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Abstract: The classic Hodgkin-Huxley model is widely used for understanding the electrophysiological
dynamics of a single neuron. While applying a low-amplitude constant current to the system
results in a single voltage spike, it is possible to produce multiple voltage spikes by applying
time-varying currents, which may not be experimentally measurable. The aim of this work is to
estimate time-varying applied currents of different deterministic forms given noisy voltage data. In
particular, we utilize an augmented ensemble Kalman filter with parameter tracking to estimate four
different time-varying applied current parameters and associated Hodgkin-Huxley model states,
along with uncertainty bounds in each case. We test the efficiency of the parameter tracking algorithm
in this setting by analyzing the effects of changing the standard deviation of the parameter drift
and the frequency of data available on the resulting time-varying applied current estimates and
related uncertainty.

Keywords: inverse problems; time-varying parameter estimation; ensemble Kalman filter;
Hodgkin-Huxley; neuron dynamics

1. Introduction

The Hodgkin-Huxley model is a classical system of differential equations that is widely used
for understanding the electrophysiological dynamics of a single neuron [1]. The model is based
on a simple circuit analogy, where each piece of the circuit corresponds to an electrophysiological
component, representing the resistance of an electrically charged ion channel as a function of time and
voltage [2,3]. While the Hodgkin-Huxley equations can be used to model the total current resulting
from an applied voltage, the model can also be used to predict voltage given an externally applied
current. The latter is particularly useful in experimental settings where voltage measurements are
obtainable, making it possible to estimate the applied current based on observed voltage data [4,5].

In this setting, the applied current can be thought of as a synaptic input stimulus received by
a single neuron. It is common in in-vitro experimental setups to inject a known current (typically
a constant or pulse) into the cell and measure voltage using patch-clamp recordings [4] or imaging
procedures [6]. However, information regarding the input current is generally more difficult to obtain,
e.g., for synaptic stimuli from multiple neurons in a neural circuit [5], or in in-vivo settings where
the current is either unavailable or must be inferred from external stimuli [4]. It therefore remains
an important challenge to estimate the underlying input current given experimentally obtainable
measurements of voltage.

While applying a low-amplitude constant current to the system results in a single voltage spike,
it is possible to obtain multiple voltage spikes by increasing the magnitude of the constant current
or by applying time-varying currents. The work in this paper focuses on the application of various
deterministic, time-varying currents to the Hodgkin-Huxley system. More specifically, the aim of this
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work is to estimate time-varying applied currents of different deterministic functional forms given
noisy measurements of voltage. To tackle this inverse problem, we utilize an augmented ensemble
Kalman filter (EnKF) with parameter tracking to estimate the Hodgkin-Huxley model states and
time-varying applied current parameter.

Various methods have been used in the literature to estimate certain constant (or static) parameters
in the Hodgkin-Huxley equations; see, e.g., [7-10]. Our goal is to estimate the applied current,
which we treat as an unknown, time-varying system parameter. In particular, we consider the case
when this parameter is unmeasurable with unknown dynamics, with the aim of obtaining a time
series approximation. Previous work estimating time-varying currents in Hodgkin-Huxley-type
models includes use of a linearized reconstruction approach to approximate single-step and periodic
stimuli [11] and use of an unscented Kalman filter to track single-step and sinusoidal currents along
with unobserved intracellular components [5].

In this work we employ an augmented EnKF with parameter tracking. The EnKF is particularly
useful for the problem at hand due to the sequential nature of the algorithm’s updating scheme, which
corrects the model prediction with the available data one point at a time [12,13]. If the time-varying
parameter changes more slowly than the system dynamics, parameter tracking allows the filter to
capture the change in the parameter over time using a random walk [14-16]. Further, since unknowns
are treated as random variables in the Bayesian framework, there is a natural measure of uncertainty in
the resulting parameter estimates, which lies in the estimated ensemble covariances of the underlying
posterior probability distributions [17,18].

While particle methods like the unscented Kalman filter and EnKF can be successfully employed
to estimate time-varying system components, the resulting time series estimates rely on the appropriate
choice of certain algorithm-specific inputs, such as the innovation and observation error covariance
matrices of the underlying state-space models [19,20]. In particular, the success of the parameter
tracking algorithm in estimating time-varying parameters depends on the a priori choice of the drift
covariance in the random walk as well as the amount of data available. More specifically, the drift
covariance has a direct effect on the associated uncertainty of the resulting parameter estimate, and a
poor choice of this term could lead to filter divergence [21-23]. Along with estimating the time-varying
applied current, we further illustrate the sensitivity of the results to the choice of the drift covariance
and time-frequency of available data.

