
applied  
sciences

Article

ExtendAIST: Exploring the Space of AI-in-the-Loop
System Testing

Tingting Wu , Yunwei Dong *, Yu Zhang and Aziz Singa

School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
tingtingwu@mail.nwpu.edu.cn (T.W.); zhangyu@nwpu.edu.cn (Y.Z.); azsinga81@mail.nwpu.edu.cn (A.S.)
* Correspondence: yunweidong@nwpu.edu.cn; Tel.: +86-1599-161-8002

Received: 5 December 2019; Accepted: 7 January 2020; Published: 10 January 2020
����������
�������

Abstract: The AI-in-the-loop system (AIS) has been widely used in various autonomous decision
and control systems, such as computing vision, autonomous vehicle, and collision avoidance
systems. AIS generates and updates control strategies through learning algorithms, which make
the control behaviors non-deterministic and bring about the test oracle problem in AIS testing
procedure. The traditional system mainly concerns about properties of safety, reliability, and real-time,
while AIS concerns more about the correctness, robustness, and stiffness of system. To perform an AIS
testing with the existing testing techniques according to the testing requirements, this paper presents
an extendable framework of AI-in-the-loop system testing by exploring the key steps involved
in the testing procedure, named ExtendAIST, which contributes to define the execution steps of
ExtendAIST and design space of testing techniques. Furthermore, the ExtendAIST framework
provides three concerns for AIS testing, which include: (a) the extension points; (b) sub-extension
points; and (c) existing techniques commonly present in each point. Therefore, testers can obtain the
testing strategy using existing techniques directly for corresponding testing requirements or extend
more techniques based on these extension points.

Keywords: AI-in-the-loop system; machine learning; AIS testing; AIS testing strategy

1. Introduction

With the broad applications of artificial intelligence on wearable devices, autonomous cars,
and smart city, the traditional embedded system with predefined control strategies, including sensor,
controller, and actuator, has evolved into the AI-in-the-loop system (AIS). AI-in-the-loop system is
an intelligent system with capabilities of self-learning and autonomous decision because of embedded
Artificial Intelligence (AI) components/modules or implementation of AI solutions in an embedded
system. For instance, autonomous cars [1] perceive the surrounding driving environment by sensors
such as radar and camera. Based on the perception data, autonomous cars perform tasks such
as obstacles detection and tracking, traffic signals detection and recognition, and route planning
through the AI modules implemented under machine learning algorithm. Autonomous cars then
make decisions for these tasks and drive automatically on road via the autonomous interactions with
driving environment.

The safety-critical system with AI module embedded is potentially unsafe. For example,
the adaptive cruise control system is an intelligent system to make cars drive automatically by
interacting with the driving environment and learning the corresponding driving behaviors, such as
speed up, slow down, and brake. However, the traffic accident of Tesla Model S, which crashes
because of the misclassification between the sky and white truck, indicates that the AI module may be
vulnerable to the perturbation and make AI-in-the-loop system unsafe. Once some faults in AI module
occur without any safety control behavior from system or person, there will be either error decision

Appl. Sci. 2020, 10, 518; doi:10.3390/app10020518 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3588-7839
https://orcid.org/0000-0002-3952-670X
http://www.mdpi.com/2076-3417/10/2/518?type=check_update&version=1
http://dx.doi.org/10.3390/app10020518
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 518 2 of 26

or fatal consequence. Therefore, it is crucial to detect the erroneous behaviors in AIS and assure its
properties (e.g., correctness and robustness) through certain testing techniques.

Some researchers have reviewed the progress of machine learning testing from different
perspectives. For example, Hains et al. [2] investigated the existing verification and simulation
techniques for the safety of machine learning. Masuda et al. [3] reviewed the error detection of machine
learning and the applications of conventional software testing on machine learning. Braiek et al. [4]
studied the datasets, and black- and white-box based testing techniques for machine learning testing.
Ma et al. [5] discussed the safety challenge in machine learning system. Huang et al. [6] introduced
the testing and verification techniques for the safety of machine learning. Zhang et al. [7] presented
a comprehensive survey on machine learning testing.

However, the above-mentioned studies mainly focus on the testing or verification techniques
without a systematic testing procedure from test data generation to evaluation except the review in [7],
and few studies present the differences between testing conventional system and AI-in-the-loop system.
Even though Zhang et al. [7] presented a thorough introduction of machine learning testing, including
the techniques of detecting data, learning program, framework, open-source tool, and testing objects,
they did not mention how to develop a new technique and the further work researchers can conduct
based on each testing step. Inspired by the above enquiries, we follow a similar research method as
Astor [8] to propose an Extendable framework of AIS Testing, namely ExtendAIST. The ExtendAIST
takes each involved testing step as extension point and implemented approaches as sub-extension
points to organize the design space of AIS testing techniques practically. Additionally, this framework
provides the existing techniques commonly present in individual sub-extension point. Therefore,
debuggers can reuse these techniques, extend new techniques over the extension and sub-extension
points, or implement new points in the space of AIS testing.

The primary contributions of our paper are summarized as follows.

• The AI-in-the-loop system is proposed to discuss the differences between testing ordinary system
and AI-in-the-loop system in terms of testing coverage, test data, testing property, and testing
technique based on the distinct nature of AI modules.

• The testing workflow of AI-in-the-loop system is presented to show the individual step including
dataset generation, training and testing for AI-in-the-loop system.

• To the best of our knowledge, this is the first time researchers explore the design space of
AI-in-the-loop system testing and present an extendable framework ExtendAIST. This framework
provides five extension points, 19 sub-extension points, and existing techniques that researchers
can use directly or extend further new techniques for corresponding testing requirements.

The remainder of this paper is organized as follows. Section 2 introduces the motivation of
ExtendAIST including the architecture of AI-in-the-loop system, the differences between testing
ordinary system and AI-in-the-loop system, and the AIS testing workflow. Section 3 describes the
architecture, design, and illustration example of ExtendAIST. Section 4 presents the extension points,
sub-extension points, and existing techniques in ExtendAIST. Discussions and conclusions are given in
Sections 5 and 6.

2. Motivation

2.1. AI-in-the-Loop System

The conventional embedded system takes as input the data from sensors and computes the control
strategies according to the program with specific task. The controllers output the corresponding
decision based on the control strategies and transform this decision into a command to actuators. Then,
actuators consequently take some operations to control the entire system. Thus, the conventional
embedded system is logic deterministic with the certain program and control behaviors.



Appl. Sci. 2020, 10, 518 3 of 26

Different from the conventional embedded system, the control strategies of AI-in-the-loop system
are obtained by learning from training data under the learning algorithm, which will lead to less
precise and non-deterministic strategies. As shown in Figure 1, the AIS learns the online or offline
strategies by online learning or offline learning from the sensor data or offline data under the learning
algorithm for specific application. Then, it makes a decision according to the learned strategies and
forwards this decision to actuators in the format of command. In this case, the system with AI module
embedded can perform the autonomous learning, decision making, and controlling with machine
learning program. The testing of conventional system follows a general testing procedure: selecting test
coverage, generating test cases, executing test cases, and compare the actual outputs with the expected
outputs. Nevertheless, because of the nature of machine learning program, the control strategies vary
even for the same training data, which may generate different or uninterpretable control behaviors
and weaken the correctness and robustness of AI-in-the-loop system. Therefore, there exists the oracle
problem [9] in testing AI-in-the-loop system.

AI-in-the-loop System

sensor actuator

controller

function 

module

function 

module

function 

module

AI module

online learning

offline learning

Figure 1. Architecture of the AI-in-the-loop system.

2.2. AI-in-the-Loop System Testing

The nature of AI module design and implementation, the complex requirements, large-scale
network, non-deterministic and uninterpretable learning results bring great challenges in testing
AI-in-the-loop system [10–12], which distinguishes from traditional system testing. The traditional
system is always a logic deterministic program with the definite output against the system under
testing (SUT) and the corresponding test case. The execution behavior can be tracked and interpretable
with the absolutely deterministic control flow and data flow. However, the output of AI module is
non-deterministic. For example, the machine learning based AI module is a data-driven program [7]
which delivers a trained model by learning from the training dataset under the learning algorithm.
The predicted label of the trained model may be distinct even for the same test data, because the
trained model evolves with different training datasets so that different weights and biases are trained.
The testing approaches commonly used in testing ordinary system and non-AI modules are not
suitable for testing the AI modules. Therefore, more novel testing coverage metrics and test data are
necessary when performing the unit testing of AI-in-the-loop system. More testing properties and
testing techniques should be investigated when conducting the system testing of AI-in-the-loop system
for the behavior consistency.

For the unit testing of traditional system and AI-in-the-loop system, the test adequacy of
traditional system can be measured by control flow coverage (e.g., SC, DC, CC, and MC/DC) and
data flow coverage (e.g., p-use and c-use). Except for the coverage metrics used above for non-AI
modules, the test adequacy of AI modules should be measured by the structure coverage of neural
network because of its non-deterministic logic, such as neuron level coverage [13–15], layer level
coverage [15], and neuron pair level coverage [16]. Based on the above, all activated neurons leading
to major function behaviors and corner case behaviors can be covered. The common dataset designed
for different application areas sometimes consists of training and testing data. However, the common



Appl. Sci. 2020, 10, 518 4 of 26

dataset is not sufficient for each testing task. To meet the specific testing tasks of AI-in-the-loop system,
new dataset including training dataset and testing dataset is generated by some test data generation
strategies. The training dataset is used to train the learning program to get a trained model, and the
testing dataset is used to evaluate the training effectiveness of trained model.

For the system testing of traditional system and AI-in-the-loop system, the traditional system
testing mainly focuses on the following functional and non-functional properties, such as correctness,
real-time, reliability and safety. Due to the non-deterministic behavior of AI module, the AI-in-the-loop
system suffers from the oracle problem. Therefore, more properties beyond those of traditional
systems, such as the robustness [7] and stiffness [17] of the AI-in-the-loop system, should be tested
by checking the behavior consistency. The robustness measures the resilience of AI-in-the-loop
system towards perturbations on data or learning program. For example, if the trained model
misclassifies the test data with imperceptible perturbation, then AI-in-the-loop system is said to
be of low robustness. The stiffness is proposed to measure the resistance of AI-in-the-loop system
by the effect of a small gradient step on one test data upon the loss on another test data. That is,
the predicted label of AI-in-the-loop system is convergent for the gradient alignment between different
test data. To test unique properties of the AIS, more testing techniques such as adversarial attack [18]
and generative adversarial network [19] are proposed. The adversarial attack is a technique generating
adversarial perturbations on the original test data to determine whether the AIS is vulnerable to
adversarial perturbations.

