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Abstract: With the development of technology, especially technologies related to artificial
intelligence (Al), the fine-dust data acquired by various personal monitoring devices is of great value
as training data for predicting future fine-dust concentrations and innovatively alerting people of
potential danger. However, most of the fine-dust data obtained from those devices include either
missing or abnormal data caused by various factors such as sensor malfunction, transmission errors,
or storage errors. This paper presents methods to interpolate the missing data and detect anomalies
in PM; 5 time-series data. We validated the performance of our method by comparing ours to
well-known existing methods using our personal PM, 5 monitoring data. Our results showed that the
proposed interpolation method achieves more than 25% improved results in root mean square error
(RMSE) than do most existing methods, and the proposed anomaly detection method achieves fairly
accurate results even for the case of the highly capricious fine-dust data. These proposed methods are
expected to contribute greatly to improving the reliability of data.
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1. Introduction

Korea has been experiencing severe environmental health problems caused by exposure to fine
dust [1]. Thus, many stakeholders, including government officials, are trying hard to find solutions for
the environmental issues. As part of these efforts, various artificial intelligence (Al)-based technologies
are drawing attention as a way to predict future exposure levels as well as to reduce real-time exposure
to PM; 5 in our daily life. PM data is closely related to personalized health-care service and preventive
medicine, which are research areas that have attracted much interest from many researchers today.
The personalized healthcare service prompted us to develop predictive analytics technology, which
requires the acquisition of data related to individual activity patterns [2,3]. Such data can be seen
as person-specific data that is different from the population-based data to be used for the existing
broadcasting-type environmental information service aimed at a large audience [2,4]. The pico-scale
data is usually collected from each individual sensor device [4]. Unfortunately, such data are more
likely to be incomplete than data collected from stationary sensors, because sensors attached to human
subjects are affected significantly by the person’s activity patterns, meteorological conditions, or the
malfunction of the installed device or sensor itself. These kinds of incomplete data can lead to the
provision of wrong services, because they may invoke wrong algorithmic decisions caused by the data.
Such incomplete data typically include missing or abnormal data. In order to provide high-quality
environmental information services, it is essential to conduct studies to deal with these two issues.

Much research has been done on the two issues mentioned above. Most of such research tends
to focus on detecting missing or anomalous data only as follows. Conventional techniques related
to missing data imputation in time-series data include methods based on machine learning, such
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as random forests [5], maximum likelihood estimation [6], expectation maximization [7], or nearest
neighbors [8]. Technologies belonging to anomalous data detection include prediction-based [9],
distance-based [10], probability-based [11], and linear models [11]. Researches dealing with both
technologies include [12,13] both using machine learning techniques. As we have seen, there are few
studies that simultaneously address these two problems.

Thus, in this study, we present our data-mining skills approach that deals with the two problems
of missing and abnormal data included in the PM, 5 data obtained from a personal portable sensor.
Especially, we demonstrate that our kernel regression-based interpolation method and abnormal data
detection method can be applied to our real personal PM, 5 measurement data. We attempt to extend a
well-known interpolation method incorporating a simple linear interpolation method to interpolate
the bursty PM; 5 data. The performance of the proposed method is provided in comparison to those of
existing interpolation methods. In addition, details on the method are presented in the algorithmic
method section of this paper.

2. Methods

2.1. Proposed Algorithm

In this paper, we proposed two algorithms: the kernel regression-based interpolation method and
the subsequent abnormal-data detection method. The algorithm presented in this paper was done in
the order shown in Figure 1. First, we chose the part of the total data that had no missing data and
estimated the bandwidth for the chosen data part. Here, the bandwidth was the value to use for the
kernel regression-based interpolation (KRBI) (dotted line in Figure 1), which will be explained in the
next subsection. Afterwards, we examined missing data for the entire dataset. If there was missing
data, we used linear interpolation (LI) to interpolate the missing data. Afterwards, the interpolation
was done again by applying the KRBI algorithm [14]. In this case, the optimal bandwidth value, which
was previously obtained, was used. If there were no missing data, abnormal-data detection began for
the entire dataset.