In this work, we analyze the problem of estimating the time-varying applied current in the
Hodgkin-Huxley model using synthetic voltage data generated by applying four different deterministic
functions as the applied current —a constant current, a step function with one long pulse, a step function
with multiple shorter pulses, and a sinusoidal function — each resulting in different model dynamics.
We establish baseline results, demonstrating that the augmented EnKF with parameter tracking is
able to estimate well the applied current and unobserved Hodgkin-Huxley model components in
each of these four cases. We then further test the efficiency of the algorithm by performing numerical
experiments to analyze the effects of changing the standard deviation of the drift term in the parameter
tracking as well as the frequency of data available on the resulting applied current parameter estimates,
including the corresponding uncertainty.

The paper is organized as follows. Section 2 gives a brief review of the Hodgkin-Huxley model,
summarizing the relevant equations. Section 3 reviews the parameter estimation inverse problem
and outlines the ensemble Kalman filtering algorithm, with specific focus on time-varying parameter
estimation using the EnKF with parameter tracking. Section 4 describes the numerical results, including
the generation of synthetic data and the numerical experiments relating to estimating the time-varying
applied current parameter. Section 5 features a discussion of the results and future work, while
Section 6 gives a brief summary and conclusions of this work. Additional numerical experiments are
included in Appendix A.
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2. Review of the Hodgkin-Huxley Model Equations

The Hodgkin-Huxley model provided the first quantitative description of electrical excitability
in nerve cells [24], involving detailed mathematical equations to describe the voltage-dependent and
time-dependent properties of the sodium and potassium conductances [1]. Each piece of the circuit
shown in Figure 1 corresponds to a different electrophysiological component of the model. Capacitors
represent the charge storage capacity of each gating variable; resistors represent the sodium, potassium,
and leakage ion channels in the neuron; and batteries represent the electrochemical potentials that
each gating variable has to let ions in and out of the charged cell.

I(t)
ge Ik YNa
Cy —
1 1 T
E, Ex Eng

Figure 1. The Hodgkin-Huxley model represented as a circuit. Here the capacitor (Cys) represents the
charge storage capacity, the resistors (g, g, and gn,) act as the ion channels, and the batteries (Ey, Eg,
and Ep,) act as the electrochemical potentials.

From this analogy, the Hodgkin-Huxley equation modeling total membrane current is given by

I= CM% + lion @
where I = [(t) is the total membrane current in the axon (with a positive inward current), Cy; is the
membrane capacity (assumed to be constant), and V = V(t) is the displacement of the membrane
potential from its resting value (assumed to have a negative depolarization). Table 1 lists each
model component, along with its corresponding units. For simplicity of terminology, we will refer
interchangeably to V/(t) as the voltage within this paper. Note that the voltage V is related to the
membrane potential E via the relationship V = E — E;, where E; denotes the absolute value of the
resting potential [1].

The ionic current density I, is represented as the sum of the three currents

Lion = Ina + Ik + 1y )

where Iy,, Ik, and I; model the currents relating to the sodium, potassium, and leakage channels
occurring in the neuron, respectively. The form of the current for each ion channel follows from Ohm’s

law, where
L=gitV)(V-V) ®3)

fori = Na,K, (. Here g;(t, V) represents the gate for each channel generally as a function of time and
voltage, and V — V; represents the difference between the overall voltage V of the system and the
channel-specific voltages V;. We describe each of the three ionic currents in more detail as follows.
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Table 1. Components of the Hodgkin-Huxley model (1).

Component Description Units

I Total membrane current mA/cm?
Cm Membrane capacity uF/cm?
v Voltage mV

Lion Ionic current density mA /cm?
t Time msec

Sodium current. The sodium current is given by
INa = gNa(t, V)(V — VNa) 4)

where the sodium gate
gna(t, V) = m’hgna (5)

is impacted by depolarization, which causes an increase in sodium conductance [1]. Here gnj is a
constant (conductance/cm?), m = m(t) is the proportion of active sodium gates open (dimensionless
variable which varies over time between 0 and 1), and h = h(t) is the proportion of inactive gates open
(similarly dimensionless, varying between 0 and 1). The sodium voltage is given by Vn, = En, — E;,
where Eyj, is an equilibrium potential for sodium. Table 2 lists the constant values of Vi, and gn,-

The dynamics of the sodium gating variables m(t) and h(t) are governed by the following
differential equations:

B = (V)= m) — Bu(V)m ©
= w(V)A—h) B (V) @)

where the voltage-dependent rate constants (msec™) a;; and &, represent the rate of flow of ions into
the cell and B, and B, represent the flow out. The rate constants are modeled using the following
equations, derived from Hodgkin and Huxley’s experimental results [1]:

