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Abstract: This paper deals with the heat transfer performance of a micro-channel backplane heat 
pipe air conditioning system. The optimal range of the filling rate of a micro-channel backplane heat 
pipe air conditioning system was determined in the range of 65–75%, almost free from the 
interference of working conditions. Then, the influence of temperature and air volume flow rate on 
the heat exchange system were studied. The system maximum heat exchange is 7000–8000 W, and 
the temperature difference between the inlet and outlet of the evaporator and the condenser is 
almost 0 °C. Under the optimum refrigerant filling rate, the heat transfer of the micro-channel heat 
pipe backplane system is approximately linear with the temperature difference between the inlet air 
temperature of the evaporator and the cooling distribution unit (CDU) inlet water temperature in 
the range of 18–28 °C. The last part compares the heat transfer characteristics of two refrigerants at 
different filling rates. The heat transfer, pressure, and refrigerant temperature of R134a and R22 are 
the same with the change of filling rate, but the heat transfer of R134a is lower than that of R22. The 
results are of great significance for the operational control and practical application of a backplane 
heat pipe system. 

Keywords: micro-channel; backplane heat pipe; optimal filling rate; heat transfer performance 

 

1. Introduction 

Given the rise of artificial intelligence (AI), cloud computing, communication, big data, Internet, 
finance, e-commerce, e-government, and other data-driven methods, the role of data centers will 
become more prominent. Therefore, finding more efficient ways to operate them is essential [1]. From 
2013 to 2018, the scale of China’s data center has grown nearly three times, with an average annual 
growth rate of more than 30%. By 2019, the scale of China′s data center market will reach US $21.81 
billion, accounting for 30.1% of the global total scale. Compared with the global market, the size of 
the data center market increased from US $28.44 billion in 2013 to US $62.6 billion in 2018, with a 
compound growth rate of only 17.1% [2]. As data center equipment is intensive and energy 
consumption is high, data room designers and equipment manufacturers are actively seeking various 
technical means to reduce power consumption and improve energy efficiency. As a new type of 
separated heat pipe, the micro-channel backplane heat pipe system is a kind of efficient heat exchange 
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element which uses the temperature difference to drive the phase change heat exchange of refrigerant. 
In a certain environment, it does not need a compressor. It has the advantages of simple structure, 
flexible layout, strong adaptability, good sealing, and multi-fluid heat transfer ability. At the same 
time, it has a large surface area to volume ratio, a large heat exchange area effectively utilized, and 
high heat transfer efficiency [3–5]. Therefore, the study of the micro-channel structure has become a 
hot topic in recent years. 