Search data part without
missing data

|

Estimate optimal bandwidth f===========-===me— e oo

Check
missing data

Interpolate missing data
with Linear interpolation

l

Enhance Interpolation with
Kernel-Regression

|

Detect Anomalies

Figure 1. Flowchart of the proposed interpolation and anomaly detection.

2.2. Optimal Bandwidth Selection Based on Leave One Out Cross-Validation (LOOCYV)

In order to calculate the appropriate bandwidth, we took all of the data and split it into training
and verification data. As the bandwidth was changed from the small value to the large value,
the verification data value was predicted using the training data. Finally, we calculated the estimated
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error in terms of the actual verification data value. Among the bandwidth values that contributed
to the error calculation, we programmed our algorithm to take the bandwidth value that provided
the lowest error as an appropriate bandwidth for the data used. The corresponding pseudo-code is
available in [15]. The bandwidth selection process is explained in the experimental section.

2.3. Kernel Regression-Based Interpolation Using Linear Interpolation

The method proposed in this paper is based on the kernel regression [14], but it took the advantages
of the linear interpolation method [16]. The LI method can be used appropriately, especially when
the time-series trend is clear. For instance, when the time-series pattern appears to be rising up or
decreasing, the LI method can be applied for the interpolation of the corresponding data pattern more
appropriately. We used this property of the LI method in order to improve the performance of the
KRBI method. In other words, we used the LI method for the bursty missing data a priori and then
applied the KRBI method for the final interpolation of the missing data.

The kernel regression algorithm can be summarized as follows. First, we defined the time-series
data as (t;, y;) where t; and y; represented the time and measurement of data at time ¢;. Kernel regression
was to set the representative value 7 of y;s where p < i < g and the bandwidth & are definedash = p —gq.
In this case, the representative value § might be calculated as a weighted average value of W;y; where
the weight W; could be generated by following well-known statistical models such as Gaussian or
uniform distributions. The algorithm can be expressed mathematically as follows.

i1 Kh(%)yi

V=— = = Wi
T Ki( )
" K, XX
where the choice of weight W; = L(xf’xj) and Kj,(+) is a kernel chosen [14].
nop (1
j=1 h\ "h

In order to apply the KRBI method, a proper bandwidth calculation must be done. For this
purpose, we used a part of the data that had no missing data to estimate the proper bandwidth for the
data interpolation. A detailed description is provided in the next section.

2.4. Context-Aware Anomaly Detection

Once we finished the bandwidth selection for interpolation and optimal bandwidth, we developed
another algorithm for detecting anomalies in the time-series data. Many techniques have been presented
to detect anomalies using various techniques. In this paper, we defined anomalies as data that showed
significant changes in values within a very short time. For instance, if PM, 5 concentration, measured
every 10 seconds, showed significant drops or jumps during the 10-s period (for instance, observations
that fall below Q;-1.5IQR or above Q3+1.5IQR in the box-and-whisker plot), we considered the value
to be abnormal, because the amount of change in PM, 5 concentration is assumed to stay stable or
similar within a very short time. However, this rule was not an appropriate criterion for detecting
outliers, because too much data fell into this category, and it was hard to think that they were all
anomalies, given the data context. Thus, in this research, we defined data as anomalous when the
following conditions were met. In reality, the PM; 5 concentration does not change significantly in
most cases. This phenomenon is reflected in the detection of anomalies in our time-series data analysis.

di = |yi — yiz1| > th

In other words, if d; (difference of adjacent y;s) exceeds a certain threshold, th, then y; can be an
anomaly. Thresholds are chosen by visual inspection according to the characteristics of the PM data at
the moment. Details are available in the experimental section.
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3. Experimental Tests

