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Abstract: Because of the changes in cutting conditions and ultrasonic vibration status, the proportion
of multiple material removal modes are of uncertainty and complexity in ultrasonic vibration-assisted
grinding of optical glass. Knowledge of the effect of machined surface composition is the basis for
better understanding the influence mechanisms of surface roughness, and also is the key to control
the surface composition and surface quality. In the present work, 32 sets of experiments of ultrasonic
vibration-assisted grinding of BK7 optical glass were carried out, the machined surface morphologies
were observed, and the influence law of machining parameters on the proportion of different material
removal was investigated. Based on the above research, the effect of surface composition was briefly
summarized. The results indicated that the increasing of spindle rotation speed, the decreasing
of feed rate and grinding depth can improve the proportion of ductile removal. The introduction
of ultrasonic vibration can highly restrain the powdering removal, and increase the proportion of
ductile removal. Grinding depth has a dominant positive effect on the surface roughness, whereas
the spindle rotation speed and ultrasonic amplitude both have negative effect, which was caused by
the reduction of brittle fracture removal.
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1. Introduction

Optical glass is a typical hard and brittle material. Because of its unique excellent properties, it has
a wide range of applications in the fields of optics, inertial confinement nuclear fusion, aerospace,
and defense [1,2]. One of the most prominent features of optical glass materials is high brittleness
and low fracture toughness. The critical cutting depth of the material is extremely small. When the
instantaneous cutting depth of the abrasive grains did not reach the critical cutting depth, the material
is removed by plastic deformation [3]. When the instantaneous cutting depth of the abrasive grains
reached beyond the critical cutting depth, micro cracks are generated inside the material, as the micro
cracks propagates onto the machined surfaces, the material was removed by brittle fracture [4] and
powdering [5,6].

Ultrasonic vibration-assisted grinding has been used for precision machining of brittle materials
because of the fact that the average cutting force and cracks propagation can be significantly
reduced [7-9]. The effect of the process parameters on the process performances has been investigated
experimentally [10-12]. After introducing ultrasonic vibration into the machining process, impact
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effect was induced while the tool cutting into the optical glass material [13]. The effect of process
parameters on surface quality, such as surface roughness and machined surface composition may be
different than that of conventional cutting [14]. To the best of our knowledge, there are few reports on
the machined surface composition and materials removal modes.

In the past few years, domestic and foreign researchers have carried out a series of research on
the removal of optical glass materials. Zhao conducted a scratching test by varying the cutting depth,
based on this, he divided the material removal process into three parts: pure plastic flow, plastic and
fracture mixture, and brittle fracture. Clear cutting chips and material deformation characteristics
were found in his experiments. In addition, he also explained the cracks propagation directions,
it was claimed that the initial radial cracks tend to propagate along twinning planes while the lateral
cracks propagate along the basal plane [15]. Cao investigated the material removal and deformation
characteristics by observing the scratched surface morphologies, he pointed that the scratch groove
depth is deeper in ultrasonic vibration-assisted scratching [16]. Zhang researched the relationship
between stress characteristics and cracks propagation directions based on a varied cutting-depth
nanoscratching test [17], he also discussed the transition of material removal mode based on the
observation of scratched grooves. In another research of Zhang, the differences of material removal
in conventional grinding and ultrasonic vibration assisted grinding (UVAG) were investigated by
observing machined surface morphologies by using atomic force microscope (AFM) and scanning
electron microscope (SEM) [18]. He also compared the scratched grooves width and cracks propagation
of varied scratching depth by conducting actual experiments and simulating scratching process [19].
Li focused on the influence of elastic recovery on scratched grooves morphologies. He pointed that
elastic recovery may be a significant factor that affects machined surface quality in the actual grinding
process [20]. However, many of the present researches related to material removal are based on the
observation and analysis after scratching and indentation tests, which means the factors such as the
coupling effects of cracks in actual grinding process, and the variation of grinding parameters, could
not be easily taken into consideration.

