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Abstract: In this paper, a nozzle flow model was used to design an injector nozzle and obtain initial
spray conditions for the dimethyl ether (DME) common rail-injection system. In order to deliver the
same amount of energy as that provided by diesel at a low injection pressure of 50 MPa, the injector
for DME needs nozzle holes with larger diameters and a higher SAC volume for the same injection
duration. In addition, the needle lift and needle seat diameter should be increased to maintain
a minimum flow area ratio. Although the vapour pressure and maximum injection pressure of DME
are lower than those of diesel, the nozzle in a DME system showed higher discharge coefficients
and effective nozzle exit diameters for the same injection duration owing to low kinematic viscosity.
However, because the maximum injection pressure in DME is lower than that with diesel, and the
length of the cavitation region is narrower.
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1. Introduction

Dimethyl ether (DME) is a type of ether compound that combines one oxygen molecule and two
methyl radicals. It is obtained by dehydration of methanol at low temperatures. DME is characterized
by a relatively high cetane number and can be used as an alternative fuel for compression ignition
engines. In addition, DME produces very little particulate matter because it has a high oxygen content
and the absence of C-C (carbon to carbon) bonds in the molecular structure [1,2]. It started receiving
attention as an alternative fuel for diesel in the 1990s as it has the potential to utilize the existing LPG
(liquefied petroleum gas) transport infrastructure owing to similar properties [3–6].

A number of studies have been conducted to replace diesel fuel with DME; they have aimed
to optimize engine performance and offer applications in vehicles. In previous investigations [7–9],
it has been demonstrated that NOx (nitrogen oxide) and PM (particulate matter) emissions and
combustion noise from compression ignition engines were reduced by adopting DME compared to
diesel. Yang et al. [7] investigated the effects of injection pressure and injection rate on DME and
diesel engines performance and emission characteristics. Exhaust gas characteristics were improved
by varying the pilot injection period and needle lift. In addition, more research is being done on
improving and controlling the fuel injection system to overcome the problem of differences in fuel
properties and low heating value of the fuel itself. The viscosity of DME is lower than that of diesel fuel,
causing leakage from the fuel supply system. Its lower lubricity characteristics can cause intensified
surface wear of moving parts within the fuel injection system. Therefore, the maximum injection
pressure of DME was found to be limited and lower than that of diesel [5].

When DME is applied to conventional diesel common rail injectors, the speed of the needle lift
is slower because DME has a relatively higher compressibility. Due to the large loss of pressure in
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the nozzle seat, the speed at the exit of the nozzle hole is reduced. There is also a high possibility
of pulsation between the fuel pump and the injector [6]. In order to compensate for the amount of
heat generated, nozzle hole diameters are basically larger with the conventional diesel common rail
injectors. DME (QLHV) was found to have a lower heating value of 27.6 (MJ/kg), 65% of that of the
diesel; a larger amount of DME is needed to supply the combustion chamber and obtain the equivalent
engine power. In addition, the minimum pass-through flow area of the needle seat should also be
considered, since nozzle hole size increase alone does not provide the desired flow rate [10].

In this study, the nozzle for the DME common rail injector with Pmax = 50 (MPa) was designed
as such to achieve the same power output as conventional diesel engines with Pmax = 1600 (MPa)
using a zero-dimensional nozzle flow model for the same injection duration. The flow condition of the
nozzle exit affects the vaporization of fuel, directly related to the combustion efficiency and the engine
power. The peak injection rate, the discharge coefficient, and the effective diameter of the nozzle exit
were analyzed for injection pressure and nozzle geometry for diesel and DME. The peak injection rate
based on the Bosch tube method was measured to validate the nozzle flow model. The new injector
nozzle with ∅ = 0.245 (mm), h = 0.15 (mm) and Dst = 1.88 (mm) for DME injection pressure of
50 (MPa) can obtain the same engine power as that of the diesel common rail system.