3.1. Bootstrap Simulation on Real Dataset

In this section, we verified the effectiveness of the proposed interpolation method. In order to
verify its validity, we (1) randomly removed some of the actual data, (2) interpolated the removed data
based on our algorithm, and then (3) compared them with each other in terms of certain performance
criteria, including a comparison of applying results using other known methods. We executed our
experiments based on a bootstrapping test using the given data in three different scenarios. We assumed
that the arc shape of time-series data could be classified into three different patterns in general: up
slope, down slope, and flat. Based on this assumption, the validity of the method could be evaluated
only for data belonging to each shape pattern. We used the bootstrapping test on the chosen dataset
belonging to each shape pattern. Samples from each pattern section of the data were randomly selected
and then deleted on purpose. Next, we estimated the interpolating values for the deleted data and
compared the error rate between the real values and the estimated interpolation values. The time-series
data for these validation tasks are given in Section 3.3.2. Given our thorough examination of the data,
the data corresponding to the following time index were specifically chosen because they appeared to
match the three typical shape patterns and did not have missing values in the patterns: 3600 to 4600
for the up slope, 3250 to 3500 for the down slope, and 19,000 to 20,000 (Flat 1), 27,000 to 28,000 (Flat 2),
and 37,000 to 40,000 (Flat 3) for the flat pattern. Specifically, for the flat pattern case, we chose three
sections in order to examine any significant performance differences, because the duration of the flat
pattern section is relatively longer than the other part of the time-series data. In our bootstrapping test,
40, 60, 80, and 100 datapoints were randomly deleted to create missing data, and the interpolation
results on the deleted data were evaluated compared to those of the original data in terms of RMSE
(root mean squared error).

The performance of our proposed method was compared to those of the LOCF (last observation
carried forward), Agg (aggregate), and Spline methods [17]. The LOCF method takes the most recent
values prior to itself. The Agg method takes the mean of a few previous values. The Spline method
is a smoothing technique that comes with base R; it was used for the interpolation of missing data.
The results of comparing these four methods are given in Table 1, which shows that our proposed
method had lower RMSEs than those of the existing three methods, except for the flat pattern, for which
the RMSEs of all four methods were not statistically different. R programming language was used to
analyze the performance of the interpolation methods, and R packages stats, zoo, and Metrics were
used for the interpolation and calculation of error rates [18]. The simulation was performed on a
Microsoft Windows 10 computer with Intel® Core™ i7-6500U CPU at 2.60GHz.

As demonstrated by the real data-set experiments, our proposed method worked better than the
existing methods did, although there were very similar results for a few cases, such as the flat pattern.
Based on these experimental results, we finally applied our proposed methods to the remaining cases
of missing values.
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Table 1. Root mean squared errors (RMSEs) of the four interpolation methods applied to our real-time
personal monitoring data. LOCF: last observation carried forward.

) Number of Missing Data
Data Pattern Interpolation Method
40 60 80 100
Proposed 26.919 26.426 25.733 28.599
Up sl Spline 37.052 36.679 35.682 37.908
p slope
LOCF 36.604 36.909 35.707 38.393
Agg 656.741  657.476  659.759  658.761
Proposed 24.687 25.704 27.840 28.945
D | Spline 26.741 27.817 30.233 31.834
own slope
LOCF 34.223 35.888 38.719 39.818
Agg 283.824  278.758  280.763  280.666
Proposed 4.551 3.981 4.341 4.376
Flat 1 Spline 3.871 3.326 3.555 3.535
LOCF 5.215 4.803 4.874 5.403
Agg 4.426 3.918 4.052 4.071
Proposed 3.633 3.751 3.694 3.656
Flat 2 Spline 3.505 3.610 3.514 3.493
LOCF 4.554 4.817 4.893 4.783
Agg 4.031 4.129 4.062 4.062
Proposed 2.335 2.310 2.429 2.325
Flat 3 Spline 2.229 2.080 2.237 2.187
LOCF 2.991 3.027 3.226 2.875
Agg 2.271 2.125 2.293 2.233

3.2. Optimal Bandwidth Selection

Before we carried out our interpolation on the data, we needed to decide on the value of the
bandwidth used for our interpolation method. For this task, we randomly chose a complete part of the
data that did not have missing data to estimate optimal bandwidth for the data set. Then, the complete
data were split into two different sets for training and validation. The training dataset was used to set
up a kernel regression model, and then the validation was carried out for the remaining data set. In this
bandwidth-selection step, we increased the bandwidth from 1 to 100 to find out which bandwidth
provided the smallest error that could be applied to our interpolation procedure. This bandwidth
estimation step can in fact depend on the nature of the data. That is, since the results of the estimation
may differ significantly depending on the shape of the data pattern, different bandwidths for each of
the three data patterns were estimated and used for this study. However, because it was hard to detect
the changing point of these different data patterns in our time-series data, we used the bandwidth
estimated for the flat data pattern for the following two real-world data experiments. Further research
on automatically calculating the appropriate bandwidth depending on the data patterns is necessary
in the future.

