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Abstract: To avoid serious damages caused by the dynamic environment, fault detection and health
assessment are essential for an integrated robotic system. In this paper, we propose a fault detection
algorithm and a health degree assessment approach for a robot manipulator system. Both the
internal disturbance and the output measurement disturbance are considered in the proposed
method. In addition, an adaptive observer is utilized to reconstruct the real system of robot
manipulators. Under the proposed observer, the real system is estimated to detect the fault and
obtain the health degree of the robot manipulator. The feasibility and reliability of the proposed fault
detection algorithm and health degree assessment index for robot manipulator systems are proved
by simulation experiments.

Keywords: fault diagnostics; health degree assessment; robot manipulator system; adaptive observer;
equipment maintenance and management

1. Introduction

With the rapid development of computation and communication techniques, information science
is increasingly becoming the research focus [1–3]. As an application of information science, robotics
and intelligent systems are frequently utilized in industrial fields that require high safety, reliability
and accuracy. Examples can be found in the advanced automated production and inspection line,
mining, disposal of hazardous materials. However, robotics systems are always plagued by failures for
many reasons such as incorrect operation and mechanical failure. Accurate fault detection and health
assessment of robotics systems are significant, especially for robot manipulators [4–6].

For the past two decades, intensively investigations have been involved in fault detection of robot
manipulators with different system models, see [7–13] and the references therein. So far, the fault
detection for robot manipulators is still a key issue due to its great application potentials in both
commercial and military areas [14–17].

Among the existing works related to fault detection for robot manipulators, the parameter
estimation and the state observer are also two commonly used techniques. In [18], a model-based
diagnostic scheme for actuator and sensor faults that may occur on a robot manipulator was
present. The fault detection was achieved by a generalized observer scheme based on second-order
sliding-mode approaches. However, the model-based detection scheme may suffer from modeling
uncertainties due to various factors, such as aging equipments and internal system noise. To address
it, Ma and Yang formulated a model-based actuator and sensor fault detection and isolation scheme
for robot manipulators. They presented a nonlinear function to estimate the fault parameters
with a pre-specified estimation error bound [19]. The parameter-variance model of a fault-tolerant
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multi-sensor switching strategy for robot manipulators was considered in some recent studies [20–22].
A novel detection approach for multi-joint robots was proposed and a collision observer was designed
iteratively through order reduction and re-selection of observer variables to improve computation
efficiency [23]. Compared with the generalized state observers, the adaptive state observer shows
a better performance in dealing with the disturbance [24]. By designing some adaptive nonlinear
observers, a multiple fault detection scheme for robot manipulators was proposed in [25].

Despite the above mentioned literatures involved in fault detection with modeling uncertainties,
the works addressing both internal and output measurement disturbances in robot manipulators
diagnostics are rare. The various disturbances in the system make it a challenging work to accurately
detect the fault manipulator. Motived by this, we consider the fault detection for robot manipulators
with both internal and output measurement disturbances. A novel fault detection and health
assessment approach is proposed to better reflect the possibility of robot manipulator failure. We design
an adaptive observer to reconstruct the robot manipulator system, and the health degree of the
manipulator is determined by comparing the real system with the original system. The feasibility
of the proposed fault detection algorithm and the health assessment approach are verified by
numerical simulations.

The remainder of this paper is organized as follows. We describe the kinetic model in Section 2.
In Section 3, a fault detection approach for robot manipulators in disturbance condition is presented.
The health assessment approach is given in Section 4, while the simulation results are provided in
Section 5 for testifying the performance of our proposed approaches. Finally, the concluding remarks
are provided in Section 6.

2. Kinetic Model

The dynamic model of an n-degree-of-freedom (n-DoF) robot manipulator [26] can be written in
joint space as the following form

M(q)q̈ + C(q, q̇)q̇ + G(q)− ud = ua, (1)

where q, q̇, q̈ ∈ Rn represent joint angular position, velocity and acceleration, respectively. M(q) ∈ Rn×n

denotes the positive definite symmetric inertia matrix. C(q, q̇) ∈ Rn×n and G(q) ∈ Rn denote the
Centripetal-Coriolis [27] and gravitational effect respectively. ud ∈ Rn is the external disturbance
torque that obeys a Gaussian distribution with zero mean. ua ∈ Rn is the actual output torque
generated by robot joint actuators.