Testing AI-in-the-loop system is a process of detecting system erroneous behaviors, which aims
to guarantee the properties of system, such as correctness and robustness. The AIS learns from the
input training dataset and predicts the behavior with the trained model. Therefore, the correctness
of the system can be determined by checking whether the output behaviors are consistent with the
requirements. The robustness can be determined by checking whether the output behaviors are affected
by the adversarial perturbation. As shown in Figure 2, given an AI-in-the-loop system, the testing
activity is conducted as the following steps.

1. Generate the test sample, including training dataset and testing dataset, through some test data
generation algorithms. The training dataset can be selected from the common benchmarks or
designed for some special application areas to train the learning model. The testing dataset is
generated with the requirement of test coverage to test the trained model.

2. When testing the ordinary system, the testing procedure follows the black arrowlines in Figure 2.
The system executes the testing dataset and outputs the deterministic decision according to the
predefined rules.

3. When testing the AI-in-the-loop system, the testing procedure follows the red and black arrowlines
in Figure 2 for AI module and other function modules, respectively. The trained model is learnt
from the training dataset under the training model. Then, the AIS executes the testing dataset
and outputs the predicted non-deterministic decision.

4. After test execution procedure, the test report is generated to indicate the test results.
The failed test demonstrates an erroneous behavior of system, and the passed test shows the
behavior consistency.

5. If some errors are detected during the testing procedure, then conduct the regression testing after
all errors are repaired to make sure that no new error is introduced.

6. If no error is detected, then terminate the testing procedure.



Appl. Sci. 2020, 10, 518 5 of 26

test report 

generation

error 

detected?
endno

start

model 

training

repair

yes

regression testing

sample generation

training dataset

testing dataset

function module

function 

module

function 

module

trained 

model

AI module
AIS

Figure 2. Workflow of the AI-in-the-loop system testing.

3. ExtendAIST

3.1. Architecture

ExtendAIST encodes the design space of AIS testing, which involves four key elements: test
coverage selection, test data generation, testing and verification approach, and evaluation with
common dataset. Figure 3a shows the architecture of the ExtendAIST framework, in which the
four elements are four dimensions for designing new techniques. In other words, researchers can
develop a new technique by choosing one or more elements. Our proposed framework ExtendAIST
provides a solution for designing comprehensive testing techniques by connecting these elements
from test to evaluation, so that the developer can not only develop new techniques based on the four
dimensions but also evaluate the effectiveness of new techniques.

test coverage 

selection

test data 

generation

common dataset

test

evaluation

ExtendAIST

testing 

technique

formal 

verification 

technique

testing & verification 

approach selection

(a) Architecture of ExtendAIST

Test coverage metric 

(EP_TCM)

Test data generation 

(EP_TGD)

Testing technique 

(EP_TT)

Formal verification technique 

(EP_FV)

Evaluation dataset 

(EP_ED)

EP_LL

EP_NPL

E
P

_
A

E

E
P

_
G

A
E

E
P

_
M

T

E
P

_
C

T
S

EP_TP

EP_AE

EP_MUT

EP_MT

E
P

_
S

S E
P

_
N

L
P

E
P

_
S

IA E
P

_
R

A E
P

_
A

I

EP_I
C

EP_S
D

EP_N
A

LP

EP_S
R

EP_A
M

D

Testing 

property

Robustness testing

Correctness testing

EP_NL

(b) Solution of testing AI-in-the-loop system

Figure 3. Design of ExtendAIST.

Since testing technique reveals the erroneous behaviors in AI-in-the-loop system and formal
verification technique ensures the properties of the system, we divide the test and verification
approaches into two kinds of elements including testing technique and formal verification technique.



Appl. Sci. 2020, 10, 518 6 of 26

Then, we have five elements, referred to as five extension points, to form the design space of AIS
testing. Figure 3b indicates the potential solution of testing AI-in-the-loop system, in which the five
nodes of the pentagon are the five extension points above, the edge from each node to the center
implies the possible techniques used to meet the requirement of testing property, and all the possible
techniques are regarded as the sub-extension points (see Section 4). For example, given a testing
property, debuggers will select one or more suitable sub-extension points in each extension point
to complete this test task. Therefore, the ExtendAIST is a framework providing extension points,
sub-extension points, and existing techniques that allow testers to obtain a testing strategy based on
existing techniques or extend novel techniques by choosing one or more extension points.

3.2. Design

According to the testing workflow defined in Section 2.2, we present the main steps executed in
ExtendAIST, as shown in Algorithm 1, which outputs a recommendation of testing strategy for the
input testing requirements of AI-in-the-loop system under test. ExtendAIST first investigates each
testing requirement from the input testing requirements (Lines 2–20), such as the testing coverage
requirement, testing property requirement, and application area requirement. According to the
requirement, it inspects and selects the corresponding extension point available for the testing
requirements (Lines 6–18). Then, the algorithm inspects and selects the appropriate sub-extension
points for the testing requirements (Lines 11–17). All the existing techniques in the selected
sub-extension points can be used (Line 16). It generates the testing strategy for the selected testing
requirement (Line 19). Finally, it returns the recommended testing strategy for all of the input testing
requirements (Line 21). The time complexity of Algorithm 1 is O(n2).

Algorithm 1 Execution steps of testing AI-in-the-loop system in ExtendAIST.

Require: Testing requirement set R of AI-in-the-loop system under test
Ensure: Testing strategy

1: Strategy← ∅ // Initialize the testing strategy
2: for i = 1→ n do // There are n requirements in the set R
3: ExtenP← ∅ // Initialize the set of selected extension points for the ith requirement
4: SubExtenP← ∅ // Initialize the set of selected sub-extension points for the ith requirement
5: Investigate(Ri) // Investigate the ith testing requirement
6: for j = 1→ 5 do // Five extension points
7: fep ← Inspect(EPj) // Inspect the jth extension point
8: if fep == true then
9: ExtenP ← ExtenP ∪ EPj // The jth extension point is appropriate for the ith testing

requirement
10: end if
11: for k = 1→ mj do // mj sub-extension points in the jth extension point
12: fsep ← Inspect(SEPk

j ) // Inspect the kth sub-extension point
13: if fsep == true then
14: SubExtenP← SubExtenP∪ SEPk

j // The kth sub-extension point in the jth extension

point is appropriate for the ith testing requirement
15: end if
16: Tech← Select(Techk

j ) // Select the existing techniques in the kth sub-extension point of

the jth extension point to test the AIS
17: end for
18: end for
19: Strategy[i] ← (Ri, ExtenP, SubExtenP, Tech) // Generate the strategy for the ith testing

requirement
20: end for
21: return Strategy // Output the recommendation of testing strategy for the input requirement



Appl. Sci. 2020, 10, 518 7 of 26

3.3. Illustration

In this section, we take the security and stability intelligent control unit in power system terminal
as an illustration example to show the detailed implementation steps of testing AIS following the
design space of ExtendAIST and the integration of other available techniques in ExtendAIST.

The security and stability intelligent control unit in power system terminal is an AI-in-the-loop
system which aims at predicting exceptions according to the learnt control strategies and taking
relevant actions to avoid the potential failure for power transmission. As shown in Figure 4, the security
and stability intelligent control unit in power system terminal obtains the transmission sections
between the power supply center and electric load center, including the data of current, voltage,
power, and frequency. This information is then transferred to the control strategies table to predict the
decisions according to the learned strategies. For example, if the current value s1 is greater than the
threshold P1, then decision D1 is decided according to the learned control strategies and transferred to
switch off the actuator. Error decisions lead to illegal actions on actuators which can cause incalculable
loss. Thus, it is critical to test the security and stability intelligent control unit in power system terminal
to reveal the erroneous behaviors and ensure its security and stability.

According to the implementation steps of ExtendAIST, we test the correctness of security and
stability intelligent control unit in power system terminal during the process of power transmission.
As shown in Figure 3b, the red thick line is one of the solutions of testing the correctness of security
and stability intelligent control unit. Firstly, debuggers select the layer level coverage [15] and
neuron pair level coverage [16] to measure the numbers of hyperactive neurons in each layer and
the influence between layers and ensure the test adequacy of test data generated from metamorphic
testing based strategy. Secondly, they take the experienced decisions when exceptions occur as original
test data, because no common dataset exists for the security and stability intelligent control unit. Then,
they generate new test data with the metamorphic testing based strategy [20,21] on the source test data.
Thirdly, once generating the test data, debuggers can test the control strategies learned in AI module by
metamorphic testing and determine test results by checking whether metamorphic relation is satisfied.
If there are faults in control strategies, e.g., an illegal action of switching on instead of switching off
actuators is decided when overloading, debuggers can repair this system by proper repair techniques,
such as changing the parameters of training model. Finally, they evaluate the fixed system with the
experienced dataset to show the repair quality.

sensor controller actuator

Security and Stability Intelligent Control Unit 

in Power System Terminal

AI-in-the-loop System

actuatordecision

phasor 

measure 

unit 

(PMU)

control strategies

P1 (s1)àD1

P1(s2)àD2

…

Pn(sn)àDn

transmission

section

Figure 4. Security and stability intelligent control unit in power system terminal.