In the ultrasonic vibration grinding process of optical glass, because of the huge number of
abrasive grains on the surface of the grinding wheel, and the randomness of the size and shape, the
protruding height of each abrasive grain is different, resulting in different instantaneous cutting depths
during processing. Therefore, there are often plastic removal methods, brittle removal methods, and
powder removal methods in the process. Moreover, under the combination of different processing
parameters, the proportion of the above three material removal methods on the machined surface will
also change, this change would be certainly depended on process parameters and grinding wheel
parameters. The mapping relationship between them needs to be studied. Wang developed a critical
function for crack propagation based on single grit scratching test, by using this function, he further
presented a model for predicting the change of material removal mode. In his model, original crack
density, strain rate, and grinding coolant are considered, the results showed that the crack damage
depth would reach a maximum value while the material removal mode is semi-brittle [21]. Dai
investigated the influence law of spindle rotation speed on grinding force and specific grinding energy,
he also claimed that the cracks and brittle-fractured pits sizes would become enormous because of the
transition of material removal mechanism (ductile regime to completely brittle regime) [22]. Gu has
taken consideration of coupling effects of multiple abrasive grains on cracks propagation to simulate
actual grinding process. He pointed that the micro cracks sizes would be significantly affected by
the separation distance of two abrasive grains [23]. However, there are few reports on the mapping
relationship between process parameters and material removal methods in the process of ultrasonic
vibration grinding of optical glass.

When the material is removed in different ways, it will produce different processed surface
topography, which will also produce different degrees of subsurface damage. Therefore, the proportion
of these removal methods on the machined surface determines the final machined surface quality
and subsurface damage. Although studies at home and abroad have been able to control the surface
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roughness [24-26], processing efficiency [27,28], force and energies [29,30] or damages [31] by adjusting
the process parameters, for the precision machining of brittle materials that pay attention to the surface
quality and subsurface damage at the same time, the intrinsic relationship between the proportion of
the material removal modes and the process parameters and the parameters of the grinding wheel is
still not clear. The effective control of the material removal modes proportion is the basis and key to
exploring the technical measures to jointly improve the processing surface and subsurface quality.

In this paper, to comprehensively investigate the effect of grinding parameters and ultrasonic
parameters to surface composition, 32 sets of experiments of ultrasonic vibration grinding of optical
glass are carried out first. Second, based on the measurement results, the effect of grinding parameters
and ultrasonic parameters on surface roughness was investigated, the changes of machined surface
morphologies and the proportion of three material removal modes in different grinding parameters
are analyzed. At last, the effect of processing parameters on surface composition in ultrasonic
vibration-assisted grinding of optical glass is briefly summarized.

2. Experimental Setup

In order to investigate the effect of grinding and ultrasonic vibration parameters on surface
composition and surface roughness, ultrasonic vibration-assisted grinding experiments of BK7 optical
glass materials were carried out on a 5-axis precision ultrasonic machine center (DMG Ultrasonic 70-5
linear). The Schott ultrasonic hollow nickel electroforming diamond grinding wheel was used, whose
diameter was 4 mm, average grain diameter was 64 um, and the diamond concentration was 100%.
Automatic laser measuring device was used to measure the length and radius of the tool. The grinding
tool oscillates along the axial direction of the spindle. The ultrasonic frequency of the cutting tool was
detected by the machine tool measurement device and its value was 30,047 Hz. The BK7 optical glass
material workpieces were in the form of cuboid with 50 mm in length, 50 mm in width, and 6 mm
in height. In order to preclude the influence of coolant on machining process, grinding coolant was
not used in these experiments. The glass workpiece was fixed to a steel plate using strong adhesive.
After sticking, the object was allowed to stand for 24 h at room temperature. Experimental setup and
scheme of the process kinematics is shown in Figure 1.

To extensively investigate the influencing law of machining parameters on surface composition
and surface roughness, a single factor design was employed in the experiments. The spindle rotation
speed, grinding depth, feed rate, and ultrasonic vibration amplitude were defined as the experimental
parameters. Since the resonance frequency is the best vibration frequency of the cutting tool during the
process of ultrasonic vibration machining, the ultrasonic frequency was not considered as the parameter
during the experiments [32,33]. The concrete experimental parameters are given in Table 1. A total of
32 groups of experiments were carried out on BK7 optical glass based on this experimental design.

Diamond
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(a) Experimental setup

Figure 1. Cont.
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Table 1. Machining parameters in ultrasonic vibration assisted grinding experiments of BK7 optical glass.