2. Methodology

2.1. Details of Injector

Figure 1 shows a schematic diagram and SEM (Scanning Electron Microscope) image of an injector
nozzle. The injector (solenoid driven, maximum fuel injection pressure of 160 MPa) to be modified
in this study has a Mini-SAC nozzle (conical sac hole with conical tip). The base injector nozzle has
∅ = 0.14 (mm) and 8 holes, and the injection angle, which is the angle between the injected fuel spray,
is 152◦ (see Figure 1a). The diameter of the nozzle hole along the nozzle length is constant. In Figure 1a,
the fuel in the injector is sealed through line contact of the inner nozzle surface and needle seat, and the
minimum pass-through flow area of the seat (Ath) is the cross-sectional area, which has been calculated
as the area corresponding to the normal distance from the needle seat during needle behaviour at the
line contact point. The nozzle flow model is based on the idea that the flow in the nozzle is modelled
as a quasi-steady, zero-dimensional flow, and the flow can be divided and analysed for cavitating
flow and non-cavitating flow, as shown in Figure 1b [11,12]. In general, the nozzle flow model is
useful for determining boundary conditions for the spray analysis and designing the injection flow
rate in the nozzle; it is possible to predict these conditions based on experimental data. In this study,
the proposed nozzle flow model was used to design the nozzle concept for different flow regimes and
nozzle geometries without experimental data. However, more accurate injection rate characteristics
require full modeling and analysis, including flow passages, hydraulic valves, and actuator in the
injector body. Specifications for the nozzle and needle and material properties are summarized in
Tables 1 and 2, respectively.

Table 1. Specifications of the base injector nozzle.

Item Unit Value

Number of hole (Nh) - 8
Diameter of hole (D) mm 0.124
Length of hole (Ln) mm 0.756

Diameter of SAC (Ds) mm 0.44
Diameter of needle seat (Dst) mm 0.94

Seat angle (θ) ◦ 60
Injection angle (α) ◦ 152



Appl. Sci. 2020, 10, 549 3 of 11

Table 2. Material properties of the diesel and DME at T = 20
◦

[5].

Item Unit Diesel DME

Density (ρl) kg/m3 831 667
Kinematic viscosity (ν) cSt 3 0.1

Lower heating value (QLHV) MJ/kg 42.5 27.6
Vapour pressure (pvap) Pa 10,000 530,000
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Figure 1. Schematic diagram and SEM image of the injector nozzle. (a) Nozzle with needle; (b) Nozzle
flow model [11,12]; (c) Scanning Electron Microscope (SEM) image of the nozzle hole.

2.2. Design of Injector Nozzle Hole

The nozzle exit flow affects the spray and vaporization of fuel, directly related to engine combustion.
The nozzle flow model in Figure 1b is a zero-dimensional model that calculates pressure and velocity at
each points of the nozzle flow path. Using the nozzle flow model, the effective mean velocity (Umean),
effective diameter (De f f ), and discharge coefficient (Cd) can be obtained from the geometric shape of
the nozzle and the injected fuel quantity from the experiment [10,11]. In this study, it was modified
to predict the discharge coefficient by using inlet injection pressure, instead of the injection quantity
obtained through experiments, and nozzle geometry for manufacturing DME injector nozzles.

Figure 2 shows the simplified injection pressure characteristics at the nozzle inlet. In the nozzle flow
model, the inlet injection pressure is simply assumed as a sine function considering needle movement.

Pinj = P1 = P2 + C× sin(2πt/T) (1)

where, Pinj is the injection pressure (Pa), P2 is the pressure of 5× 106 (Pa) in the combustion chamber,
C is the desired maximum pressure (Pa) to the combustion chamber pressure, and T/2 is the injection
duration of 1 (ms). Thus, at time of t = 0.5 (mm), it becomes peak injection pressure of Pinj = P2 + C.
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If the injection pressure is determined at the nozzle inlet from Equation (1), the initial discharge
coefficient is first assumed. Then, the discharge coefficient can be obtained by calculating the equation
related to the average flow rate, repeatedly.

Umean = Cd

√√
2
(
Pinj − P2

)
ρl

(2)

Cd =
1√

1 + f + Ln
D + Ki

(3)

where, Umean is the effective mean velocity (m/s), Cd is the discharge coefficient (-) and ρl is the density
(kg/m3) of the fuel as diesel or DME. In addition, f is friction loss coefficient (-), Ln is the length of the
nozzle (mm), D is the nozzle diameter (mm), and Ki is the entrance loss coefficient (-).