Ling [6,7] carried out experiments on the micro-channel separated heat pipe system for a base 
station, and the results showed that under different indoor conditions, the cooling capacity and 
energy efficiency ratio (EER) of the system increased with the increase of indoor and outdoor 
temperature difference. Using a water-cooled multi-connected heat pipe system, the cooling capacity 
of the system can reach 6100–6200 W [8]. Wu et al. [9,10] studied the micro-channel separated heat 
pipe under standard conditions and different outdoor temperature conditions; the experimental 
results showed that the internal pressure of the evaporator first decreased and then increased with 
the increase of the refrigerant filling rate, and the superheat and supercooling at the inlet and outlet 
of the evaporator were close to 0 °C within the range of the optimal refrigerant filling rate. Jin [11,12] 
studied the micro-channel separated heat pipe with R134a as the medium, and the experimental 
results showed that the temperature difference increased from 10 °C to 20 °C, the heat exchange rate 
increased by 106%, the height difference increased from 0.75 m to 1.25 m, the increase rate was 267%, 
the system coefficient of performance (COP) was 4.66–13.9, and the power usage effectiveness (PUE) 
could reach 1.71. The power saving rate was 44.7%. Although scholars have done a lot of research on 
the micro-channel heat pipe, there is little research on the micro-channel backplane heat pipe system. 
Chen [13] analyzed the heat transfer characteristics of the backplane heat pipe air conditioning system, 
and the research showed that backplane air conditioning can automatically adjust the heat exchange 
according to the environmental changes. Sun [14–16] et al. concluded that the backplane heat pipe 
system adapts to the changes of different conditions, and the server should be placed in the middle 
and lower part as much as possible in order to obtain the maximum heat exchange capacity of the 
back plate. Compared with traditional precision air conditioning, the anti-condensation backplane 
heat pipe system can save 20–40% energy. Liu [17] analyzed the safety problems of the backplane 
heat pipe in the data center. It was found that when one fan in the system was damaged, it had little 
impact on the heat exchange of the system, and the temperature rise of the cabinet was 0.6–0.7 °C. 
Liu et al. [18,19] analyzed the unbalanced operation of the heat pipe backplane, and founded that the 
main reason for the imbalance of the backplane air conditioning system was the uneven load between 
cabinets. More backplane air conditioners do not undertake refrigeration, and those that undertake 
refrigeration experience severe dry burning of the upper part of the evaporator side, but this has little 
impact on the air inlet temperature of the overall cabinet. Luo et al. [20] studied the extreme working 
conditions of the heat pipe backplane in the data room and found that the temperature in the room 
was uniform during normal operation. When a heat pipe backplane fails, the air volume flow rate 
can be increased to keep the air inlet temperature stable, but increasing the air volume flow rate will 
directly cause the air outlet temperature of the backplane to rise, which has corresponding limitations. 
Ding et al. [21] measured and analyzed the application of heat pipe backplane in data center, and the 
results showed that the heat pipe backplane can use natural cold sources in transition season and 
winter, and the PUE in summer, winter, and transition season was 1.58, 1.20, and 1.38, respectively. 
To sum up, scholars have performed minimal research on the micro-channel heat exchanger as the 
condenser and evaporator of the separated heat pipe air conditioning system; most of the research is 
limited to the engineering application design experiment of the system in the data center. 

This paper mainly studies the heat transfer performance of the micro-channel backplane heat 
pipe air conditioning system and conducts heat transfer performance experiments in a standard 
enthalpy difference laboratory. Through experiments, the micro-channel backplane heat pipe system 
is summarized and analyzed from the use effect. Parameters such as refrigerant pressure and 
temperature during system operation were measured, and the heat transfer effect of the system was 
analyzed from the perspective of the internal heat transfer mechanism. The refrigerant filling rate of 
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the micro-channel backplane heat pipe air conditioning system was analyzed and the optimal liquid 
filling rate of the system under standard working conditions was measured. In addition, the 
environmental conditions may change during actual operation. In order to ensure that the system 
can always be in the best operation state, the influence of different working conditions on the best 
refrigerant filling rate of the backplane heat pipe system was analyzed through experiments. The 
effects of different refrigerants on the heat transfer of the system under standard conditions and the 
heat transfer performance of the micro-channel backplane heat pipe system were also analyzed. 

2. Experimental Method 

2.1. Description of the Micro-Channel Backplane Heat Pipe Air Conditioning System 

Backplane heat pipe air conditioning system as shown in Figure 1. The evaporator form of a 
backplane heat pipe system is the micro-channel heat pipe evaporator, and the condenser form is a 
copper brazed plate condenser cooling distribution unit (CDU). The chilled water is provided by an 
outdoor water chiller and cooling tower. The complete heat pipe backplane system consists of a back 
plate evaporator, gas pipe branch, CDU condensation section, liquid pipe branch, and other 
components. When the system is running, the refrigerant in the evaporation section of the back plate 
absorbs heat and becomes gaseous. The gaseous refrigerant rises through the gas pipe branch and 
enters the CDU condensation section. After heat exchange with the cooling water in the CDU, the 
gaseous refrigerant condenses into liquid. Under the effect of gravity, the refrigerant flows down 
through the liquid pipe branch and returns to the evaporation section of the back plate. Such repeated 
circulation operation can realize heat transfer.  