3.3. Interpolation and Anomaly Detection with Real-World Personal Data

We applied our method described above our separated PM, 5 data set containing missing data.
These PM; 5 data were collected at 10-s intervals from portable personal PM; 5 monitors attached to
the subjects. The data were measured between 25 January 2019 and 1 February 2019.

3.3.1. Application of Interpolation and Anomaly Detection Method with Real-World Personal
Dataset 1

As shown in Figure 2, the level of PM, 5 was stable, implying that the subject was relatively calm
with minimal abrupt activity changes. The length of the dataset was 59,422 at 10-s intervals, but it
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had 17,968 missing datapoints in total. Before we went on to detect the anomalies, we first selected an
optimal bandwidth for the dataset as we did previously.

PM, ¢ Data set 1

PM, s{ug/m’)
200 350 400
| | |

100
|

50
|

0 10000 20000 30000 40,000 50,000 60,000
Time Index
Figure 2. This is a data set that was collected for 6 days between 25 January 2019 and 31 January 2019.
The length of the dataset is 59,422, having 17,968 missing datapoints in total.

After deciding on an optimal bandwidth for the data set, as seen in Figure 3, we interpolated
the missing values based on the algorithm mentioned before. The corresponding results are given in
Figure 4.

Bandwidth Estimation for Data Set 1

48

48

Prediction error{RMSE)
4.2

40

T T T T T T
0 20 40 60 80 100

Smoothing bandwidth

Figure 3. By increasing the bandwidth from small to large, we calculate the RMSE of the estimation
and examined at what value of the bandwidth the corresponding RMSE is the minimum.
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Interpolated Data

400
|

350
|

250
|

P, s{ng/m’)
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|

0 10,000 20,000 30,000 40,000 50,000 60,000
Time Index

Figure 4. Missing values are interpolated and shown in red.

Figure 4 shows the interpolated data (red dots) superimposed on the actual data. It indicates that
the missing data appeared in a small or large aggregated formation. In particular, it can be seen that
much of data loss occurred between 40,000 and 60,000 according to the time index. After checking the
raw data, we confirmed that this large data loss occurred between 13:00 and 16:00, presumably because
of various activities in the afternoon. So much missing data could be very difficult to interpolate
by methods other than linear interpolation. In such a case, it is preferable to carry out the initial
interpolation using linear interpolation, as in our method, and then to apply other methods to improve
the result. As shown in the figure, the interpolation goes well with the overall pattern of the data.

As the next step, for the entire dataset, we detected anomalies in the dataset, based on the method
described in the method section. When the difference of adjacent PM; 5 values is above a certain
threshold (in this experiment, 200), we considered them to be anomalies. The corresponding anomalies
are shown in red in Figure 5, which shows there are eight anomalies detected by visual inspection;
the four red dots on the top seems to be the true outliers. The other red dots at the bottom do not
appear to be true outliers, but they can also be regarded as outliers, because the PM concentration
significantly dropped from the previous state by more than 200 ug/m? in 10 s, which is not acceptable
as a normal degree of change. This result explains that the proposed outlier detection method produces
fairly reliable results to some degree, even in a highly capricious environment. In selecting a threshold,
we took an empirical approach to decide the threshold. Some data that could be visually regarded
as anomaly data were selected as reference data, and then these data were examined to see if they
were detected as actual anomaly data. As we performed the experiments with varying thresholds,
the values when these reference data were detected were selected as thresholds.
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Outliers in red
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PM, 5(ng/m’)
200 350
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Time Index

Figure 5. Anomalies are shown in red.