The entrance loss coefficient (Ki) is the function of R/D, the ratio of the inlet radius (R) to the
nozzle hole diameter (D). The friction loss coefficient ( f ) in Equation (3) can be determined by [11]:

f = max(
64
Re

, 0.316Re−0.25) (4)

where, Re = νUmeanD is Reynolds number in the nozzle hole.
In order to evaluate whether the flow is cavitating and or not in the nozzle, the vena contracta

pressure (Pvena) at point c inside the nozzle in Figure 1b can be obtained from Equation (5) to
Equation (7):

Cc =
1

√
2.6787− 11.4 R/D

(5)

Uvena =
Uvena

Cc
(6)

Pvena = Pinj −
ρl

2
U2

vena (7)

where, Cc is the vena contracta coefficient (-), Pvena is the pressure (Pa), and Uvena is the vena contracta
velocity (m/s) at point c, as shown in Figure 1b.

As the vena contra velocity increases with higher injection pressure, the vena contracta pressure
decreases. If pressure (Pvena) at this point is less than the vapour pressure (Pvap) of the fuel,
cavitation occurs inside the nozzle. The injection pressure and discharge coefficient (Cd) can be
re-calculated as:

Pinj = Pvap +
ρl

2
U2

vena (8)

Cd = Cc·

√
Pinj − Pvap

Pinj − P2
(9)

where, Pvap is the vapour pressure of the fuels (Pa) and P2 is the pressure in the combustion chamber (Pa).
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Once the flow characteristics inside the nozzle are determined, the effective diameter, the effective
velocity, and total injection rate of the nozzle are calculated by:

Ue f f = Uvena −
Pinj − Pvap

ρlUmean
(10)

Ae f f = Ahole
Umean

Ue f f
(11)

De f f =

√
4Ae f f

π
(12)

.
mt = ρl·Ue f f ·Ae f f ·Nh (13)

where, Ue f f is the effective velocity (m/s), Ae f f is the effective area in the nozzle exit (mm2), De f f is the
effective diameter in the nozzle exit (mm), and

.
mt is total injection rate (g/s).

In this study, the operating temperatures of both fuels are assumed to be constant at 20 ◦C.
Figure 3 shows the flow chart of the injector nozzle design based on the nozzle flow model in

this work.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 11 

𝐴𝑒𝑓𝑓 = 𝐴ℎ𝑜𝑙𝑒

𝑈𝑚𝑒𝑎𝑛

𝑈𝑒𝑓𝑓

 (11) 

𝐷𝑒𝑓𝑓 = √
4𝐴𝑒𝑓𝑓

𝜋
 (12) 

𝑚̇𝑡 = 𝜌𝑙 ∙ 𝑈𝑒𝑓𝑓 ∙ 𝐴𝑒𝑓𝑓 ∙ 𝑁ℎ (13) 

where, 𝑈𝑒𝑓𝑓  is the effective velocity (m/s), 𝐴𝑒𝑓𝑓 is the effective area in the nozzle exit (mm2), 𝐷𝑒𝑓𝑓  is 

the effective diameter in the nozzle exit (mm), and 𝑚̇𝑡 is total injection rate (g/s). 

In this study, the operating temperatures of both fuels are assumed to be constant at 20 °C. 

Figure 3 shows the flow chart of the injector nozzle design based on the nozzle flow model in 

this work. 

Start

geometry & properties

inlet condition Pinj

 Pvena>Pvar

calculation Cd, Umean

calculation Ueff, Aeff

calculation Pvena

calculation Pinj, Cd

t+dt

End

t=T/2

Yes

No

Yes

No

Laminar or 
turbulent flow

cavitating flow

calculation Ath

 

Figure 3. Flow chart of the injector nozzle design. 

2.3. Experiment 

The injection rate was measured to validate the nozzle flow model. The injection rate indicates 

the fuel flow rate over time during the injection period. Therefore, the peak injection rate (𝑚̇𝑚𝑎𝑥) 

represents the highest injection rate during that injection period. The Bosch tube method was applied 

for injection rate measurement [13]. It calculates the injection rate by measuring the pressure wave 

inside the tube when fuel is injected into the tube. Figure 4 shows the experimental setup for injection 

rate measurement in this study. The fuel-injected from the nozzle flows into the tube through the 

injector adaptor, as shown in Figure 4b. The pressure transducer is installed near the injector nozzle 

tip for pressure wave measurement. Figure 5 shows the control volume moving at speed (𝑐) with 

sound waves when the fuel is injected and flows at speed 𝑢 inside the tube with constant cross-

section (𝐴 ). Applying continuity and momentum equations to this control volume offers the 

following expressions: 

𝜌𝑙(𝑐 − 𝑢)𝐴 − ( 𝜌𝑙 + 𝑑𝜌𝑙)(𝑐 − 𝑢 − 𝑑𝑢) = 0 (14) 

(𝑐 − 𝑢)𝜌𝑙(𝑐 − 𝑢)𝐴 − (𝑐 − 𝑢 − 𝑑𝑢)(𝜌𝑙 + 𝑑𝜌𝑙)(𝑐 − 𝑢 − 𝑑𝑢) = 𝐴𝑑𝑝 (15) 

Figure 3. Flow chart of the injector nozzle design.