Since the correctness testing of security and stability intelligent control unit in power system
terminal is similar to the traditional system testing, and the metamorphic testing can also be applied in
traditional system testing, we further test the robustness of security and stability intelligent control
unit to show the differences compared to the traditional system testing. As shown in Figure 3b,



Appl. Sci. 2020, 10, 518 8 of 26

the black thick line is one of the solutions of testing the robustness of security and stability intelligent
control unit. Firstly, debuggers select the neuron level coverage [13–15] to measure the numbers
of activated neurons so that the major function behaviors and corner-case function behaviors are
covered. The adversarial attack [18] is proven to be a promising technique for testing robustness of
machine learning system. Therefore, adversarial attack is chosen to generate adversarial examples
and test whether the control strategies in AI module misclassify a small perturbation. For example,
the decision of the original current value s1 is D1 if s1 < P1. The adversarial example s

′
1 is greater than

s1 and smaller than P1, that is, s1 < s
′
1 < P1, then the AI module should predict the same decision

D1. If a different decision is predicted, then the security and stability intelligent control unit is said
to be of low robustness. Finally, debuggers repair this system and evaluate the fixed system with the
experienced dataset to show the repair quality.

4. Extension Points and Sub-Extension Points

In this section, we explain the five extension points and 19 sub-extension points provided
in the ExtendAIST framework for testers using the existing techniques directly or develop new
techniques based on these points for the corresponding testing requirements. Each extension point
is a key step involved in testing AIS, which is depicted with existing techniques in this framework.
The five extension points, 19 sub-extension points, and existing techniques for individual point are
summarized in Figure 3b and Table 1, respectively. As shown in Table 2, the recommendation of testing
strategy including extension points and sub-extension points are selected for the corresponding testing
requirement. “X” implies that the sub-extension point is available for the related testing requirement.
Take the “Correctness” row as example, all the coverage metrics in different granularity levels of
extension point EP_TCM can be used to measure the coverage of network. All five kinds of evaluation
common datasets are available for the correctness testing. In the extension point of EP_TDG, only
sub-extension point EP_MT can be used to generate test data for testing correctness of AIS. When
selecting the testing technique, sub-extension points EP_MUT, EP_MT, and EP_TP are appropriate to
perform AIS correctness testing.



Appl. Sci. 2020, 10, 518 9 of 26

Table 1. Summary of extension points and existing techniques in ExtendAIST.

Extension Point Sub-Extension Point Description Existing Technique

Test Coverage Metric (EP_TCM)

Neuron level (EP_NL)
The coverage of activated neurons for the major and
corner-case behaviors

Activated neuron coverage [13,14], Major and corner-case
coverage [15]

Layer level (EP_LL) The number of the most active k neurons in each layer Top-k neuron coverage [15]

Neuron pair level (EP_NPL)
The sign (or distance) change of neuron ni

l (or layer l) affects the

sign (or value) of neuron nj
l+1

Sign/Distance–Sign/ Value cover [16]

Test Data Generation (EP_TDG)

Metamorphic testing based strategy (EP_MT)
Generate follow-up test data with the noise from the
metamorphic relation Classifier testing [20,21], DeepTest [14], noise effect [22]

Adversarial examples (EP_AE) Generate test data with imperceptible perturbations to the input L-BFGS [18], FGSM [23], BIM [24], ILCM [25], JSMA [26]

Generative adversarial examples (EP_GAE) Generate test data using generative adversarial nets Generative adversarial nets [19]

Concolic testing based strategy (EP_CTS)
Generate test data with the smallest distance to the input by the
concrete execution and symbolic execution DeepConcolic [27]

Testing Technique (EP_TT)

Adversarial attack (EP_AE) Reveal the defects in DNN by executing adversarial examples Targeted, non-targeted, Lp-norm attack [28,29]

Mutation testing (EP_MUT)
Evaluate the testing adequacy by mutating training data,
training program and trained model MuNN [30], DeepMutation [31]

Metamorphic testing (EP_MT)
Determine the system correctness by checking whether the
metamorphic relation is satisfied DeepTest [14]

Test prioritization (EP_TP) Measure the correctness of classification by the purity of test data DeepGini [32]

Formal Verification Technique (EP_FV)

Satisfiability Solver (EP_SS) Transform the safety verification to satisfiability solver problem Safety verification [33]

Non-linear problem (EP_NLP) Transform the safety verification to non-linear problem Piecewise linear network verification [34]

Symbolic interval analysis (EP_SIA) Transform the safety verification by analyzing symbolic interval ReluVal [35]

Reachability analysis (EP_RA)
Transform the safety verification by analyzing the
reachability problem DeepGo [36]

Abstract interpretation (EP_AI) Transform the safety verification to abstract interpretation AI2 [37], Symbolic propagation [38]

Evaluation Dataset (EP_ED)

Image classification (EP_IC) Dataset for image recognition MNIST [39,40], EMNIST [41,42], Fashion-MNIST [43,44],
ImageNet [45,46], CIFAR-10/CIFAR-100 [47]

Self driving (EP_SD) Dataset for training and testing autonomous car system Udacity Challenge [48], MSCOCO 2015 [49,50], KITTI [51–53],
Baidu Apollo [54]

Natural language processing (EP_NALP) Dataset for text processing Enron Email Dataset [55], bAbI [56],Text Classification
Datasets [57], SNLI [58,59]

Speech recognition (EP_SR) Dataset for speech recognition Speech Commands [60,61], Free Spoken Digit Dataset [62],
Million Song Dataset [63,64], LibriSpeech [65,66]

Android malware detection (EP_AMD) Dataset for Android malware detection Drebin [67–69], Genome [70,71], VirusTotal [72],Contagio [73]



Appl. Sci. 2020, 10, 518 10 of 26

Table 2. Summary of testing strategy recommendation with extension points provided in ExtendAIST.

Testing Requirement
Test Coverage Metric (EP_TCM) Test data generation (EP_TDG) Testing Technique (EP_TT) Formal Verification Technique (EP_FV) Evaluation Dataset (EP_ED)

EP_NL EP_LL EP_NPL EP_MT EP_AE EP_GAE EP_CTS EP_AE EP_MUT EP_MT EP_TP EP_SS EP_NLP EP_SIA EP_RA EP_AI EP_IC EP_SD EP_NALP EP_SR EP_AMD

Neuron coverage X

Network layer coverage X

Layers influence coverage X

Correctness X X X X X X X X X X X X

Robustness X X X X X X X X X X X X

Safety X X X X X X X X X X X X X

Image processing X X

Text processing X

Audio processing X

Malware detection X



Appl. Sci. 2020, 10, 518 11 of 26

4.1. Test Coverage Metric (EP_TCM)

4.1.1. Description

Test coverage metric selection is the first step of test data generation as test data must satisfy
the requirement of coverage criterion. There already exist many test coverage metrics for traditional
software testing adequacy: statement coverage, condition coverage, decision coverage, and Modified
Condition/Decision Coverage (MC/DC). However, all the metrics above cannot be used directly to
cover the control and data flow of AI-in-the-loop system due to the structure of learning program for
AI module and the non-deterministic program logic. Researchers take neuron as the basic coverage
unit to conduct both major function behavior coverage and corner-case behavior coverage of neural
network [15]. We divide the neural network coverage into three categories from the perspective of
granularity: neuron level coverage, layer level coverage, and neuron pair level coverage.

Therefore, ExtendAIST takes test coverage metric as an extension point EP_TCM, and neuron
level coverage, layer level coverage, and neuron pair level coverage as sub-extension points named
EP_NL, EP_LL, and EP_NPL, respectively. Then, testers can implement new coverage metric based on
these extension points or reuse the existing techniques.

4.1.2. Neuron Level (EP_NL)

The neuron level coverage depends on the output value of neuron. There currently exist four kinds
of neuron level coverage in this sub-extension point EP_NL: activated neuron coverage, k-multisection
neuron coverage, neuron boundary coverage, and strong neuron activation coverage.

• Activated neuron coverage. A neuron is considered activated if the neuron output is greater
than the neuron activation threshold and makes contribution to neural network’s behaviors
including major function and corner-case behaviors. As shown in Equation (1), the activated neuron
coverage [13,14] CovANC is the rate of the number of neurons activated and the number of neurons
in the whole DNN.

CovANC =
nactivated

N
(1)

• k-multisection neuron coverage. Ma et al. [15] proposed using neuron output value range
[lown, highn] to distinguish the major function region and corner-case region. Then, we can
measure the coverage of major function region [lown, highn] by dividing this region into k equal
subsections. As shown in Equation (2), k-multisection neuron coverage for a neuron n, Covk,n is the
rate of the number of subsections covered by T and the total number of subsections, in which x is
a test input in dataset T, φ(x, n) is the output of neuron n with test input x, and Sn

i is the set of
values in the ith subsection. The k-multisection neuron coverage for the neural network N, CovKMN ,
is based on the k-multisection neuron coverage of all neurons in network, which is defined in
Equation (3).

Covk,n =
|{Sn

i |∃x ∈ T : φ(x, n) ∈ Sn
i }|

k
(2)

CovKMN =
Σn∈N |{Sn

i |∃x ∈ T : φ(x, n) ∈ Sn
i }|

k× |N| (3)

• Neuron boundary coverage. In some cases, neuron output φ(x, n) /∈ [lown, highn]. That is,
φ(x, n) may locate (−∞, lown) ∪ (highn,+∞), which is referred to as the corner-case region of
neuron n. Therefore, the neuron boundary coverage CovNBC, the rate of the number of neurons
falling in corner-case region and the total number of corner cases as in Equation (4), is used
to measure how many corner-case regions are covered by test dataset T. NUPPER = {n ∈
N|∃x ∈ T : φ(x, n) ∈ (highn,+∞)} is the set of neurons located in the upper corner-case region,
and NLOWER = {n ∈ N|∃x ∈ T : φ(x, n) ∈ (−∞, lown)} is the set of neurons located in the lower
corner-case region. The total number of corner cases of neuron boundary coverage is equal to



Appl. Sci. 2020, 10, 518 12 of 26

2× |N|, because (−∞, lown) and (highn,+∞) are mutually exclusive and neuron cannot fall in
two regions at the same time.

CovNBC =
|NUPPER|+ |NLOWER|

2× |N| (4)

• Strong neuron activation coverage. Because hyperactive corner-case neurons affect the training
of DNN significantly, it is essential to measure the coverage of hyperactive corner-case neurons,
namely strong neuron activation coverage. Similar to the neuron boundary coverage, strong neuron
activation coverage CovSNA is the rate of the number of neurons falling in the upper corner-case
region and the total number of corner cases as in Equation (5).