 

Figure 1. Backplane heat pipe air conditioning system. 

2.2. Experimental Apparatus 

The test unit includes a back plate evaporator side (with cabinet), CDU condensation side, riser, and 

downcomer. The experimental equipment included an enthalpy difference laboratory, which can 

create the indoor side temperature and humidity environment conditions required by the backplane 

heat pipe experiment, open and control the indoor water side equipment system, and provide the 

cold water supply temperature and flow required by the CDU cooling section experiment; a 

schematic diagram is shown in Figure 2 below. PT100 temperature sensor (Beijing Huakong Xingye 
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Technology Development Co., Ltd., Beijing, china) was used to measure the refrigerant temperature 

at the inlet and outlet of the backplane heat pipe evaporation section and CDU condensation section. 

A K-type thermocouple temperature sensor (Changzhou Anbai Precision Instrument Co., Ltd., 

Changzhou, Jiangsu, china) was used to measure the wall temperature of the evaporation section of 

the backplane heat pipe. The pressure sensor was used to measure the refrigerant pressure at the inlet 

and outlet of the evaporation section and the condensation section of the backplane heat pipe. 

Coriolis flowmeter (Jiangsu Kingstar Instrument Technology Co., Ltd. Huaian, Jiangsu, china) was 

used to measure the mass flow of refrigerant in the system. The experimental data measured by the 

experimental instrument was collected by Agilent data acquisition instrument (Beijing Dongfang 

Zhongke Integrated Technology Co., Ltd., Beijing, china) and connected to a computer for storage. 

 

Figure 2. Schematic diagram of backplane heat pipe test platform of enthalpy difference laboratory. 

2.3. Experimental Procedures 

The standard operating conditions set in this experiment were as follows: indoor dry/wet bulb 
temperature was 35 °C/24 °C; the backplane circulating air volume was 1800 m3·h−1; and cooling water. 
The supply/return water temperature was 12 °C/17 °C, and the flow rate was 1.71 m3·h−1. The 
experimental content was carried out according to the following three parts. The first part is to 
analyze the effect of different filling rates on the heat transfer performance of the system and 
determine the optimal filling rate under different conditions. The second part is the heat transfer 
performance analysis of the system after determining the optimal filling rate. The third part is the 
comparison of the heat transfer performance of different refrigerants. The effects of different 
temperature, air volume flow rate, and other working conditions on the heat exchange performance 
of the system were analyzed. The other experimental conditions are set in Table 1. The experimental 
steps are the same as those of standard working conditions. The influence of R22 and R134a 
refrigerant on the heat exchange of the system was analyzed. 

The standard working conditions experimental steps are as follows: 

(1) Through the enthalpy difference experiment control platform, the indoor environment 
temperature and humidity, water side water supply temperature and flow are set as the 
standard working conditions; 
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(2) Connect the measuring instrument, turn on the data acquisition instrument and the computer; 
(3) Add refrigerant to the filling port, fill 0.6 kg for the first time, open the enthalpy difference test 

bench, set the data recording interval of each group as 20 s, and record the time for 30 min; 

Repeat step (3) to complete the experiment and data recording of other charging conditions in 
turn, except for the standard conditions; other experimental conditions are shown in Table 1 below. 

Table 1. Other experimental conditions. 

Parameters Numerical Value 

Refrigerant charge (kg) 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 

Indoor temperature  

(dry/wet bulb temperature) (°C) 
28/18.9, 30/20.9, 35/24.9, 40/29.9 

Air volume flow rate (m3·h−1) 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 

Chilled water inlet temperature (°C) 10, 12, 14 

Chilled water flow (m3·h−1) 1.71 

Working substance R22, R134a 

2.4. Experimental Uncertainty 

During the test period, the cooling capacity of the evaporator section was calculated using the 
enthalpy difference between the indoor air and indoor air. Based on the uncertainty calculation 
method proposed by Mofft [22] and the major sensors′ error in Table 2, the measurement uncertainty 
of evaporator section cooling capacity was 0.75%. 