2.3. Experiment

The injection rate was measured to validate the nozzle flow model. The injection rate indicates
the fuel flow rate over time during the injection period. Therefore, the peak injection rate (

.
mmax)

represents the highest injection rate during that injection period. The Bosch tube method was applied
for injection rate measurement [13]. It calculates the injection rate by measuring the pressure wave
inside the tube when fuel is injected into the tube. Figure 4 shows the experimental setup for injection
rate measurement in this study. The fuel-injected from the nozzle flows into the tube through the
injector adaptor, as shown in Figure 4b. The pressure transducer is installed near the injector nozzle tip
for pressure wave measurement. Figure 5 shows the control volume moving at speed (c) with sound
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waves when the fuel is injected and flows at speed u inside the tube with constant cross-section (A).
Applying continuity and momentum equations to this control volume offers the following expressions:

ρl(c− u)A− ( ρl + dρl)(c− u− du) = 0 (14)

(c− u)ρl(c− u)A− (c− u− du)(ρl + dρl)(c− u− du) = Adp (15)
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From Equations (14) and (15), Equation (16) can be derived:

dp = cρldu (16)

The injection rate (Q) can be obtained from pressure wave (p) by integration of Equation (16) and
then substituting it for the injection rate equation:

dQ
dt

=
A
ρlc

p (17)

The injection rate was calculated using the average value of 100 cycles of pressure wave in each
test condition. The pressure data for 100 cycles was recorded and averaged with an oscilloscope.

3. Results and Discussion

3.1. Nozzle Hole Diameter and Needle Lift

Figure 6 shows the peak injection rate (
.

mmax) for injection pressure of the diesel and DME systems.
It is based on solenoid injector with 0.14 (mm) nozzle diameter and eight holes in a common rail
system. The design requirement for the injection pressure of DME was set to be Pmax = 40 (MPa),
while that of diesel was Pmax = 160 (MPa). DME gasifies immediately during injection, due to its low
boiling point, even though it is injected as a liquid. Therefore, the high fuel injection pressures, such as
Pmax = 50–160 (MPa) used in modern diesel injection systems are not required for DME [5]. The peak
injection rates were experimentally measured by the Bosch tube method and numerically predicted by
the zero-dimensional nozzle flow model. In the experiment, it was difficult to measure nozzle injection
pressure in the nozzle inlet, as shown in Figure 1c; the pressure in the common rail system is regarded
as the inlet injection pressure. In the experiment, peak injection rate was calculated using the average
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value of 100 cycles from an injection rate at time of 0.5 (ms). The trend predictions for peak injection
rate are in good agreement with the experimental results. However, the peak injection rate using
the nozzle flow model was found to be overpredicted, compared to those of the experiment results.
There are certain assumptions in the nozzle flow model. Because the fuel in the common rail system
enters the nozzle inlet through the orifices in the injector, a pressure drop occurs through the orifices.
Therefore, the nozzle inlet pressure, which determines the peak injection rate, is low in the experiment.
In the nozzle flow model, the inlet injection pressure is assumed as a sine function, as shown in Figure 2.
In general, the peak injection rate occurs after T/2. In addition, the nozzle flow model presented in
this work did not consider the effect of the flow reduction due to the surface roughness inside the
nozzle. Thus, the peak injection rates of the nozzle flow model are higher than those of the experiment.
In Figure 6, the peak injection rate is 0.0559 (g/s) for the required maximum pressure in the diesel
common rail system, Pmax = 160 (MPa). The peak injection rate is 0.0278 (g/s) with the designed
maximum pressure of 50 (MPa) in the DME common rail system, which is 49.7% of the diesel system.
In addition, since the lower heating value of DME (QLHV) is 27.6 (MJ/kg) and 65% of diesel, more DME
is required in the combustion chamber to obtain the equivalent engine power. To increase the injection
rate, injection duration should be expanded. However, it is necessary to secure a peak injection rate
since there are limits to increasing injection duration. Therefore, the injector nozzle design should be
changed to compensate for insufficient DME heating value when applying DME common rail system
of Pmax = 50 (MPa) to a conventional diesel common rail system of Pmax = 160 (MPa).
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Figure 6. Peak injection rate according to injection pressure.

