total load demand prediction process. Thus, an important
strategy to improve the prediction accuracy of the total load demand prediction results is to build a more
appropriate total load demand forecasting index system. We could take temperature, precipitation,
light time, and other factors into consideration and put forward a more detailed and reliable index
system, which will effectively improve the accuracy of the total load demand prediction, so as to
improve the load prediction calculation results for the power grid.

Although the application of the model is subject to a variety of constraints, such as the fact that it
is for multi-energy coupling scenarios, that the grid is responsible for unified dispatching, and that the
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grid meets users’ power needs, the applicability of the model is still very wide. The model has no
limits on the size of the area, natural conditions, social conditions, and so on. This is because we added
the step of scenario analysis before the prediction was carried out, which helped us list all the factors
that might affect the prediction result, and select the influence factors with the maximum correlation
and minimum redundancy through the minimal redundancy maximal relevance model, which ensure
the robustness, applicability, and accuracy of the model. This will allow the model to perform well in
both southwest and northeast China, enabling power companies to accurately predict user demand.
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