Table 2. Major sensors and their errors. 

Types 

PT100 
Temperature 

Sensor 

K-Type 
Thermocouple 

Temperature Sensor 

AKS32-060G2037 
Pressure Sensor 

DMF-1-3B Mass 
Flow Meter 

Temperature (°C) Temperature (°C) Pressure (MPa) Flow Rate (kg·h−1) 

Errors 0.1 0.1 0.0075 1 

Ranges −30 to 200 −200 to 260 −0.1 to 2.4 0 to 300 

3. Results and Discussion 

3.1. Determination of the Optimal Filling Rate 

Refrigerant filling rate is one of the most critical factors affecting the heat exchange performance 
of the backplane heat pipe air conditioning system. If the filling rate of the refrigerant is too small, 
the upper part of the evaporation section will be burnt dry, which will greatly reduce the heat 
exchange performance. If the filling rate of the refrigerant is too large, it will not only cause refrigerant 
waste, but also accumulate more liquid in the condensation section, which will reduce the heat 
exchange of the condensation section. Therefore, it is very important to determine an optimal range 
of refrigerant filling rate for the actual application of backplane heat pipe air conditioning. 

Under the standard working condition, the heat exchange of the backplane air conditioning 
system changes with the refrigerant filling rate as shown in Figure 3 below. When the air conditioning 
system was charged with 0.6 kg refrigerant, the refrigerant filling rate was 27.9% and the heat 
exchange was very low, less than 1 kW. Since the system is in a lower refrigerant filling rate, there is 
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only a small amount of liquid refrigerant at the bottom of the evaporator, and it will soon evaporate 
into a gaseous refrigerant, resulting in steam in the upper part of the evaporator with small heat 
capacity and without a liquid film covering the upper surface; so only through the steam heat 
exchange does the phenomenon of drying up occur, resulting in low heat exchange. With the 
refrigerant charge increases from 27.9% to 65.3% and the heat exchange of the system also 
significantly increases, reaching 7.8 kW, which is eight times the previous one. Due to this range of 
filling rate, with the increase of filling rate, the coverage of liquid film in the evaporator increases, so 
the heat exchange rate of phase change latent heat increases rapidly. However, as the refrigerant 
filling rate of the system is continuously increased, the heat exchange of the system is gradually 
reduced, because there is too much refrigerant in the evaporator, the length of the lower liquid pool 
is longer, and the length of the latent heat exchange is reduced. At the same time, the refrigerant at 
the inlet of the evaporator is supercooled, which will also reduce the heat exchange of the evaporator. 
When the refrigerant filling rate of the system is higher than 80%, all the refrigerants in the evaporator 
are in a liquid phase state and cannot operate normally. Therefore, the range of 65–79% is the best 
range of the backplane heat pipe air conditioning system, and the heat transfer performance of the 
system is the best under the best range of the filling rate. 

 

Figure 3. Change of heat exchange with refrigerant filling rate. 

3.2. Effect of Different Working Conditions on the Optimum Filling Rate 

3.2.1. The Influence of Different Temperature on the Best Filling Rate 

Since the driving force of the operation of the backplane heat pipe air conditioning system 
depends on the temperature difference between the air in the evaporation section of the heat pipe 
and the outdoor condensation side, as well as the height difference between the evaporation section 
and the condensation section, the temperature condition in the machine room is generally maintained 
between 20 °C and 25 °C; but when the server in the room goes down, power is off or the outdoor 
weather conditions change dramatically, the temperature may change suddenly. Therefore, it is 
necessary to study the influence of different temperature conditions on the optimal refrigerant filling 
rate and heat exchange performance of the system, which is conducive to ensure that the backplane 
heat pipe air conditioning system is in the optimal operation state during the actual operation 
process, and the air outlet temperature meets the air supply temperature requirements of the data 
room. Table 3 shows the five different operating conditions set in the experiment. Under the five 
operating conditions, the experiments with different filling rates were carried out respectively. 