CovSNA =
|NUPPER|
|N| (5)

4.1.3. Layer Level (EP_LL)

In the layer level sub-extension point EP_LL, the neuron coverage from the perspective of top
hyperactive neurons in each layer has been further investigated [15]. An effective input test dataset
should cover more and more hyperactive neurons in one layer. In this sub-extension point, the top-k
neuron coverage has been implemented to cover the top-k neurons in the same layer.

• Top-k neuron coverage. Given test input x and neurons n1 and n2 in the same layer, if φ(x, n1) >

φ(x, n2), then n1 is more active than n2. Here, the top-k neuron coverage is designed to measure
how many neurons are activated as the most k neurons in each layer by the input test dataset T.
As shown in Equation (6), topk(x, i) is the set of first k neurons, which are ranked in descending
order of their outputs.

CovTKN =
| ∪x∈T (∪1≤i≤ltopk(x, i))|

|N| (6)

4.1.4. Neuron Pair Level (EP_NPL)

The neuron pair level coverage focuses on the propagation of changes between neurons from
adjacent layers. Inspired by the MC/DC criterion, Sun et al. [16] proposed the neuron pair level
coverage by taking α = (ni

l , nj
l+1) as the neuron pair, in which ni

l is a neuron regarded as a condition

in the lth layer and nj
l+1 is a neuron regarded as a decision in the (l + 1)th layer. Hence, neuron

pair level coverage is presented to inspect the influence of neurons in the lth layer on neurons in
the (l + 1)th layer. The change of neuron nk

l when given two test inputs x1 and x2 could be a sign
change (denoted as sc(nk

l , x1, x2)), a value change (denoted as vc(g, nk
l , x1, x2), where g is a value change

function), and a distance change (denoted as dc(h, l, x1, x2), where h is a distance change function) for
neurons in the lth layer. Therefore, given the neuron pair α = (ni

l , nj
l+1) and two test inputs x1 and x2,

there exit four implemented techniques in this sub-extension point of neuron pair level coverage.

• Sign–Sign cover. The sign change of condition neuron ni
l and signs of other neurons in the lth layer

not changing affect the sign of decision neuron nj
l+1 in the next layer. That is, if sc(ni

l , x1, x2) ∧
¬sc(nk

l , x1, x2) ∧ (k 6= i)⇒ sc(nj
l+1, x1, x2), we say that (ni

l , nj
l+1) is sign–sign covered by x1 and x2

which is denoted as covSS(α, x1, x2).
• Distance–Sign cover. The small distance change of neurons in the lth layer can cause the sign

change of decision neuron nj
l+1 in the next layer. Namely, if dc(h, l, x1, x2) ⇒ sc(nj

l+1, x1, x2),

we say that (ni
l , nj

l+1) is distance–sign covered by x1 and x2, denoted as covh
DS(α, x1, x2).

• Sign–Value cover. Similar to sign–sign cover, the sign change of condition neuron ni
l and signs

of other neurons in the lth layer not changing affect the value of decision neuron nj
l+1 in the



Appl. Sci. 2020, 10, 518 13 of 26

next layer. That is, if sc(ni
l , x1, x2) ∧ ¬sc(nk

l , x1, x2) ∧ (k 6= i) ⇒ vc(g, nj
l+1, x1, x2) , we say that

(ni
l , nj

l+1) is sign–value covered by x1 and x2, denoted as covg
SV(α, x1, x2).

• Distance–Value cover. Similar to distance–sign cover, the small distance change of neurons
in the lth layer leads to the value change of decision neuron nj

l+1 in the next layer. Namely,

if dc(h, l, x1, x2)⇒ vc(g, nj
l+1, x1, x2), then (ni

l , nj
l+1) is distance–value covered by x1 and x2, denoted

as covh,g
DV(α, x1, x2).

4.2. Test Data Generation (EP_TDG)

4.2.1. Description

During training procedure, some common datasets are used as the training sets to compare
the training performance of different training models. During testing procedure, the testing data
included in the common datasets are used to measure the training effectiveness and correctness of
AI-in-the-loop system. Thus, both training and testing procedures are data-driven. Since the AIS
may output different labels for inputs with high similarity, generating test data that can cover not
only major function behaviors but also corner-case behaviors becomes an indispensable activity for
AI-in-the-loop system testing.

Thus, test data generation is regarded as an extension point, namely EP_TDG, in ExtendAIST.
Since various generation strategies and their variants have been investigated over the past decades,
there are mainly four kinds of strategies present to generate test data: adversarial examples, generative
adversarial examples, metamorphic testing based strategy, and concolic testing based strategy.
These four kinds of common used strategies are also regarded as the sub-extension points, respectively:
EP_AE, EP_GAE, EP_MT, and EP_CTS. All of these points allow designing the strategy of test
data generation for ExtendAIST producing relevant test samples to train, test, and evaluate the
AI-in-the-loop system.

4.2.2. Adversarial Examples (EP_AE)

Adversarial examples are test data generated with small, even imperceptible, perturbations on
the original test inputs, which cause the network under test to misclassify them [18,28,74–76]. A neural
network is vulnerable to adversarial perturbation, and adversarial examples are regarded as effective
means to attack network. Therefore, debuggers can detect erroneous behaviors of AI-in-the-loop
system by adversarial examples and enhance the robustness by re-training the AI-in-the-loop system
against adversarial examples. The following techniques are implemented based on the sub-extension
point EP_AE.

• L-BFGS. The box-constrained L-BFGS [18] is proposed to generate test data to solve the following
minimization problem under the condition of f (x

′
) = t. Equation (7) hopes to minimize the

distance between x and x
′
, L2 =‖ x− x

′ ‖2
2, and the loss function loss f ,t(x

′
) for the generated test

data x
′

also labeled as t.

Minimization c· ‖ x− x
′ ‖2

2 +loss f ,t(x
′
) (7)

• FGSM. To generate adversarial examples in a quick way, Goodfellow et al. [23] presented
the Fast Gradient Sign Method (FGSM) based on the norm L∞. As shown in Equation (8),
the adversarial example x

′
depends on the single-step ε and the gradient sign of loss function

loss f ,t(x), which determines the direction that increases the probability of the targeted class t.

x
′
= x− ε · sign(∇loss f ,t(x)) (8)



Appl. Sci. 2020, 10, 518 14 of 26

• BIM. To improve the accuracy of adversarial examples, Kurakin et al. [24] proposed the Basic
Iterative Method (BIM) by replacing single-step ε in FGSM with multiple smaller steps α and
minimizing the loss function for directing at the targeted label t. Equation (9) indicates that the
adversarial example generated from the ith step depends on that from the last step iteratively.

x
′
i = x

′
i−1 − clipε(α · sign(∇loss f ,t(x

′
i−1))), x

′
0 = 0 (9)

• ILCM. Kurakin [25] further proposed the Iterative Least-likely Class Method (ILCM) by taking the
target label with the least likelihood that is the most difficult to attack rather than the label with
the most possibility in BIM.

• JSMA. Papernot et al. [26] proposed the Jacobian-based Saliency Map Attack (JSMA) to obtain
a saliency map, which indicates the influence of each pixel on target label classification. Therefore,
adversarial example can be generated with small perturbation by changing pixels with the
greatest influence.

• One pixel attack. The one pixel attack [77] is presented extremely to generate adversarial image
by changing only one pixel of the seeded image.

• C&W attack. To get an adversarial image with less distortion on the seeded image, Carlini and
Wagner [78] proposed applying three distance metrics—L0, L2, and L∞ norms—to have a target
attack on neural network.

• Universal perturbation. The universal perturbation [79–81] is proposed for the misclassification of
entire test dataset instead of misclassifying one specific test case. In other words, the adversarial
examples are generated from the same perturbation and recognized as the same target label.

4.2.3. Generative Adversarial Examples (EP_GAE)

This sub-extension point EP_GAE is provided to allow researchers to generate test data with
the generative adversarial nets, which aims at delivering data that cannot be distinguished from the
training data or generator.

• Generative adversarial nets. The Generative Adversarial Nets (GAN) [19], including a generative
model G and a discriminative model D, are proposed to generate samples by learning and try
to fool the discriminative model. The purpose of generative model is producing samples by
learning the training data distribution that causes the discriminative model making a mistake.
The discriminative model must determine whether the input sample is from training data or
generative model G.

4.2.4. Metamorphic Testing Based Strategy (EP_MT)

Metamorphic testing (MT) [82–84] is an approach to alleviate the test oracle problem by checking
whether the certain property of program is satisfied instead of comparing the expected output with
the actual output since some expected outputs are expensive to compute. Such a property is referred
to as the metamorphic relation (MR) of the program function. MT is also used as a strategy of test
case generation since it generates follow-up test cases according to source test cases and related MRs.
Therefore, metamorphic testing based strategy is regarded as a sub-extension point in ExtendAIST,
namely EP_MT, to generate test data for AIS. The existing applications of MT on AIS are as follows.

• Classifier testing. MT has already been applied to generate follow-up test cases for machine
learning classifier testing by employing the MRs of permutation, addition, duplication,
and removal of attributes, samples, and labels [20,21].

• DeepTest. To test DNN-based self-driving system, DeepTest [14] takes the property that the output
steering angle should keep unchanged under different real-world driving environments as the
metamorphic relation to generate new test cases and determine whether the self-driving system
satisfies the MR.



Appl. Sci. 2020, 10, 518 15 of 26

• Effect of noise outside ROI. Zhou et al. [22] investigated the effect of noise outside of the
drivable area on the obstacle perception inside of the region of interest (ROI). The MR of obstacle
perception system is that the noise in the region outside ROI would not cause the obstacles inside
ROI undetectable.

4.2.5. Concolic Testing Based Strategy (EP_CTS)

Concolic testing is an integration of concrete execution and symbolic execution [85]. The program
is executed with some concrete input values, and then solves the symbolic constraints collected for
each conditional statement to cover other execution paths which are uncovered by concrete inputs.
New test case variants from concrete inputs are generated during the constraint solving procedure.
Thus, concolic testing based strategy is regarded as one of the sub-extension points, namely EP_CTS,
to generate test data by integrating concrete execution and symbolic execution.