Serial No Spindle Rotation Feed Rate Grinding Depth Ultrasonic
’ Speed n/(rpm) V¢/(mm/min) ap/(um) Amplitude A/(pm)
1 1000 110 60 7
2 3000 110 60 7
3 5000 110 60 7
4 7000 110 60 7
5 9000 110 60 7
6 11,000 110 60 7
7 13,000 110 60 7
8 15,000 110 60 7
9 11,000 10 60 7
10 11,000 30 60 7
11 11,000 50 60 7
12 11,000 70 60 7
13 11,000 90 60 7
14 11,000 110 60 7
15 11,000 130 60 7
16 11,000 150 60 7
17 11,000 110 10 7
18 11,000 110 20 7
19 11,000 110 30 7
20 11,000 110 40 7
21 11,000 110 50 7
22 11,000 110 60 7
23 11,000 110 70 7
24 11,000 110 80 7
25 11,000 110 60 0
26 11,000 110 60 1
27 11,000 110 60 2
28 11,000 110 60 3
29 11,000 110 60 4
30 11,000 110 60 5
31 11,000 110 60 6
32 11,000 110 60 7

After the experiments, the surface morphologies of the machined surfaces were observed by
SEM, and the surface roughness of the machined surfaces were measured by AFM manufactured by
Nanosurf Nanite, Switzerland, whose average error in the X/Y direction is less than 0.6%, the number
of sampling lines set in the X/Y directions are both 256, the number of sampling points of each line is
256. In order to eliminate the random error, three sampling areas are taken randomly on the machined
surface, and the average value is taken as the final result of surface roughness. The surface arithmetic
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mean deviation (Sa) is selected as an index for evaluating the quality of the machined surface, and the

specific algorithm is shown in Equation (1).

1 &
Sa:mz

M
[nj
1

where

n;j—the protrusion height at the measuring point of the ith row and the jth column;
M—total number of rows in the measurement area;
N—total number of columns in the measurement area.

3. Results and Discussions
3.1. Analysis of the Effects in Surface Morphologies and Surface Roughness

3.1.1. Effect of Grinding Parameters on Surface Morphologies and Surface Roughness

)

To observe the details of morphologies on machined surfaces, 100 times zoomed images of
the morphologies at spindle rotation speed of 1000 rpm and 15,000 rpm are shown in Figure 2a,b,
respectively. Lots of brittle-fractured pits in large sizes was obviously observed on the machined
surface at the spindle rotation speed of 1000 rpm. It can be seen that the density of brittle-fractured pits
on the surface produced at a spindle rotation speed of 15,000 rpm is much higher than that generated
at a spindle rotation speed of 1000 rpm. The amount of brittle-fractured pits in large sizes produced at
n = 15,000 rpm is also found to be much less than that produced when n = 1000 rpm. According to
Equation (1), the fluctuation of protrusion heights of brittle-fractured pits is much bigger than that of
other areas on the machined surface, and, the existing of these areas could be the possible reason that

surface roughness always is in big value when the spindle rotation speed is small.
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Figure 2. Machined surface morphologies of optical glass at different spindle rotation speed.
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After the obvious increasing of spindle rotation speed, the sizes of brittle-fractured areas overall
decrease, and the machined surface becomes smooth. Meanwhile, the brittle-fractured pits in large
sizes nearly disappear. In order to further observe the influence of spindle rotation speed on the
proportion of different material removal modes, especially on the changing of powdering removal,
another two images of same surface areas zoomed by 1000 times are shown in Figure 2b,d. From
Figure 2b, slight powdering removal is found on the machined surface, and mainly consisted of fracture
lumps in micron level and scraps in sub-micron level. These defects all covered on the machined
surface but did not propagate onto the surface. After the spindle rotation speed changing to 15,000 rpm,
the scraps in sub-micron level nearly disappear and the amounts of fracture lumps also decrease to a
certain level, but they can still be found on the machined surface. Hence, a conclusion can be drawn,
obvious change in spindle rotation speed can strongly influences not only the surface roughness, but
also the proportion of powdering removal in sub-micron level, but cannot make the fracture lumps in
micron level change obviously.

The influence law of feed rate on surface roughness is shown in Figure 3. It can be seen that the
surface roughness has a rise as the feed rate increases. A possible reason for this change is that the
increase of feed rate leads to the decrease of critical cutting depth of BK7 optical glass material [34].
Another reason is that the number of grinding times of a single abrasive grain during unit time
decreases, to maintain the material removal rate in a certain level, the glass material will be removed
in bigger volumes. While there is no change on other conditions, the above two reasons both will
lead to the increase of grinding force and the proportion of brittle removal, surface roughness thus
becomes bigger.
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Figure 3. Influence of feed rate on surface roughness.

It also can be seen from Figure 3, while the feed rate changing from 10 mm/min to 150 mm/min,
the surface roughness only increased by around 75 nm. This means, although surface roughness is
widely used to assess machined surface quality, for optical glass material, the surface roughness may
not be such sensitive to cutting parameters than that in machining of other materials. On the contrary,
the proportion of material removal modes may be more efficient to justify the surface quality. Thus,
the effect of feed rate on the proportion of material removal modes should also be investigated.