Table 3. Different temperature conditions. 
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Temperature °C Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 
Air inlet temperature 

of backplane 
35 30 40 35 35 

CDU inlet water 
temperature 

12 12 12 10 14 

Figures 4 and 5 show the influence of the cooling capacity of the system filled with different 
refrigerant filling rates and the air outlet temperature at the evaporator side under different working 
conditions. It can be seen from the figures below that under different working conditions, the trend 
of the system changes but the refrigerant filling rate is the same, the range of the optimal refrigerant 
filling rate is about 65–79%, and the air outlet temperature of the evaporator backplane reaches the 
lowest, meeting the air supply requirements for the data room server. The experimental results show 
that the inlet air temperature of the backplane and the inlet water temperature of the condenser have 
little effect on the range of the optimal refrigerant filling rate. 

 
Figure 4. Relationship between cooling capacity and refrigerant filling rate under different 
temperature conditions. 

 
Figure 5. Relationship between liquid filling rate and backplane outlet temperature under different 
temperature conditions. 

3.2.2. The Influence of Different Air Volume Flow Rate on the Optimal Filling Rate 
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The experiments of air volume flow rate (1800 m3·h−1) and air volume flow rate (1000 m3·h−1) 
under standard conditions are compared. Figure 6 shows the influence of liquid filling rate on cooling 
capacity under different air volume flow rates, and Figure 7 shows the influence of refrigerant filling 
rate on air outlet temperature of backplane under different air volume flow rates. 

 
Figure 6. Relationship between cooling capacity and refrigerant filling rate under different air volume 
flow rate conditions. 

 
Figure 7. Relationship between refrigerant filling rate and backplane air temperature under different 
air volume flow rate conditions. 

It can be seen from the Figures 6 and 7 that under two different air volume flow rate conditions, 
the change trend of heat exchange and air outlet temperature of the back plate is consistent with the 
increase of the liquid filling rate. When the refrigerant filling rate FR <65%, the heat transfer increases 
rapidly with the increase of the refrigerant filling rate, and the air temperature of the evaporator side 
decreases rapidly. When the refrigerant filling rate FR = 65–79% (the optimal filling rate), the heat 
exchange and the air outlet temperature of the backplane are basically stable. At this time, the heat 
exchange of the whole system is the largest, the air outlet temperature of the backplane is the lowest, 
and the system is in the optimal working condition. When the refrigerant filling rate FR >80%, the 
heat exchange begins to slow down, and the air temperature slowly increases. It shows that the 
change of air volume flow rate has little effect on the range of optimal filling rate of the backplane 
heat pipe system. 
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To sum up, when the external environment conditions change, the optimal filling rate range of 
the backplane heat pipe system will not change and will always remain at about 65–79%. This 
property of the backplane heat pipe is also of great significance for its practical engineering 
application. As long as the backplane heat pipe is filled to the optimal refrigerant filling rate range, 
the bottom plate heat pipe is always in optimal operation regardless of external environmental 
conditions such as intake air temperature and inlet water temperature. 

3.3. Effect of Different Refrigerants on Heat Transfer Characteristics 

In order to study the influence of different refrigerant properties on the heat transfer of the 
system, R134a and R22 refrigerant are selected for comparison in this experiment, and the change of 
heat transfer with the refrigerant filling rate is shown in Figure 8 below. It can be seen from Figure 8 
that the change of heat exchange rate of R134a refrigerant with refrigerant filling rate is basically the 
same as that of R22, and its optimal refrigerant filling rate range is about 65% to 79%, but the heat 
exchange rate of R134a is about 5% lower than that of R22 as a whole, because the latent heat of R22 
gasification is slightly higher than that of R134a, and under the optimal refrigerant filling rate, the 
heat exchange of refrigerant is mainly two-phase heat exchange. 