• DeepConcolic. The DeepConcolic [27] leverages concolic testing to generate adversarial examples
with high coverage. Given a DNN under test, a set of coverage requirements <, an unsatisfied
requirement r, and the initial test suite T, in the phase of concrete execution, a test input t ∈ T is
identified to satisfy requirement r. Then, in the phase of symbolic execution, a new test input t

′

close to one of the test input t from T, is generated to satisfy requirement r and distance constraint
‖ t− t

′ ‖∞6 d. Then t
′

is added to the test suite T. t
′

is repeatedly generated until all requirements
are satisfied or no more requirements in < can be satisfied.

4.3. Testing Technique (EP_TT)

4.3.1. Description

After generating test data, the ExtendAIST selects an effective testing technique to detect
erroneous behaviors in the AI-in-the-loop system. The application of machine learning on embedded
systems leads to challenges on testing the safety, correctness, and robustness of AI-in-the-loop
systems [2–6,10–12,33,34]. Researchers have investigated various testing techniques to test the
properties of AI-in-the-loop system, including adversarial attack, mutation testing, metamorphic
testing, and test prioritization techniques.

The ExtendAIST provides the testing technique as an extension point EP_TT, and the four
techniques mentioned above as sub-extension points named EP_AE, EP_MUT, EP_MT (same as
the point EP_MT in Section 4.2.4), and EP_TP, respectively. Researchers consequently can apply the
existing techniques to reveal error behaviors in system or extend new testing techniques.

4.3.2. Adversarial Attack (EP_AE)

A neural network is vulnerable to imperceptible perturbations [18]. In other words, the adversarial
examples are misclassified with high confidence by a trained neural network. Therefore, adversarial
attack can be regarded as a powerful method to detect defects in AI-in-the-loop systems [86]. The
existing techniques of adversarial attack are described in Section 4.2.2, thus we introduce the categories
of adversarial attack with regard to the output label and distance metric in this section.

Lp = (Σn
i=1|xi − x

′
i |p)

1
p (10)

L0 = Σn
i=1|xi − x

′
i |0 (11)

L2 =
√

Σn
i=1|xi − x′i |2 (12)

L∞ = max(|x1 − x
′
1|, |x2 − x

′
2|, · · · , |xn − x

′
n|) (13)

• Targeted and Non-Targeted Adversarial Attack. According to the classification results for
individual adversarial example, adversarial attack is divided into two categories: targeted and



Appl. Sci. 2020, 10, 518 16 of 26

non-targeted adversarial attack [28,29]. Targeted attack indicates that the input adversarial example
is misclassified as a specific label, while non-targeted attack indicates that the input adversarial
example is assigned as any label not equal to the correct one.

• L0-norm attack. According to the definition of Lp-norm in Equation (10), L0 (Equation (11))
indicates the number of changed features in the original input. As a result, L0-norm attack is
used to minimize the number of features perturbed and generate new feature data against the
target label.

• L2-norm attack. L2 (Equation (12)) equals the Euclidean distance between original data and
adversarial example. A lower L2 indicates a smaller perturbation between the individual feature
data and a higher similarity between original data and adversarial example. Hence, L2 is also
used to solve the problem of overfitting in adversarial example.

• L∞-norm attack. L∞ (Equation (13)) represents the maximum difference among all feature
data, which is utilized to control the maximum perturbation between original data and
adversarial example.

4.3.3. Mutation Testing (EP_MUT)

Mutation testing is a method to measure test adequacy of a test suite by injecting faults into
the original program under test, namely mutants [87]. The ratio of the number of mutants detected
and the total number of mutants is referred to as the mutation score. The higher the mutation score
is, the stronger the fault detectability of the test suite is. The existing techniques based on this
sub-extension point EP_MUT are as follows.

• MuNN. MuNN [30] proposes five kinds of mutation operators according to the structure of neural
network, including deleting neurons in the input layer and hidden layers, changing the bias,
weights, and activation functions. A mutant neural network is said to be killed once its output is
distinct from the output of the original network. More mutant networks being killed indicates a
powerful test suite for DNN testing.

• DeepMutation. Since a trained model is obtained from the training program and training data,
Ma et al. [31] proposed a further study on mutation testing of AI module from two perspectives:
(1) generating mutant trained models based on the source-level mutation operators on the training
data or training program; and (2) generating mutant trained models directly based on the
model-level mutation operators on the original trained model, similar to MuNN.

4.3.4. Metamorphic Testing (EP_MT)

Metamorphic testing determines the correctness of software under test by checking whether the
related metamorphic relations are satisfied or not. Thus, it is a fundamental activity identifying diverse
metamorphic relations to evaluate their capabilities of fault detection and the quality of software.
Since Section 4.2.4 has introduced the existing techniques in point EP_MT, we briefly introduce the
DeepTest [14] to show the mechanism of metamorphic testing on AI-in-the-loop system.

• DeepTest. Nine transformation based MRs have been proposed in DeepTest, namely changing
brightness, contrast, translation, scaling, horizontal shearing, rotation, blurring, fog, and rain
on the images, to test the robustness of autonomous vehicles. Take images from camera as the
source images, and create the follow-up images by one or more transformation MRs on source
images. The DNN under test takes source and follow-up images as inputs and outputs the
source and follow-up steering angles under different real-world weather conditions, namely
θs = {θ1

s , θ2
s , · · · , θn

s }, θ f = {θ1
f , θ2

f , · · · , θn
f }. Strictly speaking, the steering angles should keep

unchanged under these transformations. That is, θs = θ f . However, a small variation of steering
angles, θ̂ = {θ̂1, θ̂2, · · · , θ̂n}, in real-world driving environment would not affect the driving



Appl. Sci. 2020, 10, 518 17 of 26

behaviors. Thus, the variations within the error ranges are allowed, as shown in Equation (14), in
which MSEorig = 1

n Σn
i=1(θ̂i − θi

s)
2.

(θ̂i − θi
f )

2 6 λMSEorig (14)

4.3.5. Test Prioritization (EP_TP)

The general procedure of testing DNN-based system is executing DNN-based system against a test
dataset with manual labels and inspecting whether the learned label and manual label are identical,
during which labeling each test case before testing is a labor-intensive activity. The sub-extension point
of test prioritization EP_TP converts the problem of misclassification to the problem of impurity of test
dataset, which can determine whether the input test case is misclassified by its impurity without the
need of labels.

• DeepGini [32]. Take binary classification as example; given a test data t and the output feature
vector B = {c1, c2}, execute DNN to compute the probability of each feature for t. If the probability
classified as c1 is Pc1 = 100%, and c2 is Pc2 = 0, then the feature vector B has the highest purity
and t is more likely to be classified correctly. In contrast, if Pc1 = 50%, Pc2 = 50%, then B has the
lowest purity, and t is more likely to be misclassified. ξ(t) is defined as the metric of impurity and
the likelihood of t being misclassified. As shown in Equation (15), pt,i is the probability of test
case t being classified as class i. A lower p2

t,i indicates a higher impurity and a higher likelihood to
misclassify t.

ξ(t) = 1− ΣN
i=1 p2

t,i (15)

4.4. Formal Verification Technique (EP_FV)

4.4.1. Description

Since formal verification is also an effective way to assure properties of AI-in-the-loop system,
the formal verification is regarded as an extension point EP_FV in the ExtendAIST. There already exist
various verification techniques for testing the robustness, testing adequacy, and decreasing test cost,
in which the formal verification is always transformed into the following problems: satisfiability
solver [33,88–91], non-linear problem [34,92–94], symbolic interval analysis [35], reachability
analysis [36], and abstract interpretation [37,95]. Therefore, the ExtendAIST provides these five
techniques as sub-extension points named EP_SS, EP_NLP, EP_SIA, EP_RA, and EP_AI, respectively.
Based on the above, researchers can develop or extend new formal verification techniques and apply
the existing techniques to assure the robustness and safety of AI-in-the-loop system.

4.4.2. Satisfiability Solver (EP_SS)

The safety verification of an image classifier can be reduced to the correct behavior satisfiability
which can search for adversarial examples if misclassifications exist [33].

• Safety verification. Given a neural network N, an input image x, a region η around x with the
same class, N is said to be safe for input x and η if the classification of images in η is invariant to
x. That is, N, η � x. In more depth, modifying the input image x with a family of manipulations
∆, N is said to be safe for input x, η, and manipulations ∆ if the classification of region η keeps
invariant to x under manipulations ∆, namely N, η, ∆ � x. If N, η, ∆ 2 x, then the image classifier
is vulnerable to these manipulations or adversarial perturbations.



Appl. Sci. 2020, 10, 518 18 of 26

4.4.3. Non-linear Problem (EP_NLP)

The formal verification of safety is also specified to prove the counterexample not exist for the set
of variable constraints to make the property always true [34].

• Piecewise linear network verification. Since some activation functions are non-linear, the formal
verification is transformed into a Mixed Integer Program (MIP) with the value of binary variables
δa, where δa = {0, 1}. The binary variable δa indicates the phase of activation function ReLU.
If δa = 0, the activation function is blocked and the output of related neuron will be 0; otherwise,
the activation function is passed and the output of related neuron will be equal to its input value.

4.4.4. Symbolic Interval Analysis (EP_SIA)

Symbolic interval analysis [35] utilizes the symbolic interval arithmetic to obtain the accurate
range of DNN’s output according to the ranges of input variables.

• ReluVal. Given an input range X, subintervals of X and security property P. DNN is secure if no
value in range X and its subintervals violate property P, that is, any value from range X satisfies
P; otherwise DNN is insecure if there exists one adversarial example in X violating P, that is, there
exists at least one subinterval containing an adversarial example to make property P unsatisfied.

4.4.5. Reachability Analysis (EP_RA)

To eliminate the limitation of network scale for formal verification, safety verification can also be
transformed into reachability analysis [36].

• DeepGo. If all values in the output range, the lower and upper bounds [l, u], correspond to
an input in input subspace X

′ ⊆ [0, 1]n, then the network f is reachable and the reachability
diameter is D(X

′
; f ) = u(X

′
)− l(X

′
). The network f is said to be safe for the input x ∈ X

′
if all

inputs in X
′

have the same label to x, as shown in Equation (16).