(V) = e ®
ap(V) = 0.07exp (%) )
Bm(V) = 4dexp (%) (10)
V) = g a

exp(G0) +1

Note that setting o, to its limit value of 1 at V = —25 mV avoids the discontinuity at that point.
Potassium current. The potassium current is given by

Ix = gk(t, V)(V — Vk) (12)

with potassium gate equation
gk (t, V) = gxn*. (13)

Here gx is a constant (conductance/cm?) and n = n(t) is the proportion of potassium gates open
(dimensionless, varying between 0 and 1). The potassium voltage is given by Vx = Ex — E;, where Eg
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is an equilibrium potential for potassium, sensitive to the overall outside concentration of charged
ions [25]. Table 2 lists the constant values of Vk and gx.
The dynamics of the gating variable 7(t) are similarly modeled using the differential equation

dn
I =ay(V)(1—n) = Bu(V)n (14)
where the rate constants
0.01(V +10)
ay(V) = ——— (15)
exp(F0) — 1
Ba(V) = 0.125exp (K) (16)
80
were also derived using experimental data [1]. Note the discontinuity in a, when V = —10 mV can be

avoided by setting it equal to its limit value of 0.1 at that point.
Leakage current. The leakage current is a small combined current, accounting mostly for chloride
but also other ions. The leakage current is given by

Iy=g/(V-Vp) (17)

with constant conductance g, and leakage voltage V;, = E; — E,. Here E, is the potential at which
the leak current is zero. The leakage voltage V; is needed for any calculation for threshold, but it is
unlikely to give any information about the nature of charged particles [25]. Table 2 lists the constant
values of Vy and gy.

Table 2. Constant parameter values used in the Hodgkin-Huxley model. Note that m.mho stands for
1/ohm (the reverse of ohm) or amp/volts. It is the unit Siemen and represents the derived unit of
electrical conductance.

Parameter Description Value Units

Cum Membrane capacity 1.0 uF/cm?

VNa Sodium voltage —115 mV

Vk Potassium voltage 12 mV

\Z; Leakage voltage —10.613 mV

SNa Sodium gate constant 120 m.mho/cm?
3K Potassium gate constant 36 m.mho/cm?
i7) Leakage gate constant 0.3 m.mho/cm?

Model summary. In summary, the Hodgkin-Huxley model comprises the total membrane current
Equation (1), which depends on time, voltage, and the solutions to the transfer Equations (6), (7)
and (14). Note that when a constant voltage is applied, ”é—‘t/ = 0 and (1) simplifies to I = I;,,. In this
case, Equations (6), (7) and (14) can be solved independently to compute the total ionic current.

However, when voltage changes with time due to an applied current, % # 0 and all four
equations must be solved simultaneously. The complete system of coupled ordinary differential
equations is given by
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‘%/ = %(I—LM) (18)
T = (VA —n) Bu(V)n (19)
B = (V)= m) — Bu(V)m (20)
T = w (V) h) (V) 1)

Note that in this case, the applied current I = I(t) in (18) drives the system dynamics. We explore
how different choices of deterministic, time-varying functions for I(t) affect the dynamics of the system
in the numerical results.

3. Parameter Estimation and the Ensemble Kalman Filter

Given measurements of voltage, our aim is to estimate the time-varying applied current I(t) that
best fits the available data. This is a parameter estimation inverse problem, where the parameter of
interest is a time-varying deterministic function with assumed unknown dynamics. More specifically,
we assume here that we cannot directly measure the time-varying applied current and that we do not
have equations available to explain its dynamics.

The set-up for this inverse problem is similar to the standard set-up for estimating parameters in
initial value problems of the form

d

= ftx0),  x(0) =% (22)
where x = x(t) denotes the model states and 6 denotes the model parameters [19]. Given some discrete,
noisy system measurements

yj:G(x(tj),G)erj, O<t < - <tr (23)

the inverse problem is to estimate the model states x(t) and parameters 6. Most classical approaches
addressing this problem tend to focus on the case when the parameters are constants, i.e., when % =0.
In this case, however, § = 6(t) and % is some unknown function.

To estimate the time-varying applied current in this work, we use a version of the ensemble
Kalman filter (EnKF) with parameter tracking [16,19]. The EnKF is an extension of the classical Kalman
filter adapted to work with models that are not necessarily linear or Gaussian [12,13]. As a Bayesian
statistical algorithm, the EnKF treats all unknowns as random variables with corresponding probability
distributions. The filter uses a random sample to represent the current probability distribution of states
and parameters, then utilizes ensemble statistics along with model predictions and observed data to
update the sample at each discrete time point.