Denote u ∈ Rn as the expected output torque, then we have ua = u in the fault-free case. When
the fault occurs, there is an error between the expected output torque and the actual output torque,

which can be described as ∆u = u− ua. Let x = [q, q̇]T be the state vector and θi =
ua

i
ui

be the ratio
between the actual output torque and the expected output torque, we can establish a state-space
model as {

ẋ = Ax + Φ0(x) + Φ1(x, u)θ + w,
y = Cx + v,

(2)

where A =

[
0 In

0 0

]
, Φ0(x) =

[
0

−M−1(q)(C(q, q̇)q̇ + G(q))

]
, Φ1(x, u) =

[
0

−M−1(q)U

]
,

U = diag(u1, u2, · · ·, un), θ = [θ1, θ2, · · ·, θn]T , C =
[

In 0
]
. w, v ∈ R2n are the system noise and

output noise signals that follow a Gaussian distribution with zero mean.

3. Fault Detection Algorithm

The objective of the fault detection algorithm is detecting relative errors between the expected
output torque and the actual output torque by limited measurable output data [28]. With the increment
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of relative errors, the fault possibility of the robot manipulator increases. In this context, we can
transform the fault detection to an identification problem of parameter θ. The relative errors between
the expected output torque and the actual output torque can be represented as |1− θ|. Therefore,
regarding θ as the unknown parameter, we apply the idea of adaptive state observer (ASO) [29] to
identify the value of θ. Before giving the fault detection algorithm, some assumptions are given below.

Assumption 1. The state x(t), the control u(t) and the unknown parameters θ are bounded, i.e., x(t) ∈ X ,
u(t) ∈ U , and θ ∈ W with compact sets X ∈ R2n, U ∈ Rn andW ∈ Rn.

Assumption 2. The function Φ0(x) and Φ1(x) are Lipschitz with respect to x uniformly in u, where (u, x) ∈
U ×X . Let the Lipschitz constants be L0 and L1, it can be obtained that

‖Φ0(x)−Φ0(x̂)‖ ≤ L0 ‖x− x̂‖ , (3)

‖Φ1(x)−Φ1(x̂)‖ ≤ L1 ‖x− x̂‖ . (4)

In order to identify the true value of θ, we design an ASO as



˙̂x(t) =Ax̂(t) + Φ0(x̂) + Φ1(x̂, u)θ̂(t)− (S−1 + Υ(t)P(t)ΥT(t))CT(Cx̂(t)− y(t)),
˙̂θ =− P(t)ΥT(t)CT(Cx̂(t)− y(t)),

Υ̇(t) =(A− S−1CTC)ΥT(t) + Φ1(x̂, u),

Ṗ(t) =− P(t)ΥT(t)CTCΥ(t) + kP(t),

(5)

where Υ(t) ∈ R2n×n, P(t) ∈ Rn×n are two auxiliary matrices, the symmetric positive definite matrix S is the
unique solution of kS + ATS + SA− CTC = 0 with a constant k, (A− S−1CTC) is the Hurwitz matrix, U is
bounded and ‖Υ(t)‖ has an upper bound.

Assumption 3. The input U is such that for any trajectory x̂ of system starting from ẋ(0) ∈ X, the matrix
CΥ(t) is persistently exciting in the following sense: ∃δ1, δ2 > 0, ∃T > 0,

δ1 In ≤
∫ t+T

t
ΥT(τ)CTCΥ(τ)dτ ≤ δ2 In, ∀t ≥ 0. (6)

Theorem 1. When the observation algorithm satisfies the Assumptions 1–3, there exists a constant k0, such that
for any k > k0 and initial value (x(0), x̂(0)) ∈ X2, the mean of the estimated errors E(x̂− x) and E(θ̂ − θ)

converge to 0.

Proof. Denote the errors between the true values of x, θ and the observed values of x̂, θ̂ be x̃ = x̂− x
and θ̃ = θ̂ − θ, we can get the derivation of errors as{

˙̃x = (A− S−1CTC)x̃ + Φ̃0(x̂, x) + Φ̃1(x̂, x)θ + Φ1(x̂, u)θ̃ + Υ(t) ˙̃θ + (w(t) + S−1CTv(t)),
˙̃θ = −P(t)ΥT(t)CTCx̃ + P(t)ΥT(t)CTv(t),

(7)

where Φ̃0(x̂, x) = Φ0(x̂)−Φ0(x) and Φ̃1(x̂, x) = Φ1(x̂, u)−Φ1(x, u). Denote η(t) = x̃(t)− Υ(t)θ̃(t),
one can derive

η̇(t) = ˙̃x− Υ̇(t)θ̃ − Υ(t) ˙̃θ
= (A− S−1CTC)η + Φ̃0(x̂, x) + Φ̃1(x̂, x)θ + (w(t) + S−1CTv(t)).