 
Figure 8. Heat exchange and refrigerant inlet and outlet pressure in evaporator. 
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Figure 9. Temperature of refrigerant inlet and outlet in evaporator. 

The pressure at the inlet and outlet of R134a and R22 evaporators increase with the increase of 
refrigerant filling rate, and increase rapidly under the condition of a low refrigerant filling rate. Under 
the same conditions, the inlet and outlet pressure of R134a are lower than R22. At the optimal filling 
rate, R134a pressure is only about 580 kPa, while R22 pressure is about 870 kPa. The pressure drop 
of R134a and R22 in the evaporator is very small, the pressure drop is about 10–15 kPa. Figure 9 
shows the temperature of R22 and R134a at the inlet and outlet of the evaporator at different 
refrigerant filling rates. It can be seen from the figures that the outlet temperature of the evaporator 
is close to 35 °C at low refrigerant filling rates, and the refrigerant at the outlet of the evaporator 
becomes superheated steam at low refrigerant filling rates. The heat exchange capacity is almost 0, 
and the refrigerant temperature is close to the inlet air temperature. With the increase of refrigerant 
filling rates, the temperature at the inlet and outlet of the refrigerant in the evaporator is close to the 
inlet air temperature which the temperature at the outlet is approaching gradually. When the 
refrigerant filling rate reaches 55%, then the temperature difference between the inlet and outlet of 
the two refrigerants approaches, and the heat exchange increases gradually. When the refrigerant 
filling rate reaches 65–79%, the refrigerant in the evaporator is in the state of a two-phase flow, at this 
time, the heat exchange is mainly latent heat, and the heat exchange is the largest. However, 
compared with R134a, the temperature difference between the inlet and outlet of R22 is larger. To 
sum up, in the optimal range of refrigerant filling (65–79%), the system has the largest heat exchange 
and the smallest temperature difference between the inlet and outlet of the refrigerant in the 
evaporator. It can be seen that different refrigerants operate in different states in the backplane system 
of the heat pipe, and the influence of different refrigerants should be considered in the actual 
application of the backplane heat pipe system. 

3.4. System Heat Exchange Performance Analysis 

In the above experiments, the heat exchange changes with the refrigerant filling rate under five 
different air inlet temperatures, and water inlet temperature conditions are taken respectively. The 
heat exchange values at the optimal refrigerant filling rate are taken from the above results. Since the 
air volume flow rate (1800 m3·h−1) at the evaporator side and the cold water flow volume (1.71 m3·h−1) 
at the CDU side remain unchanged, conditions 1–5 can be described as the air inlet temperature and 
CDU of the evaporator The temperature difference of inlet water is 18–28 °C under five working 
conditions. Under the optimum filling rate, the change of heat exchange of the backplane heat pipe 
system with the temperature difference is shown in Figure 10 below. 

It can be seen from Figure 10 that under the optimal refrigerant filling rate, when the air volume 
flow rate at the evaporator side and the water flow at the condenser side remain unchanged, the heat 
exchange and the temperature difference between the air inlet temperature of the evaporator and the 
CDU water inlet temperature are almost linear. 
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Figure 10. Change of heat exchange with temperature difference between inlet air of evaporator and 
inlet water of CDU. 
For the analysis of the relationship between the heat exchange rate of heat pipe and the 