While the original EnKF was implemented for state estimation, the augmented EnKF allows for
simultaneous state and parameter estimation [26]. The steps of the augmented EnKF are summarized
as follows. At time j, the sample

_ 1 1 2 2 N N
sij = { (el 01), (o3, 68,0, (0,00 } (24)

gives a discrete representation of the probability distribution, which is then updated using a two-step
process to time j 4 1. In the first step (the prediction step), we solve the system (22) to predict the
state values at time j + 1. In this work, (22) is the Hodgkin-Huxley model given in (18)—(21). The state
prediction ensemble is computed using the equation
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p —_ P P P _
x]'+1|j_F(xj‘j'6j)+vj+l’ p—1,2,...,N (25)

where F is the solution to (22) at time j 4 1 and vf 1 ~ N(0,C) represents error in the model prediction.

The predicted states x;.g H)j and current parameter values 9]’-0 are then placed in the augmented vectors
o
Zj+1\j 9}, , p=12...,N (26)

which are used to compute ensemble statistics. The prediction ensemble mean is computed using
the formula

1 N
2l = 3 2 2 (27)
p=1
and the prior covariance matrix by
1 = p 5 T
Tivj = =1 p;(zmu = Zi i) (240 — Zalp) - (28)

Note that while the parameters 0]’.7 are not updated in the prediction step, their cross-correlation
information with the predicted states is embedded in the prior covariance matrix and is used in the
next step to update the posterior sample.

In the second step (the observation update), the predicted values are compared with the observed
data y; 1 at time j + 1. The observation ensemble

y]r‘)H =VYjy1+ w];;l, p=12,...,N (29)

where w’

i~ N(0,D) represents the observation error, is compared to the observation
model predictions

Y P 14 _
Jpa = Gy ) p=12. N 0

computed using the observation model G as in (23). In this work, G is a linear observation function
measuring only the voltage in the Hodgkin-Huxley system. The combined posterior ensemble is then
given by

2t = g+ K1 Wi~ 9h) (1)
foreach p =1,2,..., N. The Kalman gain matrix Kj; incorporates the cross-covariance of state and
model predications, the forecast error covariance, and the observation noise covariance. For additional
implementation details, see [19,27].

Parameter tracking. In the above formulation of the augmented EnKFE 6 is assumed to be
constant and is evolved artificially with time in order to obtain an estimate. When 6 is time-varying,
as in the case we are considering, the augmented EnKF as presented requires additional modification.
If 6 = 6(t) changes more slowly than the dynamics of the system, it is possible to track the changes in
6(t) by incorporating a random walk in the prediction step. To implement this, a new random variable
¢ is introduced and added to current estimate of 6 at each prediction step, allowing the previously
fixed parameters to take a random walk of the form

=g*

'l4 )
jli

) +¢f, & ~N(0,03) (32)

foreach p = 1,2,..., N. Parameter tracking of this type has been used in various data assimilation
problems; see, e.g., [14-16,28]. Here we note that the choice of the standard deviation o7 in the drift
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term of the random walk is important in the accuracy and uncertainty of the resulting parameter
estimate. We will explore this further in the numerical experiments.

4. Numerical Experiments

In this section we describe the numerical experiments performed using the augmented EnKF
with parameter tracking to estimate the time-varying applied current in the Hodgkin-Huxley model.
All experiments were performed using the MATLAB® programming language. In particular, we used
the built-in solver ode15s to numerically solve (18)—(21) due to the potential stiffness of the system
when applying different time-varying currents. We first describe how synthetic data was generated
using four deterministic applied currents. We then provide the numerical results obtained using
parameter tracking to estimate the applied current in each case. We further explore the efficiency of the
algorithm by analyzing the effects of changing the standard deviation of the parameter drift in (32) as
well as the amount of time series voltage data available. Additional numerical experiments, including
a comparison between estimating a sinusoidal current and constant current of higher amplitude, are
included in Appendix A.