For a deeper observation, 300 times zoomed images were selected to investigate the machined
surfaces morphologies of optical glass material, as shown in Figure 4. It can be seen that the material
removal sizes on machined surfaces tend to be well-distributed at the feed rate of 10 mm/min, and no
obvious removal areas in large sizes are found. But after the feed rate changing to 110 mm/min, several
brittle-fractured pits are found on the machined surface and their sizes are obviously larger than
that of other features. It is believed that the brittle-fractured pits mentioned above mainly consist of
incompletely developed willow leaf shaped pits and incompletely developed double sector shaped pits.

Notably, through the observation on 1000 times zoomed images of the machined surface, it can be
seen that the powdering material removal can be easily found on the machined surface at the feed rate
of 10 mm/min. Quite a few fracture lumps in micron level and scraps in sub-micron level produced by
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powdering material removal covered on the machined surface, and their proportion seems quite large.
However, after the feed rate changing to 110 mm/min, powdering material removal is found to be
much less, instead, brittle-fractured pits were induced onto the machined surface. Thus, the change
of feed rate has a significant influence on the material removal modes, also has a great effect on the
proportion of each removal mode.

According to the measured results of surface roughness, the surface roughness (Sa) of machined
surface showed in Figures 2c and 4a are 276.15 nm and 300.20 nm, respectively. Although there only
exists a difference of 24.15 nm, their surface morphologies and material removal mechanism are much
different. It can be seen from Figure 4c that the machined surface consists of small ductile and brittle
removal pits. But no obvious powdering removal is found. Since only spindle rotation speed and
feed rate changed in Figures 2c and 4a, respectively, the change of surface morphologies and material
removal mechanism thus might be related to the trajectories of abrasive grains, which can also prove
that the changes of spindle rotation speed and feed rate would have a significant influence not only on
the morphologies and sizes but also on material removal modes. Thus, a conclusion can be drawn, at
the combination of high spindle rotation speed and high feed rate, optical glass material is removed
mainly by incompletely developed willow leaf shaped pits, incompletely developed double sector
shaped pits and their combination in large sizes, supplemented by lumps in micron level. At the
combination of high spindle rotation speed and low feed rate, optical glass material is removed mainly
by lumps at the micron level, supplemented by completely and incompletely developed willow leaf
shaped pits in small sizes.

&
Powdering
removal

PR

(c) 300 timszooed image at V=110 m/min (d) 1000 times oomed imagé at Vf= 110 mm/min

St O SN

Figure 4. Machined surface morphologies of optical glass material at different feed rate.

The influence law of grinding depth on surface roughness is shown in Figure 5. It can be seen that
as grinding depth increases, the surface roughness also tends to increase. A possible reason is that
the value of grinding depth is strongly related to the magnitude of grinding force and penetration
depth. Another reason is that the critical cutting depth of glass material is strongly affected by the
grinding depth [26]. As grinding depth increases, it would be much easier for the transferring of
material removal mode from ductile removal to brittle removal. Both two reasons mentioned above
will lead to the influencing results shown in Figure 5.
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Figure 5. Influence of grinding depth on surface roughness.

Figure 6 shows the SEM images of machined surface morphologies of optical glass material
zoomed by different times in different grinding depth. From Figure 6a,c, it can be seen that, as the
grinding depth changed from 10 pm to 80 um, the amount of brittle-fractured pits in large sizes
increases, as shown in in Figure 6¢, but not very obvious. And through the further observation on
surface morphologies zoomed by 1000 times, as shown in Figure 6b,d, the morphologies of machined
surface is found to be quite similar. They were both mainly removed by little ductile removal pits and
quite a few brittle-fractured pits, supplemented removed by scraps in sub-micron level. No obvious
lumps in micron level are found on the machined surfaces. Thus, while the feed rate maintains a

relative higher level, the fracture lumps in micron level cannot take a large proportion whether the
grinding depth is big or not.

Powdering
removal

(c) 300 times zoomed image at 4, =80 um  (d) 1000 times zoomed image at a, = 80 pm
Figure 6. Machined surface morphologies of optical glass material at different grinding depth.