temperature difference between cold and hot ends, Zhu [23] used the ε-NTU method to calculate the 
heat transfer formula of the whole system under the optimal liquid filling rate of a separated heat 
pipe. The formula is as follows: 
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Li [24] et al. in a separated heat pipe experiment, and under the conditions of the optimal 
refrigerant filling rate and constant air volume flow rate at the evaporation and condensation side, 
adjusted the change of the inlet air temperature at the evaporator side within 5–42 °C and 20–55 °C 
at the condensation side. The experimental results show that the heat exchange is not related to the 
temperature change range but has a linear relationship with the temperature difference of the inlet 
air at the condenser side of the evaporator. From the above experimental results, under the condition 
of the optimal refrigerant filling rate, keeping the air volume flow rate at the evaporator side and the 
water volume at the condenser side unchanged, the heat exchange of the micro-channel backplane 
heat pipe system is approximately linear with the temperature difference between the air inlet 
temperature of the evaporator and the CDU water inlet temperature within a certain temperature 
range. The structure of backplane heat pipe is similar to that of separated heat pipe, but the condenser 
of backplane heat pipe system uses a CDU instead of micro-channel condenser. According to the 
analysis of the derivation process in Equation (1), the formula is also applicable to the backplane heat 
pipe system, and it is consistent with the experimental data results of the backplane heat pipe system. 

3.5. ε-NTU Simplified Model 

3.5.1. Model Establishment 

When the side air volume of the evaporator and the water flow of the condenser remain 
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the inlet water temperature of the CDU on the heat transfer is analyzed by Equation (1). The formula 
is also applicable in the micro-channel backplane heat pipe system, but the condenser form of the 
backplane heat pipe system studied in this paper is a CDU plate heat exchanger. Combined with the 
experimental results, the heat transfer prediction model applicable to this system can be derived by 
using the ε-NTU method. The derivation process is as follows: 

According to the experimental analysis above, when the system is in the best charging rate, 
import and export of refrigerant in the evaporator temperature generally approximates 0 °C and have 
good isothermal property, because the back of the evaporator and condenser heat pipe system are 
connected by an adiabatic section connection, So you can think, when the system is in the best 
charging rate, the refrigerant in the evaporator and condenser temperature are approximately equal, 
and evaporation temperature and condensation temperature degrees are nearly equal. So, evaporator 
side , min ,,r p r ea p am c C m c→∞ = , cold condenser side , min ,,r p r cw p wm c C m c→∞ = . 

First to calculate on the evaporator side: 

, ,

,

1 exp( )e ain e aout
e e

e ain e

t t
NTU

t t
ε

−
= = − −

−
 (5) 

apea

ee
e cm

AUNTU
,

=  (6) 

, , ,( )e ea p a e ain e aoutQ m c t t= −  (7) 

It can be obtained from Equation (5) above: 

, , ,( )e aout e e ain e e aint t t tε= − − +  (8) 

Substitute Equation (8) into Equation (7) to obtain: 

, ,( )e e ea p a e ain eQ m c t tε= −  (9) 

Calculate the condenser in the same way:  

, ,

,

1 exp( )c wout c win
c c

c c ain

t t
NTU

t t
ε

−
= = − −

−
 (10) 

wpcw

cc
c cm

AUNTU
,

=  (11) 

, , ,( )c cw p w c wout c winQ m c t t= −
 

(12) 

It can be obtained from Equation (10) above: 

, , ,( )c wout c c c win c wint t t tε= − +  (13) 

Substitute Equation (13) into Equation (12) to obtain: 

, ,( )c c cw p w c c winQ m c t tε= −  (14) 

The simultaneous Equations (9) and (14) can be obtained: 
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, , , ,

, ,

a ea p a e ain c cw p w c win
e c

a ea p a c cw p w

m c t m c t
t t

m c m c
ε ε

ε ε
+

= =
+  

(15) 

By combining Equation (9) with Equations (14) and (15), the heat exchange prediction formula 
of the micro-channel backplane heat pipe system is obtained as follows: 

, , , ,

, ,

( )a ea p a c cw p w e ain c win

a ea p a c cw p w

m c m c t t
Q

m c m c
ε ε

ε ε
−

=
+

 (16) 