Figure 7 shows the peak injection rate (
.

m) according to nozzle hole diameter for DME injection
pressure of 50 (MPa). To ensure sufficient injection rate in the nozzle, an increase in nozzle diameter is
required, as shown in Figure 6. As the diameter of the nozzle increases by 0.2 (mm), the peak injection
rate becomes 0.0559 (g/s), which is the same amount of that of 160 (MPa). When the diameter of the
nozzle is 0.245 (mm), the peak injection rate is 0.086 (g/s). It is capable of obtaining equivalent engine
power considering the lower heating value, as shown in Figure 7. However, as the diameter of the hole
increases from 0.14 (mm) to 0.245 (mm), the distance between the holes decreases from 1.64 (mm) to
0.8 (mm). The minimum distance between holes (DH−H) has a significant effect on the reliability of the
nozzle operating at high pressure; thus, it is recommended to maintain a certain distance.
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Figure 7. Peak injection rate according to nozzle hole diameter for the base injector.

Figure 8 shows the flow area of the seat (Ath) for the needle lift. It is difficult to obtain the desired
amount of DME if the design for the needle seat is not changed, even when the nozzle hole diameter is
increased. The flow area of the seat, as shown in Figure 1a, is sufficient to compensate for the overall
area of the nozzle due to increase of the nozzle diameter. Meanwhile, there are design limitations
to increasing the needle lift in order to obtain a sufficient injection rate of DME. If the needle lift is
only increased from 0.1 (mm) to 0.2 (mm), the flow area of the seat will be approximately 0.31 (mm2),
which is about 2.1 times larger than that of the base model with 0.1 (mm). The diameter of the needle
increased by 1.88 (mm) in order to obtain a larger flow area of the seat. As a result, the flow area of
the seat with h = 0.15 (mm) and Dst = 1.88 (mm) was modified to increase by more than four times,
compared to the base model, to secure a sufficient flow area.
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Figure 8. Area ratio according to needle lift.

3.2. Discharge Coefficient and Effective Nozzle Exit Diameter

Figure 9 shows discharge coefficient (Cd) during the injection period with maximum injection
pressure of 160 (MPa) for diesel and 50 (MPa) for DME. Typically, the injection rate increases as
injection pressure rises. Due to the reduction of friction in the nozzle, the discharge coefficient gradually
increases. However, when the pressure at the vena contracta is lower than the vapour pressure of fuels,
the cavitation occurs. It reduces the discharge coefficient during injection. Since the injection pressure
increases, the cavitation appears for both diesel and DME. The maximum discharge coefficient of DME
is Cd = 0.91633 and higher than that of diesel. Because the kinematic viscosity (ν) of DME is lower than
that of diesel, the flow efficiency of DME in the nozzle is higher. The maximum discharge coefficients
also increase according to increase of the diameter of the nozzle hole for DME fuels. As shown
in Table 2, the vapour pressure of DME is 550 (kPa), higher than that of diesel, Pvap = 10 (kPa).
Thus, cavitation in DME starts to occur at a lower inlet injection pressure, compared to that of diesel.
However, because the maximum injection pressure in DME is lower than that in diesel, the period of
cavitation in DME is narrower. Meanwhile, the cavitation period slightly expands due to increase of
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the nozzle diameter for DME, as shown in Figure 9. This is because the effect of the increased flow rate
in cavitation is greater than suppression of the cavitation due to the increased diameter of the nozzle.
Cavitation conditions such as inlet injection pressure and period of cavitation region for diesel and
DME are summarized in Table 3.
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Figure 9. Discharge coefficient during injection.

Table 3. Prediction of cavitation conditions for diesel and DME.