∀x
′ ∈ X

′
: arg max

j
cj(x

′
) = arg max

j
cj(x) (16)

4.4.6. Abstract Interpretation (EP_AI)

Since the scale of input data and neural network are tremendous, it is infeasible to verify whether
individual input satisfies the safety properties precisely. To overcome this obstacle, an abstract domain
is used to approximate the concrete domain and verify the safety properties against abstract domain
directly, referred to as the abstract interpretation theory [96,97]. The following existing techniques in
point EP_AI show the application of abstract interpretation on AIS testing.

• AI2. AI2 [37] proposes to employ the zonotope domain to represent the abstract elements in
neural network and output the abstract elements in each layer. Finally, the safety of network is
determined by verifying whether the label of abstract output in the output layer is consistent with
that of the concrete output.

• Symbolic propagation. To improve the precision and efficiency of DNN safety verification,
Yang et al. [38] proposed a symbolic propagation method based on the abstract interpretation by
representing the values of neurons symbolically and propagating them from the input layer to
output layer forwardly. A more precise range of output layer is computed by the interval abstract
domain based on the symbolic representation of output layer.



Appl. Sci. 2020, 10, 518 19 of 26

4.5. Evaluation Dataset (EP_ED)

4.5.1. Description

Since the machine learning based AI-in-the-loop system is a data-driven system, it is essential to
design datasets adaptive for diverse application areas to conduct the training, testing, and evaluation
procedures. There mainly exist five kinds of datasets for different purposes: image classification, self
driving, natural language processing, speech recognition, and Android malware detection.

Therefore, we take the common dataset as the super extension point EP_CD and the five kinds of
datasets as the sub-extension points named EP_IC, EP_SD, EP_NALP, EP_SR, and EP_AMD. Based on
the above, researchers can design more datasets for diverse scenarios and different learning, testing,
and evaluation tasks. The existing techniques and common datasets in each sub-extension point are
displayed as follows.

4.5.2. Image Classification (EP_IC)

The datasets for image classification are designed for object detection and classification in many
application areas. We take the dataset of image classification as a sub-extension point, EP_IC, to
identify more samples for training and testing models of image classification.

• MNIST. MNIST [39,40] is a dataset for recognizing handwritten digits (0–9) including
70,000 images originating from the NIST database [98]. The MNIST dataset is composed of
a training dataset with 60,000 images and a test dataset with 10,000 images, each of which contains
half clear digits written by government staff and half blurred digits written by students.

• EMNIST. EMNIST [41,42] is an extension dataset of MNIST for identifying handwritten digits
(0–9) and letters (a–z and A–Z). Therefore, there are totally 62 classes in EMNIST, including
10 classes of digits and 52 classes of letters. However, some uppercases and lowercases cannot be
distinguished easily (e.g., C and c and K and k), then the letters are merged into 37 classes.

• Fashion-MNIST. Fashion-MNIST [43,44] is a dataset with the extremely same format and size of
MNIST for identifying 10 classes of fashion products, such as T-shirt, trouser, pullover, dress, coat,
sandals, shirt, sneaker, bag, and ankle boots.

• ImageNet. ImageNet [45,46] is an image dataset describing the synsets in the WordNet hierarchy
with on average 1000 images.

• CIFAR-10/CIFAR-100. CIFAR-10 and CIFAR-100 [47] are labeled image datasets consisting of
60,000 32 × 32 color images, 50,000 of which are training images and 10,000 are test images.
CIFAR-10 is divided into 10 classes, and there are 5000 training images and 1000 test images for
each class. CIFAR-100 is divided into 100 fine classes, and each class contains 500 training images
and 100 test images.

4.5.3. Self Driving (EP_SD)

Self driving is a typical autonomous system inspecting the performance of AI-in-the-loop system.
Hence, the dataset for self driving is also regarded as a sub-extension point, EP_SD, for tasks such as
obstacle detection and tracking and traffic signal recognition.

• Udacity Challenge. Udacity Challenge dataset [48] is a set of images for training and testing the
objects detection models in the Udacity Challenge competition to measure the performance of
each participating model in terms of detection capability and classification precision. The Udacity
Challenge dataset contains two parts according to its classification. One consists of 9420 images in
three classes: car, truck, and pedestrian; and the other consists of 15,000 images in five classes: car,
truck, pedestrian, traffic light, and bycicle.

• MSCOCO 2015. MSCOCO 2015 [49,50] is a dataset gathered from the daily scenes of common
objects in the real-world environment, which aims at object recognition and localization.



Appl. Sci. 2020, 10, 518 20 of 26

This dataset contains 165,482 training images, 81,208 verification images and 81,434 testing
images in 91 classes, such as animal, vegetable, and human.

• KITTI. KITTI dataset [51–53] contains the realistic images captured from the real-world driving
environments such as mid-size city, rural area, and highway. All these images are divided into
five classes: road, city, residence, campus, and human. Evaluation tasks include stereo, optical
flow, visual odometry, object detection, and tracking.

• Baidu Apollo. The Baidu Apollo [54] open platform provides the massive annotation data and
simulation for training and testing autonomous driving tasks, such as obstacle detection and
classification, traffic light detection, road hackers, obstacle trajectory prediction, and scene analysis
under different street views and vehicle movement images.

4.5.4. Natural Language Processing (EP_NALP)

Automatic natural language processing with machine learning releases researchers from the
labor-intensive work of text processing. It is essential to design datasets for training and testing
systems with the ability of natural language processing, which guarantees the precision of these
systems. Therefore, we take the dataset for natural language processing as a sub-extension point,
EP_NALP, to design more processing method for various processing tasks.

• Enron. Enron [55] is an email dataset collected from 150 senior managers of Enron, which contains
about 500,000 real email messages. All emails from one manager are organized into a folder,
which contains the information of message-ID, date, sender, recipient, and messages.

• bAbI. bAbI [56] is a dataset from Facebook AI Research with 20 toy question-answering tasks.
Each task contains 1000 training examples and 1000 test examples, which aims at reasoning or
answering questions after training.

• Common Crawl. The Common Crawl corpus [57] contains petabytes of data including raw web
page data, metadata extracts, and text extracts by web crawling. This corpus provides web-scaled
data for developing or evaluating natural language processing algorithms empirically.

• SNLI. The SNLI corpus [58,59] contains 570,000 handwritten English sentence pairs with the
manual labels entailment, contradiction, and neutral. This dataset is used to evaluate models of
natural language inference.

4.5.5. Speech Recognition (EP_SR)

This sub-extension point EP_SR allows designing datasets for learning speech recognition,
with which the information omitted by human can be detected and represented by machine.

• Speech Commands. Speech Commands [60,61] is an audio dataset for detecting single keyword
from a set of spoken words. This dataset focuses on the audio of on-device trigger phrases and
contains 105,829 utterances of 35 words in format of WAVE files. All these utterance were recorded
from 2618 speakers, and each utterance is one second or less.

• Free Spoken Digit Dataset. FSDD [62] is a dataset of 2000 audio recordings of spoken English
digits in format of WAVE files. These speeches were recorded by four speakers with 50 recordings
of each digit per speaker.

• Million Song Dataset. This dataset [63,64] provides the feature analysis and metadata of one
million popular songs, and the audio can be fetched by the code in this dataset.

• LibriSpeech. LibriSpeech [65,66] is a collection of about 1000 hours of read English speech with
the labels of sentence level. Therefore, this dataset is suitable for full speech recognition.



Appl. Sci. 2020, 10, 518 21 of 26

4.5.6. Android Malware Detection (EP_AMD)

The sub-extension point EP_AMD allows researchers to design more malware datasets or enlarge
the scales of the following existing datasets, detect the Android malware, and ensure the security of
smart phones with the rapid development.

• Drebin. The Drebin dataset [67–69] contains 5560 Apps from 179 different malware families,
which is a lightweight dataset to identify Android malware.

• Genome. The Genome dataset [70,71] has collected more than 1200 malwares in different
aspects, such as the installation methods, activation mechanism, and the nature of carried
malicious payloads.

• VirusTotal. VirusTotal [72] is a dataset of mobile Apps samples for analyzing suspicious files and
URLs to detect types of malware including viruses, worms, and trojans.

• Contagio. The Contagio [73] is a platform for collecting the most recent malware, thus it can be
used to analyze and help detect unknown malware.

5. Discussion

Although we have investigated the possible extension, sub-extension points, and existing
techniques of AI-in-the-loop system testing, the AI techniques update significantly with the increasing
development of application areas and computation ability, which lead to the crucial fact that even the
points provided in ExtendAIST are not adequate to develop new techniques. This case will be the
main threat to the validity of our proposed ExtendAIST framework.

6. Conclusions

The AI-in-the-loop system is defined in this paper for discussing the main differences between
testing ordinary system and AI-in-the-loop system in terms of testing coverage, testing data, testing
property, and testing approach for unit testing and system testing, respectively. In this case, we find that
it is essential to design or extend new testing techniques based the existing techniques of AI-in-the-loop
system testing. Therefore, we propose an extendable framework ExtendAIST to explore the design
space of testing AI-in-the-loop system. The extendable framework ExtendAIST proposed in our paper
provides five extension points, 19 sub-extension points and corresponding testing requirements. Each
extension point involves one step in AIS testing procedure, and the sub-extension points for individual
extension point are the implemented approaches that could be extended further. Additionally,
ExtendAIST also provides some existing techniques in each sub-extension point which can be reused
directly or extended new techniques. According to the description of each point, we find that there
exist some opportunities for AI-in-the-loop system testing in the following extension points.

• EP_TCM. Training and testing procedure should be enhanced to adapt to different systems with
more complex networks. Thus, the extension point EP_TCM provides the first opportunity
to increase the testing coverage on different scaled AI-in-the-loop systems with regard to the
traditional software testing coverage metrics.

• EP_ED. Since enormous test data involve powerful computing ability and expensive computing
cost, the extension point EP_ED provides the second opportunity to design a dataset with
relatively smaller size for various application areas.