3.5.2. Model Validation 

Based on the previous set of optimal filling rate conditions, the experimental data of different 
inlet air volume, inlet air temperature, and inlet water temperature were substituted into the model 
(Equation (16)) for calculation. The relative error between the calculated value and the experimental 
value is shown in Figure 11 below. As shown, the error of the prediction formula for the overall heat 
transfer of the system is about ±12%, which can basically meet the requirements for quickly predicting 
the heat transfer of the system in practical applications. When the backplane heat pipe is in the 
optimal refrigerant filling rate condition, it is considered that the system is in the optimal operation 
state, and its heat exchange can be calculated by the ε-NTU method. In actual operation, we only 
need to measure the inlet air temperature, inlet air flow, inlet water temperature, and inlet water 
flow, which are four physical quantities convenient for measurement. Then the corresponding heat 
transfer value of the system can be obtained by Equation (16). It is of great significance for real-time 
prediction and optimization control of heat transfer in a micro-channel backplane heat pipe system. 

 
Figure 11. Relative error between calculated value and experimental value. 
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7000–8000 W, the pressure drop is relatively small, 10–15 kPa, the air temperature is 22–24 °C, and its 
refrigeration capacity meets the load requirements of the data room. 

(2) With the increase of refrigerant filling rate, the pressure and pressure drop at the inlet and 
outlet of the system will increase. The pressure drop in the evaporator is greater than that in the 
condenser, and the mass flow in the system will increase. At the best refrigerant filling rate, the 
temperature difference between the inlet and outlet of the evaporator and the condenser is almost 
0 °C, and the refrigerant base in the evaporator is in a two-phase state. 

(3) Under the optimal filling rate, when the medium flow rate at the evaporator side and 
condenser side is kept constant, the heat exchange of the micro-channel backplane heat pipe system 
is approximately linear with the temperature difference between the inlet air temperature of the 
evaporator and the CDU inlet water temperature within a certain temperature range. 

(4) The heat exchange, pressure, and refrigerant temperature of R134a and R22 are the same with 
the change of filling rate, but under the same conditions, the heat exchange of R134a is lower than 
that of R22 on the whole. Under the optimum filling rate, the temperature at the inlet and outlet of 
the refrigerant in the evaporator is almost the same. The range of refrigerant filling rate 
corresponding to the maximum heat exchange and the minimum temperature difference between 
the inlet and outlet of the refrigerant in the evaporator is about 65–75%, which is the optimal 
refrigerant filling rate of the system. 

(5) Using the ε-NTU method, a simplified prediction model suitable for the heat transfer of the 
system is derived. The error of the overall heat transfer prediction model of the system is about ±12%, 
which can basically meet the requirements for rapid prediction of the heat transfer of the system in 
practical applications. In actual operation, we only need to measure four physical quantities that can 
be easily measured to obtain the corresponding heat transfer value of the system. 
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Nomenclature 

Qe Evaporators exchange heat (W) 

Qc Condenser heat transfer capacity (W) 

εe Evaporator efficiency 

εc Condenser efficiency 

tc,win Air inlet temperature at condenser side (°C) 

tc,wout Condenser side air outlet temperature (°C) 

te,,aout Evaporator side air outlet temperature (°C) 

Ae Evaporator heat transfer area (m2) 

Ac Condenser heat transfer area (m2) 
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mea Evaporator side air flow rate (kg·s−1) 

mcw Air flow at condenser side (kg·s−1) 

te Evaporation temperature (°C) 

te,ain Evaporator side air inlet temperature (°C) 

Uc Condenser heat transfer coefficient (W·(m−2·K−1)) 

Ue Evaporator heat transfer coefficient (W·(m−2·K−1)) 

cp,a Specific heat of the air inlet at the side of the evaporator (J.( kg·K−1)) 

EER Cooling capacity (W)/input power (W). The higher the EER value, the more heat absorbed by 
evaporation in the air conditioner or the less power consumed by the compressor. 

COP 
Cooling capacity or heating capacity (W)/input power (W), the higher the COP value, the higher 
the system energy efficiency. 

PUE 
Total facility power/IT equipment power. The closer the PUE value is to 1.0, the higher the energy 
efficiency of the equipment room. 

ε-NTU  Effective heat transfer unit number method.  
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