4.1. Synthetic Data Generation

To generate synthetic data, four different deterministic functions for the applied current I(t) were
run through the Hodgkin-Huxley Equations (18)—(21). The applied currents considered were:

(a) a constant current, where
I(t) =2 mA/cm? (33)

(b) a step function with one long pulse, such that
0 mA/cm?, t € [0,20)
I(t) = <10 mA/cm?, t € [20,160) (34)
0 mA/cm?, t € [160,200]

(c) a”pulsing” step function with multiple short pulses, such that

0 mA/cm?, t € [20g,20 +20q),

7=0,2,4,6,8
I(t) = (35)
10 mA/cm?, t € [20g,20 +20q),
q9=1,3,5,7,9

(d) asinusoidal function, where

I(t) = 10sin(0.2t) + 10 mA/cm?. (36)

For each data set, measurements of voltage V(t) were taken at 2001 equidistant time instances
over the interval [0,200] and corrupted by Gaussian noise with zero mean and standard deviation
0.05. Figure 2 shows each data sets along with the corresponding applied current. Note that the gating
variables n(t), m(t), and h(t) are unobserved states.
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Figure 2. Synthetic measurements of voltage V (t) generated using four different deterministic applied
currents I(t). In each row, the plot on the left depicts the noisy voltage measurements (shown in
negative mV) generated using the applied current on the right. From top to bottom, the plots show data
generated using the following current functions: constant current with I(t) = 2 mA/cm? as in (33);
one long step function, defined in (34); pulsing step function that alternates every 20 msec, as defined
in (35); and the sinusoidal function I(t) = 10sin(0.2¢) + 10 mA/cm? as in (36).

4.2. Estimating Time-Varying Applied Current via Parameter Tracking

We first establish baseline results for each of the four data sets described in Section 4.1 by applying
the augmented EnKF with parameter tracking to estimate the time-varying applied current and
Hodgkin-Huxley model states. We then perform numerical experiments to analyze the effects of the
standard deviation of the parameter drift term in (32) and the frequency of time series voltage data
available on the resulting applied current parameter estimates.
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Baseline results. To establish baseline results for parameter tracking in each of the four data sets
described in Section 4.1, we employ the augmented EnKF with parameter tracking using N = 100
ensemble members with the standard deviation of the parameter random walk in (32) set to 0z = 1.
Initial ensembles for the model states x(t) = [V (¢); n(t); m(t); h(t)] and applied current parameter
6(t) = I(t) were drawn from uniform prior distributions, with Vop|0 ~ U(—100,0); ng‘o, mgl()’hgm ~
U(0,1); and Ig\o ~ U(0,4) for each p = 1,2,...,N. The results in Figures 3-6 show the parameter
tracking estimates of I(t), along with the time series estimates of the Hodgkin-Huxley model states,
for each of the four cases. Note that in each case, the filter mean is able to track the underlying true
applied current, along with the unmeasurable system states, with uncertainty bounds represented by
the £2 estimated standard deviation curves.
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Figure 3. Resulting ensemble Kalman filter (EnKF) with parameter tracking estimates of V(t), n(t),
m(t), h(t) (top, from left to right), and applied current I(¢) (bottom) from the data obtained from
the constant current I(t) = 2 mA/cm? in (33). In each panel, the EnKF estimated mean is shown in
solid red while the true solution is shown in solid black. The dashed red lines show the estimated +2
standard deviation curves around the mean.
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Figure 4. Resulting EnKF with parameter tracking estimates of V (¢), n(t), m(t), h(t) (top, from left
to right), and applied current I(t) (bottom) from the data obtained from the one-step current in (34).
In each panel, the EnKF estimated mean is shown in solid red while the true solution is shown in solid
black. The dashed red lines show the estimated +2 standard deviation curves around the mean.
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Figure 5. Resulting EnKF with parameter tracking estimates of V (t), n(t), m(t), h(t) (top, from left to
right), and applied current I(t) (bottom) from the data obtained from the pulsing step current in (35).
In each panel, the EnKF estimated mean is shown in solid red while the true solution is shown in solid
black. The dashed red lines show the estimated +2 standard deviation curves around the mean.
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Figure 6. Resulting EnKF with parameter tracking estimates of V (¢), n(t), m(t), h(t) (top, from left
to right), and applied current I(t) (bottom) from the data obtained from the sinusoidal current
I(t) = 10sin(0.2t) + 10 mA/cm? in (36). In each panel, the EnKF estimated mean is shown in solid red
while the true solution is shown in solid black. The dashed red lines show the estimated 42 standard
deviation curves around the mean.

Standard deviation of parameter drift. As noted in Section 3, a carefully chosen standard
deviation oz for the random walk in (32) is crucial in maintaining the accuracy of the time-varying
parameter estimate and avoiding filter divergence; see, e.g., [21-23,27] and references therein.
To demonstrate the sensitivity of the parameter tracking algorithm to this choice, we tested the
effects of changing oz by letting 0z = 10, 2, 1, 0.5, 0.25, and 0.1 in estimating the applied current,
compared with oz = 1 used in the baseline results above. For sake of demonstration, we focused on
the data generated using the sinusoidal current defined in (36); similar results hold in the other cases.