3.3.2. Application of Interpolation and Anomaly Detection with Real-World Personal Dataset Two

This dataset was collected for 8 days between 25 January 2019 and 1 February 2019. The length of
the dataset is 62,878, having 74 missing datapoints in total. Dataset 1 used in the previous experimental
test was very stable, because the distribution of PM data was mostly less than 100 jig/m® during the
data acquisition period. However, the PM data in Dataset 2 (Figure 6) reached up to 2000 to 8000 pg/m?>
with 10-s intervals and showed a more dynamic change in the distribution of PM data, implying
that the subject had various activities or was exposed to many different environmental conditions
containing all the data-distribution patterns of rising, falling, and stable PM, 5 concentrations.

PM, ; Data set 2

7,000 9,000
|

5,000

PM, 5(pugim’)

3,000
|

1,000

0
|

sttt e, e
I I T T I T T
0 10000 20,000 30,000 40,000 50,000 60,000

Time Index

Figure 6. This is Dataset 2, collected for 8 days between 25 January 2019 and 1 February 2019. The length
of the dataset is 62,878, having 74 missing datapoints in total.
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The same bandwidth estimation steps were also carried out as described previously. Figure 7
shows the chosen bandwidth of 20 estimated for the flat part of the data between 33,000 and 33,600 in the
time index. The interpolated missing data are shown in red in Figure 8, overlaid on the entire dataset.

Bandwidth Estimation for Data Set 2

48

45

44
|

Prediction error(RMSE)
42

40

.
|

0 20 40 60 80 100

Smoothing bandwidth
Figure 7. Optimal bandwidth for this dataset is chosen as being 19.

Interpolated Data

PM, s(ug/m®)
5,000 7.000 9,000

3,000
l

1,000

NS ST - S Vo N v v
T T T T T T T
0 10,000 20,000 30,000 40,000 50,000 60,000

0
I

Time Index
Figure 8. Missing data is interpolated and shown in red.
Figure 8 can be seen as two sets of data with different natures; in the front part, the data fluctuates

heavily, but in the back part, the data are relatively stable. In particular, the front data were generated
between 14:00 and 18:00, probably by a wide variety of movements. Unlike the previous Dataset 1,
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the data loss is relatively small, even under the condition of dynamic movements; so, a very stable
performance sensor may be used. In the case of the latter part of the data, it appears that more data loss
occurs than from the front part, but not much data are actually lost. Overall, a fairly stable interpolation
result can be observed.

Finally, anomalies are also shown in red, in Figure 9. Overall, eight anomalies seem to be detected
by visual inspection. If you look at the enlarged part of the data (between 2750 and 4000 out of the
whole dataset), you can see that the detected outliers can be accepted as real outliers, because the
corresponding PM concentration significantly changes within a 10-s period. In this experiment set,
the threshold value 1000 was used as the criterion to detect outliers, and the threshold was also
empirically chosen, analogously to the approach described in Section 3.3.1.

Outliers in red Outliers in red

9,000
1
5,000
1

7,000
4,000
!

s 0®& * oo

PM, 5(ug/m’)
5,000
PM, 5(ug/m’)
2,000 2,000
1 1
'

3,000
|

1,000
I
00 ©
’ o

1,000

- . P Siban
T T T T T T T T T T T T T T
0 10,000 20,000 30,000 40,000 50,000 60,000 0 200 400 600 800 1,000 1,200

0
1

0
1

Time Index Time Index
(a) (b)

Figure 9. Anomalies are detected and shown in red (a) outliers for the entire dataset (b) outliers shown
enlarged for the part of the dataset between 2750 and 4000.

4. Discussion

This paper presented the results of research on two important technologies related to artificial
intelligence environmental information services, such as PM; 5 exposure level prediction, and providing
alerts based on the prediction. Most environmental data inevitably contain both missing data and
anomalies caused by various factors, such as sensor malfunctions, errors in transmission, or errors
in storage. Such incomplete data can lead to the miscalculation of data-based analysis and so must
be processed appropriately before we use them for data analysis. Most of the related studies have
tended to deal with either interpolation or abnormal data problems only. However, it is desirable that
interpolation and abnormal data should be handled together for viable data-based services. Therefore,
we conducted the research on these two problems simultaneously.