Item Inlet Injection Pressure for
Cavitation (MPa)

Period of Cavitation Region
(ms)

Diesel (Pmax = 160 MPa, ∅ =
0.14 mm 8 hole) 30.21 0.896

DME (Pmax = 50 MPa, ∅ =
0.14 mm 8 hole) 19.98 0.784

DME (Pmax = 50 MPa, ∅ =
0.20 mm 8 hole) 18.91 0.800

DME (Pmax = 50 MPa, ∅ =
0.245 mm 8 hole) 18.37 0.808

Figure 10 shows the ratio of the effective nozzle exit diameter (De f f ) under injection period with
maximum injection pressure of 160 (MPa) for diesel and 50 (MPa) for DME. The effective nozzle exit
diameter is an important design parameter that determines the initial SMD (sauter mean diameter) in
combustion analysis with the diameter of the fuel being injected through the nozzle [5]. The ratio of
the effective nozzle exit diameter is initially kept at 1.0 and then gradually decreased when cavitation
occurred inside the nozzle. The ratio of the effective nozzle exit diameter is 0.905 for diesel, compared to
0.920 in DME at maximum injection pressure condition of t = 0.5 (ms). Since the maximum injection
pressure of diesel is higher than that of DME, the ratio of the effective nozzle exit diameter reduces for
the wider range of injection duration. In the case of DMEs, as the diameter of the nozzle increases,
the point of reduction in the ratio of the effective nozzle exit diameter occurs slightly earlier, as is
shown in Figure 9.
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4. Conclusions

A study using the zero-dimensional nozzle flow model was conducted to design an injector nozzle
for the application of DME to conventional diesel common rail system. The injector nozzle design
should be changed to compensate for insufficient DME heating value when applying the DME common
rail system, Pmax = 50 (MPa), to the conventional diesel common rail system, Pmax = 160 (MPa).
The nozzle flow model is such that the flow in the nozzle is modelled as a quasi-steady, zero-dimensional
flow, which can be divided and analysed for cavitating flow and non-cavitating flow. The nozzle
flow model determines boundary conditions for combustion analysis. A new injector nozzle for
DME injection pressure was designed to have the same engine power as the diesel common rail
system. In addition, the discharge coefficient and effective diameter of the nozzle exit was analyzed for
injection pressure and nozzle geometry of the diesel and DME systems by using the nozzle flow model.
Changing fuel from diesel to DME and reducing the injection pressure from 160 (MPa) to 50 (MPa)
decreased injection quantity by approximately 49.7%. Therefore, increasing nozzle hole diameter
by 0.2 (mm) provides the equivalent mass flow rate as diesel and, when increased by 0.245 (mm),
it offers equivalent heating value. In addition, the SAC inner diameter and needle lift was changed by
1.88 (mm) and 0.15 (mm) to ensure overall area of the nozzle. Despite the low injection pressure of
DME, the discharge coefficient was found to be higher than that of diesel due to the lower kinematic
viscosity and narrowing of period of cavitation region in DME, compared to that of diesel for the
duration of injection. The ratio of the effective nozzle exit diameter was initially kept at 1.0 and then
gradually decreased when cavitation occurs inside the nozzle.
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Nomenclature

A Cross-section area in Bosch tube method (mm2)
Ae f f Effective area in the nozzle exit (mm2)
Ahole Nozzle hole area (mm2)
α Injection angle (◦)
c Vena contracta position (-), sound wave speed (m/s)
C Desired maximum pressure (Pa)
Cc Contraction coefficient (-)
Cd Discharge coefficient (-)
D Nozzle hole diameter (mm)
De f f Effective diameter (mm)
DH−H Hole to hole distance (mm)
Ds Diameter of SAC (mm)
Dst Diameter of needle seat (mm)
f Friction coefficient (-)
h Needle lift (mm)
Ki Entrance loss coefficient (-)
Ln Length of nozzle hole (mm)
.

mmax Peak injection rate (g/s)
.

mt Total injection rate (g/s)
Nh Number of hole (-)
Pinj Inlet injection pressure (Pa) (= P1)



Appl. Sci. 2020, 10, 549 11 of 11

P2 Outlet pressure (Pa)
Pmax Injection pressure at peak injection rate (Pa)
pvap Vapour pressure (Pa)
Pvena Vena contracta pressure (Pa)
Q Injection rate (mm3)
QLHV Lower heating value of fuel (MJ/kg)
R Inlet radius of nozzle (mm)
Re Reynolds number (mm) (= νUmeanD)
ρl Density of fuel (kg/m3)
u Control volume speed in Bosch tube method (m/s)
Uvena Vena contracta velocity (m/s)
Ue f f Effective velocity (m/s)
θ Seat angle (◦)
T/2 Injection duration (ms) (=1 ms)
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