The results in Figure 7 show that when oz = 10, although the EnKF mean estimate was able to
well track the true solution, the estimated £2 standard deviation curves around the mean are very large
around the mean, reflecting a lack of confidence in the estimate. On the other hand, when o =01,
the filter is unable to well track the true parameter and eventually diverges. In this case, while the
filter is unable to track the true parameter, the estimated £2 standard deviation curves are very tight
around the mean, implying a high confidence in an incorrect estimate. For this example, the choice of
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oz = 0.5 in the parameter random walk visually captures the true underlying parameter the best out
of the values considered, as it keeps the EnKF estimated mean closely with a small standard deviation
around the mean.

-100 20
0 50 100 0 50 100
time (msec) time (msec)
0,=05 o,=0.1
30 ¢ 150 ¢

—Estimate
—True

100

Z 50
0
10 -50
0 50 100 0 50 100
time (msec) time (msec) time (msec)

Figure 7. Resulting EnKF with parameter tracking estimates of I(t) using different standard deviations
0z for the parameter tracking drift term in (32). In each panel, the solid black line is the true sinusoidal
applied current I(t) = 10sin(0.2¢) + 10 mA/cm? in (36) that the filter aims to estimate. The solid red
line is the EnKF estimated mean, and the dashed red lines show the estimated 42 standard deviation
curves around the mean.

Frequency of data available. In addition to the choice of 0, the frequency of time series data
available also has a significant effect on the resulting parameter tracking estimates. To analyze this
on the problem at hand, we subsampled the available voltage data corresponding to the pulsing
step current (35) and sinusoidal current (36) every 10, 20, and 50 time points, resulting in data sets
containing 201, 101, and 41 equidistant voltage observations over the time interval [0,200]. This means
that data was considered in the observation step in the EnKF every first, second, or fifth millisecond
(as compared to every 0.1 msec using the full data). Note that the filter still performed the prediction
step every 0.1 msec as before, but the observation step was only preformed if data was available at
that time point.

The results in Figures 8 and 9 show that as data becomes more and more sparse, the parameter
tracking estimate of the applied current parameter loses more and more characteristics of the
underlying deterministic function. In particular, in Figure 8, as less data is available, the parameter
tracking estimate of the pulsing step function begins lagging in estimating the steps and is unable to
well maintain the shape. Similar results are seen in Figure 9 for the sinusoidal function, where the
parameter tracking estimate loses its periodicity as less data becomes available. In both figures, it is
clear that the sparser the data set, the more challenging it becomes for the filter to track the true
underlying applied current function.
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Figure 8. Resulting EnKF with parameter tracking estimates of I(t) when the data generated using
the pulsing step current in (35) is subsampled every 10 (top), 20 (middle), and 50 (bottom) time points.
In each panel, the solid black line shows the true applied current, the solid red line shows the EnKF
estimated mean, and the dashed red lines show the estimated 12 standard deviation curves around

the mean.
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Figure 9. Resulting EnKF with parameter tracking estimates of I(t) when the data generated using
the sinusoidal current in (36) is subsampled every 10 (top), 20 (middle), and 50 (bottom) time points.
In each panel, the solid black line shows the true applied current, the solid red line shows the EnKF
estimated mean, and the dashed red lines show the estimated +2 standard deviation curves around

the mean.
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5. Discussion

The aim of this work was to utilize the EnKF with parameter tracking in estimating the
time-varying applied current parameter in the Hodgkin-Huxley model. In particular, the parameter
tracking algorithm was analyzed in estimating four different deterministic applied currents using
synthetically-generated voltage data. We first verified that the algorithm was able to successfully
track the underlying applied current, along with the unobserved model states, for each of the four test
cases. In addition to tracking the applied current I(t), baseline results show that the filter is able to
accurately estimate the unobserved states n(t), m(t), and h(t) from the generated voltage data. Further
numerical experiments were conducted to analyze how the parameter tracking estimates of the applied
current parameter are affected under different implementation conditions, namely, when changing the
standard deviation of the parameter drift term in (32) and when the algorithm is provided increasingly
less voltage data.

Overall, using the augmented EnKF with parameter tracking as described in Section 3, we were
able to well track the underlying applied current functions in each of the four cases considered,
establishing the baseline results shown in Figures 3-6. In each case, the EnKF mean well approximates
the true underlying applied current, in cases where the current is constant, a single pulse, multiple
pulses, and a sinusoidal function, as well as the corresponding model states. Uncertainty bounds
around the EnKF estimates, as reflected in the estimated +2 standard deviation curves around the
mean, in each case well contain the true applied current and associated model states, with less
uncertainty around the measured voltage than the unobserved gating variables. From the baseline
results, we were able to further explore the effects of two important aspects of the parameter tracking
implementation: the choice of the standard deviation of the parameter drift term in (32), and the
availability of time series voltage data.