• EP_TT and EP_FV. AI-in-the-loop system testing techniques currently focus on assuring the
system correctness, safety, and robustness. This is the third opportunity provided by EP_TT and
EP_FV to design new testing approach to test more properties for AI-in-the-loop system including
efficiency, interpretability, and stiffness.

Author Contributions: Conceptualization, T.W. and Y.D.; Methodology, T.W.; Project administration, Y.D. and
Y.Z.; Supervision, Y.D.; Validation, T.W., Y.D., Y.Z., and A.S.; Visualization, T.W.; Writing—original draft, T.W.; and



Appl. Sci. 2020, 10, 518 22 of 26

Writing—review and editing, T.W., Y.D., Y.Z., and A.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the State Grid Technology Major Project of China under grant
No. 2019GW-12 (Security Protection Technology of Embedded Components and Control Units in Power System
Terminal).

Acknowledgments: Special thanks to my colleague Qianwen Gou for her help in the background of security and
stability intelligent control unit in power system terminal.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.F.R.; Berriel, R.F.;
Paixão, T.M.; Mutz, F.; et al. Self-driving cars: A survey. arXiv 2019, arXiv:1901.04407.

2. Hains, G.; Jakobsson, A.; Khmelevsky, Y. Towards formal methods and software engineering for deep
learning: security, safety and productivity for dl systems development. In Proceedings of the 2018 Annual
IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 23–26 April 2018; pp. 1–5.

3. Masuda, S.; Ono, K.; Yasue, T.; Hosokawa, N. A Survey of Software Quality for Machine Learning
Applications. In Proceedings of the 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), Xi’an, China, 9–13 April 2018; pp. 279–284.

4. Braiek, H.B.; Khomh, F. On testing machine learning programs. arXiv 2018, arXiv:1812.02257.
5. Ma, L.; Juefei-Xu, F.; Xue, M.; Hu, Q.; Chen, S.; Li, B.; Liu, Y.; Zhao, J.; Yin, J.; See, S. Secure Deep Learning

Engineering: A Software Quality Assurance Perspective. arXiv 2018, arXiv:1810.04538.
6. Huang, X.; Kroening, D.; Kwiatkowska, M.; Ruan, W.; Sun, Y.; Thamo, E.; Wu, M.; Yi, X. Safety and

Trustworthiness of Deep Neural Networks: A Survey. arXiv 2018, arXiv:1812.08342.
7. Zhang, J.M.; Harman, M.; Ma, L.; Liu, Y. Machine Learning Testing: Survey, Landscapes and Horizons.

arXiv 2019, arXiv:1906.10742.
8. Martinez, M.; Monperrus, M. Astor: Exploring the design space of generate-and-validate program repair

beyond GenProg. J. Syst. Softw. 2019, 151, 65–80. [CrossRef]
9. Barr, E.T.; Harman, M.; Mcminn, P.; Shahbaz, M.; Yoo, S. The Oracle Problem in Software Testing: A Survey.

IEEE Trans. Softw. Eng. 2015, 41, 507–525. [CrossRef]
10. Koopman, P.; Wagner, M. Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf.

2016, 4, 15–24. [CrossRef]
11. Goodfellow, I.; Papernot, N. The Challenge of Verification and Testing of Machine Learning. Available online:

http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html (accessed on 15 May 2019).
12. Koopman, P.; Wagner, M. Autonomous vehicle safety: An interdisciplinary challenge. IEEE Intell. Transp.

Syst. Mag. 2017, 9, 90–96. [CrossRef]
13. Pei, K.; Cao, Y.; Yang, J.; Jana, S. Deepxplore: Automated whitebox testing of deep learning

systems. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China,
28–31 October 2017; pp. 1–18.

14. Tian, Y.; Pei, K.; Jana, S.; Ray, B. Deeptest: Automated testing of deep-neural-network-driven autonomous
cars. In Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden,
27 May–3 June 2018; pp. 303–314.

15. Ma, L.; Juefei-Xu, F.; Zhang, F.; Sun, J.; Xue, M.; Li, B.; Chen, C.; Su, T.; Li, L.; Liu, Y.; et al. Deepgauge:
Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018;
pp. 120–131.

16. Sun, Y.; Huang, X.; Kroening, D. Testing deep neural networks. arXiv 2018, arXiv:1803.04792.
17. Fort, S.; Nowak, P.K.; Narayanan, S. Stiffness: A new perspective on generalization in neural networks.

arXiv 2019, arXiv:1901.09491.
18. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties

of neural networks. arXiv 2013, arXiv:1312.6199.

http://dx.doi.org/10.1016/j.jss.2019.01.069
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.4271/2016-01-0128
http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html
http://dx.doi.org/10.1109/MITS.2016.2583491


Appl. Sci. 2020, 10, 518 23 of 26

19. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Annual Conference on Advances in Neural Information
Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

20. Xie, X.; Ho, J.; Murphy, C.; Kaiser, G.; Xu, B.; Chen, T.Y. Application of metamorphic testing to supervised
classifiers. In Proceedings of the 2009 Ninth International Conference on Quality Software, Jeju, Korea,
24–25 August 2009; pp. 135–144.

21. Xie, X.; Ho, J.W.; Murphy, C.; Kaiser, G.; Xu, B.; Chen, T.Y. Testing and validating machine learning classifiers
by metamorphic testing. J. Syst. Softw. 2011, 84, 544–558. [CrossRef] [PubMed]

22. Zhou, Z.Q.; Sun, L. Metamorphic testing of driverless cars. Commun. ACM 2019, 62, 61–67. [CrossRef]
23. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014,

arXiv:1412.6572.
24. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial examples in the physical world. arXiv 2016,

arXiv:1607.02533.
25. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236.
26. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning

in adversarial settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), Saarbrucken, Germany, 21–24 March 2016; pp. 372–387.

27. Sun, Y.; Wu, M.; Ruan, W.; Huang, X.; Kwiatkowska, M.; Kroening, D. Concolic testing for deep neural
networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, Montpellier, France, 3–7 September 2018; pp. 109–119.

28. Akhtar, N.; Mian, A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access
2018, 6, 14410–14430. [CrossRef]

29. Poursaeed, O.; Katsman, I.; Gao, B.; Belongie, S. Generative adversarial perturbations. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2018;
pp. 4422–4431.

30. Shen, W.; Wan, J.; Chen, Z. MuNN: Mutation Analysis of Neural Networks. In Proceedings of the
2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C),
Lisbon, Portugal, 16–20 July 2018; pp. 108–115.

31. Ma, L.; Zhang, F.; Sun, J.; Xue, M.; Li, B.; Juefei-Xu, F.; Xie, C.; Li, L.; Liu, Y.; Zhao, J.; et al. Deepmutation:
Mutation testing of deep learning systems. In Proceedings of the 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE), Memphis, TN, USA, 15–18 October 2018; pp. 100–111.

32. Shi, Q.; Wan, J.; Feng, Y.; Fang, C.; Chen, Z. DeepGini: Prioritizing Massive Tests to Reduce Labeling Cost.
arXiv 2019, arXiv:1903.00661.

33. Huang, X.; Kwiatkowska, M.; Wang, S.; Wu, M. Safety verification of deep neural networks. In Proceedings
of the International Conference on Computer Aided Verification, Heidelberg, Germany, 24–28 July 2017;
pp. 3–29.

34. Bunel, R.; Turkaslan, I.; Torr, P.H.; Kohli, P.; Kumar, M.P. A Unified View of Piecewise Linear Neural Network
Verification. arXiv 2017, arXiv:1711.00455.

35. Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; Jana, S. Formal security analysis of neural networks using
symbolic intervals. In Proceedings of the 27th {USENIX} Security Symposium ({USENIX} Security 18),
Baltimore, MD, USA, 15–17 August 2018; pp. 1599–1614.

36. Ruan, W.; Huang, X.; Kwiatkowska, M. Reachability analysis of deep neural networks with provable
guarantees. arXiv 2018, arXiv:1805.02242.

37. Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.; Chaudhuri, S.; Vechev, M. Ai2: Safety and robustness
certification of neural networks with abstract interpretation. In Proceedings of the 2018 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 21–23 May 2018; pp. 3–18.

38. Yang, P.; Liu, J.; Li, J.; Chen, L.; Huang, X. Analyzing Deep Neural Networks with Symbolic Propagation:
Towards Higher Precision and Faster Verification. arXiv 2019, arXiv:1902.09866.

39. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

40. LeCun, Y.; Cortes, C.; Burges, C.J. The MNIST Database of Handwritten Digits. 1998. Available online:
http://yann.lecun.com/exdb/mnist/ (accessed on 15 May 2019).

http://dx.doi.org/10.1016/j.jss.2010.11.920
http://www.ncbi.nlm.nih.gov/pubmed/21532969
http://dx.doi.org/10.1145/3241979
http://dx.doi.org/10.1109/ACCESS.2018.2807385
http://dx.doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/


Appl. Sci. 2020, 10, 518 24 of 26

41. Cohen, G.; Afshar, S.; Tapson, J.; van Schaik, A. EMNIST: An extension of MNIST to handwritten letters.
arXiv 2017, arXiv:1702.05373.

42. EMNIST. 2017. Available online: https://www.westernsydney.edu.au/bens/home/reproducible_research/
emnist (accessed on 15 May 2019).

43. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning
algorithms. arXiv 2017, arXiv:1708.07747.

44. Fashion-MNIST. 2017. Available online: https://github.com/zalandoresearch/fashion-mnist (accessed on
15 May 2019).

45. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

46. ImageNet. 2009. Available online: http://www.image-net.org/ (accessed on 15 May 2019).
47. CIFAR. 2014. Available online: http://www.cs.toronto.edu/~kriz/cifar.html (accessed on 15 May 2019).
48. Udacity-Challenge 2016. Using Deep Learning to Predict Steering Angles. 2016. Available online: https:

//github.com/udacity/self-driving-car (accessed on 15 May 2019).
49. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft

coco: Common objects in context. In Proceedings of the European Conference on Computer Vision,
Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

50. MSCOCO. 2015. Available online: http://cocodataset.org/ (accessed on 15 May 2019).
51. KITTI. 2015. Available online: http://www.cvlibs.net/datasets/kitti/index.php (accessed on 15 May 2019).
52. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013,

32, 1231–1237. [CrossRef]
53. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In

Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,
16–21 June 2012; pp. 3354–3361.