3.1.2. Effect of Ultrasonic Amplitude on Surface Morphologies and Surface Roughness

Ultrasonic vibration can provide separation effect between grinding tool and glass workpiece, and
also can affect grinding force, critical cutting depth, and many other factors. Thus, it is necessary to
investigate the influence of ultrasonic vibration on surface roughness and material removal mechanism.
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The influence of ultrasonic vibration amplitude on surface roughness is shown in Figure 7. It is
found that the surface roughness decreases as the ultrasonic vibration amplitude increases. A possible
reason is that, the material removal process is much similar to that in conventional grinding while
the ultrasonic vibration amplitude is in small value, the advantages of separation effect mentioned
above cannot be reflected. Besides, the removal volume of a single abrasive grain would increase with
a decrease in the separation effect. Another reason is that, the comprehensive and repeated impact and
ironing pressing effects of abrasive grains on glass workpiece are weakened when ultrasonic amplitude
is small, the motion strength of abrasive grains along axis direction is also weakened. The third reason
it that, ultrasonic vibration can provide cracks shield effect, that is, the second indentation will not
cause a median crack or this median crack will not propagate entirely if the distance between the first
indentation and the second indentation is too small. If ultrasonic vibration amplitude is in small value,
this effect will be restrained, the interference of median crack thus becomes weak, the lateral crack and
brittle-fractured sizes will correspondingly become large, the surface roughness thus becomes large.
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Figure 7. Influence of ultrasonic vibration amplitude on surface roughness.

Figure 8 showed the machined surfaces morphologies of BK7 optical glass material zoomed by
different times and in different ultrasonic vibration status. Through the macro observation on Figure 8a,c,
it is found the amount of ductile and brittle-fractured pits increases to a certain level when ultrasonic
vibration was introduced into grinding process. 1000 times zoomed images are used in order to further
observe the differences of morphologies and material removal modes. It can be seen from Figure 8b
that, while the material was machined without the help of ultrasonic vibration, machined surface
would consist of comprehensively distributed ductile, brittle-fractured pits, and their combinations.
The powdering removal also can be obviously found to be in a large proportion, including fracture
lumps in micron level and scraps in sub-micron level which covered the machined surface.

100.0pm 8
|

X AL \
(a) 300 times zoomed image without ultrasonic vibration  (b) 1000 times zoomed image without ultrasonic vibration

Figure 8. Cont.
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Figure 8. Machined surface morphologies of optical glass material at different ultrasonic vibration status.

After ultrasonic vibration was introduced into the grinding process, the material removal
mechanism obviously changed. From Figure 8d, when ultrasonic vibration amplitude is 7 um, the
amounts of brittle-fractured pits in large sizes become much less, instead, ductile removal pits are
induced. Meanwhile, the powdering removal in sub-micron level nearly disappear. The fracture
lumps in micron level still have a certain proportion, but their amounts become much less. Instead of
covering the machined surface in conventional grinding process, these powdering removal defects still
connected to the machined surface.

Hence, a conclusion can be drawn that the introduction of ultrasonic vibration changes the
proportion of three material removal modes (i.e., ductile removal, brittle removal and powdering
removal). Besides, the proportion of ductile removal mode increases while the proportion of brittle
removal mode decreases. The powdering removal in sub-micron level are strongly restrained by
ultrasonic vibration, the proportion of fracture lumps in micron level decreases. Unlike conventional
grinding, fracture lumps in micron level are still connected to the workpiece surface after machining,
they did not separate the workpiece neither covered it.

3.2. Effect of Grinding and Ultrasonic Parameters on Surface Composition

The machined surface of ultrasonic vibration assisted grinding of BK7 optical glass consists of
different proportions of ductile, brittle, and powdering areas. Understanding the increase in proportion
of ductile removal, reduce the proportion of powder removal and brittle removal would help to
improve the machined surface quality and clarify the direction of process optimization. Therefore,
based on the above analysis, the effect of process parameters on the surface topography composition
during ultrasonic vibration-assisted grinding of BK7 optical glass was summarized, as shown in the
Figure 9.

Increase
proportion

Big ultrasonic
vibration amplitude
Big feed rate
(Grinding depth)
8ig spindle speed

Big ultrasonic Decrease
vibration amplitude
Small feed rate
small grinding depth
8ig spindle speed

-, Brittle fracture
Decrease L Oovti/smnge sector shaped ps

proportion
Surface composition in
ultrasonic vibration assisted
grinding of BK7 glass
Figure 9. Effect of processing parameters on surface composition in ultrasonic vibration assisted
grinding of optical glass BK7.