Numerical experiments showed that using different values for o results in drastically different
levels of accuracy and confidence in the parameter tracking estimates for the applied current. As shown
in Figure 7, when using oz = 10 for the parameter drift standard deviation, the resulting EnKF mean
estimate is able to well track the true current; however, the resulting confidence in the estimate is low,
as reflected in the wide range between the estimated +2 standard deviation curves. Oppositely, when
using 0z = 0.1, the parameter tracking estimate diverges from the true solution, returning an estimate
of the applied current parameter that is significantly inaccurate despite having high confidence in the
estimate, as reflected in the tight uncertainty bounds. The results in Figure 7 suggest that, for the data
considered, oz = 0.5 is the best choice for the parameter drift standard deviation out of the values
tested for this problem, with the corresponding applied current estimate accurately tracking the true
solution with less uncertainty reflected in the resulting £2 standard deviation curves around the EnKF
mean than for larger oz values.

Further numerical tests demonstrate how the accuracy of the parameter tracking estimate is
affected when the frequency of available time series voltage data is decreased, resulting in fewer
data points being used as updating information in the filter. The results in Figures 8 and 9 show
that as less data is made available via subsampling, the parameter tracking algorithm has increasing
difficulty in estimating the true underlying applied current function, losing structural features such
as the step onset of the pulsing step current and the periodicity of the sinusoidal current. In this
work, the generated data was subsampled at equidistance time points, resulting in less frequent but
equispaced voltage observations; future work may consider the effects of measurement times as well
as frequency on the resulting time-varying applied current estimates in order to further explore the
importance of data availability in obtaining accurate time-varying parameter estimates.

Additional numerical experiments contained in Appendix A demonstrate the capability of the
EnKF with parameter tracking in estimating constant currents of increasing amplitude, as well
as the capability of the algorithm in distinguishing a higher-amplitude constant current from a
time-varying sinusoidal current with similar multiple-spiking voltage data. The results in Figure A1
show that the parameter tracking algorithm can well capture the behavior of the applied current
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for increasing magnitude using a relatively small choice of parameter drift standard deviation og.
However, the results in Figure A3 further demonstrate the importance of choosing an appropriate
value for oz in the parameter tracking algorithm, as this choice also has a significant impact on the
filter’s ability to distinguish between a constant and time-varying current.

While the focus of this work is on estimating different deterministic forms of the time-varying
applied current parameter, in future work we aim to estimate stochastic forms of the current, as well
as estimating applied currents relating to networks of neurons. In addition to the applied current,
we are also interested in applying parameter tracking methodology to estimate the a(V) and B(V)
rate functions as additional unknown parameters that vary with voltage, which would be particularly
useful in applications of the Hodgkin-Huxley model where these rate functions do not necessarily
share the same parameterized forms as in (8)—(11) and (15)—(16).

Future work also includes comparing our results for the Hodgkin-Huxley model with results
using other single neuron models, such as the FitzHugh-Nagumo and Hindmarsh-Rose models [29-31].
We further aim to apply our results to biomedical applications utilizing Hodgkin-Huxley dynamics
to model various neurodegenerative diseases affecting the function of neurons and ionic channels,
such as Alzheimer’s disease and amyotrophic lateral sclerosis [32-34]. The methodology used in this
work can be employed in developing patient-specific models for personalized medicine applications,
with the potential of identifying possible differences in time-varying input stimuli between healthy
and disease states.

6. Summary and Conclusions

The classical Hodgkin-Huxley model is widely employed in simulating the electrophysiological
dynamics of a single neuron. While voltage measurements are commonly obtainable in experimental
settings, information regarding the synaptic input stimuli may be unavailable or difficult to measure.
In this work, we consider the inverse problem of estimating the applied current given voltage
data. In particular, we utilize ensemble Kalman filtering with parameter tracking to estimate the
Hodgkin-Huxley model states and time-varying applied current parameter of different deterministic
functional forms given synthetically-generated measurements of voltage. Our results demonstrate the
importance of choosing an appropriate parameter drift standard deviation in the parameter tracking
algorithm, as well as the importance of having frequent time series voltage measurements, in estimating
the underlying time-varying applied current well.
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Appendix A. Additional Numerical Experiments

Asnoted in the introduction, applying a constant current of low-amplitude in the Hodgkin-Huxley
model produces in a single voltage spike. However, it is possible to obtain multiple voltage spikes
by increasing the amplitude of the constant applied current. Here we consider the efficiency of the
EnKF with parameter tracking in estimating constant applied currents of increasing amplitude, where
it may become more difficult in distinguishing between a higher-amplitude constant and time-varying
currents with nonlinear deterministic form (e.g., sinusoidal current).