The first technique was interpolation, which can be regarded as a technique to cope with data lost
from various sensors. Data tend to be missed mainly in time-series data, which is known to occur in
three major forms: missing completely at random (MCAR), missing at random (MAR), and not missing
at random (NMAR). In particular, the MAR type is an appropriate form of model for describing the
data that are missing in most fine-dust time-series data [17]. This model assumes that the pattern of
the time-series data can be described by a certain mathematical generative model and also attempts to
take advantages of correlation information in multivariate environments to solve the missing-data
problem [17]. In a stationary environment where sensors are fixed to certain objects, the generative
model may be used to analyze the data. However, in a univariate case where data are collected from
portable wearable devices, it is very challenging to estimate the missing data, because the number of
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attributes to use is very limited, and a large amount of data is likely to be missing [19]. In these cases,
it is very difficult to apply a mathematical generation model to describe the data-distribution pattern
or representative values for a specific activity. There are very few articles addressing the interpolation
methods for univariate time-series data. Articles by Junninen studied the univariate algorithm in 2004,
but do not consider time-series aspects [20]. Authors applied ARIMA (autoregressive integrated
moving average) and SARIMA (seasonal autoregressive integrated moving average) models for the
univariate model interpolation and provided comparison results [21]. A performance comparison is
provided, using built-in interpolation methods in R [19]. Data loss in one instant or a short period of time
can be easily interpolated with a simple error-recovery method such as linear interpolation. However,
this simple interpolation method may be inadequate for a long bursty loss of sensor-provided data.
When such long bursty data loss occurs, the interpolation method with the prediction technique may
be more appropriate.

In addition, anomalous-data detection technology should be applied to detect data that deviate
from the characteristics of data distribution. The anomalies can be commonly found in various
industries including the environmental and finance fields. Anomalous time-series data can be regarded
as data that disturb the continuity of data based on temporal flow [11]. Most techniques to detect
anomalies can be classified as supervised and unsupervised according to the presence or absence of
data labels [22]. The supervised method is a technique for detecting abnormal data by means of a
learning algorithm when the data are labeled. The unsupervised method can be used when there is
no label in the data, and can be used more flexibly than the supervised method can be, because often
data labels are not available. As another category of classification, point-anomalous data detection
technology detects one datapoint that has abnormal characteristics among much normal data [22].
In contrast, the statistical method extends the point method, and is a technology that detects data when
that fall inside or outside a specific range of values in order to find anomalies. The disadvantage of
these technologies is that most of these values are set up by hand. Recently, a lot of context-based
methods have been studied. These can be seen as techniques for identifying abnormal data depending
on the context of a situation. We proposed a method to detect abnormal data that show significant
incremental or decremental changes as measured by time.

Although the excellence of the proposed algorithms has been proved by experiments, we address
the limitations in conducting this study. First, the bootstrapping test was used to prove the excellence of
the interpolation method, because we did not have any reference data for our interpolation algorithm.
However, under such circumstances, we assumed that the bootstrapping test was the best choice
for generating a missing value dataset randomly from a secure dataset. In addition, we did three
scenario-specific experiments to evaluate the performance of the proposed method, which could be
considered a simplified approach. The patterns of data distribution can be more complicated; since
data distribution patterns were not considered in this study, some other methods might work better,
depending on the type of data. In addition, we did interpolation by applying the same bandwidth
estimated for the flat data pattern to the entire dataset. In the future, it is necessary to conduct research
to automatically apply different bandwidth values for each data pattern. Finally, because the method
proposed in this study was a kind of context-aware based detection method, we acknowledge that other
methods previously proposed could get a completely different result. In addition, the threshold value
was chosen empirically by visual inspection at the moment, but we need to develop a sophisticated
algorithm to choose the value automatically. We may introduce such an automatic method in our near
future study.

Despite the limitations of this study, it has a very important academic significance in that it
presents a solution to the problem of interpolation and abnormal data of fine-dust data acquired from
personal mobile terminals. We believe that these technologies will be a cornerstone for personalized
environmental data services in the near future. Future research will include the prediction of PM data
concentrations in both indoor and outdoor environments based on machine-learning technologies.
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5. Conclusions

We think out findings have contributed greatly to overcoming the incompleteness of environmental
data obtained from individual sensors and to providing an academic basis for more reliable data analysis.
If the proposed algorithm is further improved, it will contribute a lot to advancing personalized
healthcare and preventive medicine research.
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