54. Baidu Apollo. 2017. Available online: http://apolloscape.auto/ (accessed on 15 May 2019).
55. Enron. 2015. Available online: https://www.cs.cmu.edu/~./enron/ (accessed on 15 May 2019).
56. The bAbI Dataset. Available online: https://research.facebook.com/research/babi/ (accessed on

15 May 2019).
57. Common Crawl. Available online: http://commoncrawl.org/the-data/ (accessed on 15 May 2019).
58. Bowman, S.R.; Angeli, G.; Potts, C.; Manning, C.D. A large annotated corpus for learning natural language

inference. arXiv 2015, arXiv:1508.05326.
59. Stanford Natural Language Inference. Available online: https://nlp.stanford.edu/projects/snli/

(accessed on 15 May 2019).
60. Warden, P. Speech Commands: A dataset for Limited-Vocabulary speech recognition. arXiv 2018,

arXiv:1804.03209.
61. Speech Commands. 2017. Available online: https://download.tensorflow.org/data/speech_commands_v0.

01.tar.gz (accessed on 15 May 2019).
62. Free Spoken Digit Dataset. Available online: https://github.com/Jakobovski/free-spoken-digit-dataset

(accessed on 15 May 2019).
63. Million Song Dataset. Available online: http://millionsongdataset.com/ (accessed on 15 May 2019).
64. Bertin-Mahieux, T.; Ellis, D.P.W.; Whitman, B.; Lamere, P. The Million Song Dataset. In Proceedings of the

International Society for Music Information Retrieval Conference, Porto, Portugal, 8–12 October 2012.
65. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An ASR corpus based on public domain

audio books. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), South Brisbane, Queensland, Australia, 19–24 April 2015.

66. LibriSpeech. Available online: http://www.openslr.org/12/ (accessed on 15 May 2019).
67. Drebin. Available online: https://www.sec.cs.tu-bs.de/~danarp/drebin/index.html (accessed on

15 May 2019).
68. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable

detection of android malware in your pocket. Ndss 2014, 14, 23–26.

https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist
https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist
https://github.com/zalandoresearch/fashion-mnist
http://www.image-net.org/
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
http://cocodataset.org/
http://www.cvlibs.net/datasets/kitti/index.php
http://dx.doi.org/10.1177/0278364913491297
http://apolloscape.auto/
https://www.cs.cmu.edu/~./enron/
https://research.facebook.com/research/babi/
http://commoncrawl.org/the-data/
https://nlp.stanford.edu/projects/snli/
https://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://github.com/Jakobovski/free-spoken-digit-dataset
http://millionsongdataset.com/
http://www.openslr.org/12/
https://www.sec.cs.tu-bs.de/~danarp/drebin/index.html


Appl. Sci. 2020, 10, 518 25 of 26

69. Spreitzenbarth, M.; Freiling, F.; Echtler, F.; Schreck, T.; Hoffmann, J. Mobile-sandbox: Having a deeper look
into android applications. In Proceedings of the 28th Annual ACM Symposium on Applied Computing,
Coimbra, Portugal, 18–22 March 2013; pp. 1808–1815.

70. Zhou, Y.; Jiang, X. Dissecting Android Malware: Characterization and Evolution. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012.

71. Android Malware Genome Project. Available online: http://www.malgenomeproject.org/ (accessed on
15 May 2019).

72. VirusTotal. Available online: https://www.virustotal.com/ (accessed on 15 May 2019).
73. Contagio Malware Dump. Available online: http://contagiodump.blogspot.com/ (accessed on

15 May 2019).
74. Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans.

Neural Netw. Learn. Syst. 2019, 30, 2805–2824. [CrossRef]
75. Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit.

2018, 84, 317–331. [CrossRef]
76. Zhang, S.; Zuo, X.; Liu, J. The problem of the adversarial examples in deep learning. J. Comput. 2018, 41,

1–21. [CrossRef]
77. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput.

2019, 23, 828–841. [CrossRef]
78. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017

IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017; pp. 39–57.
79. Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 1765–1773.

80. Sarkar, S.; Bansal, A.; Mahbub, U.; Chellappa, R. UPSET and ANGRI: Breaking high performance image
classifiers. arXiv 2017, arXiv:1707.01159.

81. Mopuri, K.R.; Garg, U.; Venkatesh, B.R. Fast Feature Fool: A data independent approach to universal
adversarial perturbations. arXiv 2017, arXiv:1707.05572.

82. Chen, T.Y.; Cheung, S.C.; Yiu, S.M. Metamorphic Testing: A New Approach for Generating Next Test Cases;
Technical Report; Technical Report HKUST-CS98-01; Department of Computer Science: Hong Kong,
China, 1998.

83. Segura, S.; Fraser, G.; Sanchez, A.B.; Ruiz-Cortés, A. A survey on metamorphic testing. IEEE Trans.
Softw. Eng. 2016, 42, 805–824. [CrossRef]

84. Chen, T.Y.; Kuo, F.C.; Liu, H.; Poon, P.L.; Towey, D.; Tse, T.; Zhou, Z.Q. Metamorphic testing: A review of
challenges and opportunities. ACM Comput. Surv. (CSUR) 2018, 51, 4. [CrossRef]

85. Cadar, C.; Sen, K. Symbolic execution for software testing: three decades later. Commun. ACM 2013,
56, 82–90. [CrossRef]

86. Yi, P.; Wang, K.; Huang, C.; Gu, S.; Zou, F.; Li, J. Adversarial attacks in artificial intelligence: A survey.
J. Shanghai Jiao Tong Univ. 2018, 52, 1298–1306.

87. Jia, Y.; Harman, M. An analysis and survey of the development of mutation testing. IEEE Trans. Softw. Eng.
2010, 37, 649–678. [CrossRef]

88. Katz, G.; Barrett, C.; Dill, D.L.; Julian, K.; Kochenderfer, M.J. Reluplex: An efficient SMT solver for verifying
deep neural networks. In Proceedings of the International Conference on Computer Aided Verification,
Heidelberg, Germany, 24–28 July 2017; pp. 97–117.

89. Pulina, L.; Tacchella, A. An abstraction-refinement approach to verification of artificial neural networks.
In Proceedings of the International Conference on Computer Aided Verification, Edinburgh, UK,
15–19 July 2010; pp. 243–257.

90. Narodytska, N.; Kasiviswanathan, S.; Ryzhyk, L.; Sagiv, M.; Walsh, T. Verifying properties of binarized
deep neural networks. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

91. Cheng, C.H.; Nührenberg, G.; Huang, C.H.; Ruess, H. Verification of Binarized Neural Networks via
Inter-Neuron Factoring. arXiv 2017, arXiv:1710.03107.

92. Lomuscio, A.; Maganti, L. An approach to reachability analysis for feed-forward relu neural networks. arXiv
2017, arXiv:1706.07351.

http://www.malgenomeproject.org/
https://www.virustotal.com/
http://contagiodump.blogspot.com/
http://dx.doi.org/10.1109/TNNLS.2018.2886017
http://dx.doi.org/10.1016/j.patcog.2018.07.023
http://dx.doi.org/10.1093/comjnl/bxw089
http://dx.doi.org/10.1109/TEVC.2019.2890858
http://dx.doi.org/10.1109/TSE.2016.2532875
http://dx.doi.org/10.1145/3143561
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1109/TSE.2010.62


Appl. Sci. 2020, 10, 518 26 of 26

93. Cheng, C.H.; Nührenberg, G.; Ruess, H. Maximum resilience of artificial neural networks. In Proceedings
of the International Symposium on Automated Technology for Verification and Analysis, Pune, India,
3–6 October 2017; pp. 251–268.

94. Xiang, W.; Tran, H.D.; Johnson, T.T. Output reachable set estimation and verification for multilayer neural
networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5777–5783. [CrossRef] [PubMed]

95. Mirman, M.; Gehr, T.; Vechev, M. Differentiable abstract interpretation for provably robust neural networks.
In Proceedings of the International Conference on Machine Learning, Jinan, China, 26–28 May 2018;
pp. 3575–3583.

96. Cousot, P.; Cousot, R. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles Of Programming Languages, Los Angeles, CA, USA, 17–19 January 1977; pp. 238–252.

97. Cousot, P.; Cousot, R. Abstract interpretation frameworks. J. Logic Comput. 1992, 2, 511–547. [CrossRef]
98. Grother, P.J. NIST Special Database 19 Handprinted Forms and Characters Database; Technical Report; National

Institute of Standards and Technology: Gaithersburg, MD, USA, 1995.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNNLS.2018.2808470
http://www.ncbi.nlm.nih.gov/pubmed/29993822
http://dx.doi.org/10.1093/logcom/2.4.511
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	AI-in-the-Loop System
	AI-in-the-Loop System Testing

	ExtendAIST
	Architecture
	Design
	Illustration

	Extension Points and Sub-Extension Points
	Test Coverage Metric (EP_TCM)
	Description
	Neuron Level (EP_NL)
	Layer Level (EP_LL)
	Neuron Pair Level (EP_NPL)

	Test Data Generation (EP_TDG)
	Description
	Adversarial Examples (EP_AE)
	Generative Adversarial Examples (EP_GAE)
	Metamorphic Testing Based Strategy (EP_MT)
	Concolic Testing Based Strategy (EP_CTS)

	Testing Technique (EP_TT)
	Description
	Adversarial Attack (EP_AE)
	Mutation Testing (EP_MUT)
	Metamorphic Testing (EP_MT)
	Test Prioritization (EP_TP)

	Formal Verification Technique (EP_FV)
	Description
	Satisfiability Solver (EP_SS)
	Non-linear Problem (EP_NLP)
	Symbolic Interval Analysis (EP_SIA)
	Reachability Analysis (EP_RA)
	Abstract Interpretation (EP_AI)

	Evaluation Dataset (EP_ED)
	Description
	Image Classification (EP_IC)
	Self Driving (EP_SD)
	Natural Language Processing (EP_NALP)
	Speech Recognition (EP_SR)
	Android Malware Detection (EP_AMD)


	Discussion
	Conclusions
	References