Appendix A.1. Estimating Constant Currents of Increasing Amplitude

We test the capability of the EnKF with parameter tracking in estimating constant applied currents
of increasing amplitude (i.e., growing larger in magnitude) using synthetic voltage data generated
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using the same procedure as in Section 4.1. Data corresponds to the following three applied currents:
I(t) = 0 mA/cm?, which produces a single voltage spike; I(t) = —5 mA/cm?, which produces a
single voltage spike with small oscillations after; and () = —10 mA/cm?, which produces fourteen
voltage spikes over the time interval [0, 200] msec.

Figure A1 shows the resulting voltage and applied current estimates in each case, estimated
using parameter tracking with N = 100 ensemble members and parameter drift standard deviation
0z = 0.05. Initial ensembles for the model states and applied current parameter were drawn from
uniform prior distributions, with Ig‘ 0™ U(—15,10) for each p = 1,2,...,N. In each case, the EnKF
mean well tracks the true voltage and underlying applied current with small uncertainty bounds,
due in part to the relatively small choice of 0z used in these experiments. Use of a small standard
deviation for the parameter drift is possible in the constant parameter case, because of the lack of
variation in the parameter value over time. While not shown, note that the filter also well tracks the
unobserved gating variables n(t), m(t), and h(t) in each case.
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Figure Al. Resulting EnKF with parameter tracking estimates of the voltage V() (left) and applied
current I(t) (right) from the data generated using constant currents of increasing amplitude. From top
to bottom: I(t) = 0 mA/cm?; I(t) = =5 mA/cm?; and I(t) = —10 mA/cm?. In each panel, the EnKF
estimated mean is shown in solid red while the true solution is shown in solid black. The dashed red
lines show the estimated +2 standard deviation curves around the mean.
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Appendix A.2. Estimating Constant vs. Sinusoidal Current

Applying a higher-amplitude constant current and a time-varying sinusoidal current both
result in multiple-spike voltage data. We test the capability of the EnKF with parameter tracking
in distinguishing between these two applied currents in the resulting parameter estimates given
the synthetic voltage data shown in Figure A2. Data were generated using the same procedure as
in Section 4.1. Note that using a constant current where I(t) = —10 mA/cm? and a sinusoidal
current where I(t) = —10sin(0.2t) — 10 mA/cm? both results in similar, multiple-spike voltage data,
with fourteen spikes over [0,200] msec in the former case and thirteen in the latter.

Figure A3 shows the resulting applied current estimates in each case, estimated using parameter
tracking with N = 100 ensemble members and increasing parameter drift standard deviations
(from top to bottom) oz = 0.05, 0.5, 1, and 5. Initial ensembles for the model states and applied
current parameter were drawn from uniform prior distributions, with Ig|0 ~ U(—15,10) for each
p=1,2,...,N. While not shown, the filter well tracks the voltage and unobserved gating variables
n(t), m(t), and h(t) in each case. However, while the EnKF mean is able to well track the constant
current for each of the oz values considered, the parameter tracking algorithm is unable to track the
sinusoidal current if 0z is too small. In particular, note that using oz = 0.05 results in the fllter
approximating the sinusoidal current as a constant, converging to about I(t) = —10 mA/cm?.
Choosing a larger standard deviation in the parameter drift allows the algorithm more flexibility
in tracking the true sinusoidal shape of the underlying current, with the EnKF mean well tracking
the true current when oz = 5 here. In both the constant and sinusoidal cases, note that an increase
in 0z corresponds directly to an increase in the width of the uncertainty bounds around the EnKF
mean estimate.
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Figure A2. Synthetic measurements of voltage V (¢) generated using a constant (top) and sinusoidal
(bottom) function for the applied current I(t). In each row, the plot on the left depicts the noisy voltage
measurements (shown in negative mV) generated using the applied current on the right. From top
to bottom, the plots show data generated using the following current functions: a constant current
I(t) = —10 mA/cm?, and the sinusoidal function I(t) = —10sin(0.2f) — 10 mA/cm?.
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Figure A3. Resulting EnKF with parameter tracking estimates of the applied current I(¢) from data
generated using a constant current (left) and sinusoidal current (right) shown in Figure A2 and
increasing parameter drift standard deviations (from top to bottom) oz =0.05,05,1, and 5. In each
panel, the solid black line shows the true applied current, the solid red line shows the EnKF estimated
mean, and the dashed red lines show the estimated 42 standard deviation curves around the mean.
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