Figure 9 briefly summarizes the effect of ultrasonic vibration parameters and grinding parameters
on the proportion of ductile removal, powdering removal, and brittle fracture. It is believed that brittle
fracture always occupies the biggest proportion on the machined surfaces, while that of powdering
removal is the smallest.



Appl. Sci. 2020, 10, 516 11 of 14

When the ultrasonic vibration amplitude and the spindle rotation speed are high the feed rate and
the grinding depth are small, the ductile removal in the machined surface occupies a higher proportion.
However, the changing of grinding wheel diameter did not show any obvious effect on the proportion
of ductile removal and brittle fracture. However, the bigger the ultrasonic vibration amplitude is, the
more obvious the repeated impact and ironing pressing effects are. Because of the high brittleness
and low fracture toughness, excessive impact and force would lead to the rapid growth in sizes of
surface and subsurface cracks. These disadvantages may cause the surface and subsurface qualities to
decrease, thus, the limiting value of ultrasonic vibration amplitude in the effect to surface composition
is 7 um. The feed rate has the dominant effect to powdering removal, and the grinding depth has
no obvious effect on the powdering removal. The lower feed rate would increase the proportion of
powdering removal to a certain degree; changing of grinding depth has little effect on the proportion

of powdering removal.
3.3. Analysis of the Changes in Surface Morphologies and Surface Roughness

Based on the above analysis, a better understanding on the mutual and comprehensive influence
of grinding and ultrasonic vibration parameters on surface roughness was obtained, as shown in

Figure 10.
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Figure 10. Influence of grinding and ultrasonic vibration parameters on the surface roughness in

3D space.

It can be seen from Figure 10a, in the grinding condition of these experiments, the rise in both
grinding depth and feed rate could lead to an increase in the surface roughness. Among them, grinding
depth has the dominant effect on surface roughness. It is because grinding depth mainly affect the
proportion of brittle fracture and ductile removal, and these two material removal modes are the
dominant effect to surface roughness, on the contrary, feed rate could affect the proportion of all the
three removal modes, thus, the effect of feed rate on the brittle fracture and ductile removal would
be weakened.

From Figure 10b, it can be seen that, the raise in both ultrasonic vibration amplitude and spindle
rotation speed could lead to the sharp decrease in surface roughness. Besides, the influence degree to
the surface roughness are much similar. However, the obvious influence of spindle rotation speed on
surface roughness mainly was reflected in the initial stage, while that of ultrasonic vibration amplitude
was reflected in both initial and later stages. The possible reason is that when spindle rotation speed
increases initially, the amount of brittle-fractured pits and powdering removal reduces sharply, but the

changes in removal volume of single abrasive grain tend to be smooth, thus the surface roughness
would not continuously decrease sharply. On the other hand, the introduction of ultrasonic vibration
leads to an obvious increase in the critical cutting depth, also the proportion of ductile removal,
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and with the increase in ultrasonic amplitude, this advantage becomes much more obvious, a sharp
decrease in surface roughness finally comes to an end.

4. Conclusions

In this work, ultrasonic vibration-assisted grinding experiments of BK7 glass were carried out.
According to the analysis of experimental results, the following conclusion can be obtained.

1. Machining parameters significantly influence the surface roughness (Sa). The surface roughness
(Sa) and pits sizes increase with the increase in feed rate and grinding depth, and decrease with
the increase in the spindle rotation speed and ultrasonic vibration amplitude.

2. Increase in spindle rotation speed and ultrasonic vibration amplitude, decrease in grinding depth
and feed rate could increase the proportion of ductile removal and reduce the proportion of brittle
removal. The introduction of ultrasonic vibration would largely inhibit the powder removal
of submicron crumbs and reduce the proportion of powdered removal of micron-sized pieces.
At the same time, the proportion of the ductile removal of willow leaf shaped removal could be
increased, and the proportion of the brittle removal of sector shaped removal could be reduced.

3.  Compared to feed rate, grinding depth has the dominant positive effect on the surface roughness,
the reason is the difference in the effect degree of these two parameters to powdering removal
proportion. The sharp decrease in proportion of brittle fracture and powdering removal is
the reason of the initial obvious influence of spindle rotation speed on surface roughness.
Surface roughness decreased obviously in both initial and later stages of increase in ultrasonic
amplitude, the reason is the notable increase in proportion of ductile removal and the inhibition
of powdering removal.
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Nomenclature

Sa Surface roughness (nm)

n Spindle rotation speed (rpm)
Vi Feed rate (mm/min)

ap Grinding depth (um)

A Ultrasonic amplitude (um)
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