(8)

Firstly, we discuss the convergence of the system without noise signals, i.e., w(t) = 0, v(t) = 0.
To avoid confusion, the variables x, θ, η in the noise-free system are denoted by xe, θe, ηe, respectively.
Then, we can obtain
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˙̃xe = (A− S−1CTC)x̃e + Φ̃0(x̂e, xe) + Φ̃1(x̂e, xe)θ + Φ1(x̂e, u)θ̃e + Υ(t) ˙̃θe,
˙̃θe = −P(t)ΥT(t)CTCx̃e,
η̇e = (A− S−1CTC)ηe + Φ̃0(x̂e, xe) + Φ̃1(x̂e, xe)θ.

(9)

Let V1(ηe(t)) = ηe
T(t)Sηe(t), V2(θe(t)) = θe

T(t)P−1(t)θe(t), where S and P(t) are given by
Equation (5), we define the Lyapunov function V(ηe(t), θe(t)) = V1(ηe(t)) + V2(θe(t)). Based on
Equation (8), it is derived that

V̇1(ηe(t)) = η̇e
T(t)Sηe(t) + ηe

T(t)Sη̇e(t)
= ηe

T(ATS + SA− 2CTC)ηe + 2ηe
TSΦ̃0(x̂e, xe) + 2ηe

TSΦ̃1(x̂e, xe)θ

= −kV1 − ηe
TCTCηe + 2ηe

TSΦ̃0(x̂e, xe) + 2ηe
TSΦ̃1(x̂e, xe)θ.

(10)

From the definition of ηe, it is clear that

‖x̃e‖ ≤ ‖ηe‖+ ‖Υ(t)‖
∥∥θ̃e
∥∥ ≤ ‖ηe‖+ γm

∥∥θ̃e
∥∥ (11)

with γm = sup
t≥0
‖Υ(t)‖. Based on Assumptions 1–3, it can be deduced that

2ηe
TSΦ(x̂e, xe) ≤ 2

∥∥ηe
TS
∥∥ L0 ‖x̃e‖ ≤ 2L0(V1 + γM

√
λmax(S)λmax(P)

√
V1
√

V2), (12)

2ηe
TSΦ̃1(x̂e, xe)θ ≤ 2

∥∥ηe
TS
∥∥ L1θM ‖x̃e‖≤ 2L1θM(V1 + γM

√
λmax(S)λmax(P)

√
V1
√

V2), (13)

where θM = max
1≤i≤n

|θi|. Further, we set c1 = 2(L0 + L1θM), c2 = c1γM
√

λmax(S)λmax(P), then one

can get
V̇1(ηe(t)) ≤ −(k− c1)V1 + c2

√
V1
√

V2 − ηe
TCTCηe, (14)

V̇2(θ̃e(t)) = 2θ̃e
T(t)P−1 ˙̃θe(t)− θ̃e

T(t)P−1(t)Ṗ(t)P−1(t)θ̃e(t)
= −kV2 − θ̃e

T(t)ΥT(t)CTCΥ(t)θ̃e(t)− 2θ̃e
T(t)ΥT(t)CTCΥ(t)ηT

e .
(15)

Hence,

V(ηe(t), θ̃e(t)) = V̇1(ηe(t)) + V̇2(θ̃e(t))
= −(k− c1)V1 + c2

√
V1
√

V2 − kV2 − (θ̃e
T(t)ΥT(t)CTCΥ(t)θ̃e(t)+

2θ̃e
T(t)ΥT(t)CTCΥ(t)ηT

e + ηe
TCTCηe)

= −(k− c1)V1 + c2
√

V1
√

V2 − kV2 − xT
e (t)CTCxe(t)

≤ −(k− c1 − c2
2 )V.

(16)

Obviously, we can find k0 = c1 +
c2
2 , such that V(t) → 0 when k > k0. Thus, V(t) converges to

zero asymptotically, which implies that ηe(t), θ̃e(t) are asymptotically stable. From x̃e(t) = ηe(t)−
Υ(t)θ̃e(t), it is known that x̃e(t) is also asymptotically stable. Therefore, we can get that the system is
asymptotically stable. Since{

˙̃xe = (A− S−1CTC)x̃e + Φ̃0(x̂e, xe) + Φ̃1(x̂e, xe)θ + Φ1(x̂e, u)θ̃e + Υ(t) ˙̃θe,
˙̃θe = −P(t)ΥT(t)CTCx̃e,

(17)

it can be readily deduced that (w(t) + S−1CTv(t)) and P(t)ΥT(t)CTv(t) are bounded under the
bounded noise signals w(t) and v(t). Thus, x̃ and θ̃ are also bounded. That is to say, ∃ε1, ε2 > 0,
‖x̃‖ < ε1,

∥∥θ̃
∥∥ < ε2.

Besides, taking noise signals w(t) and v(t) into account, we can get
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d(E(x̃))

dt = (A− S−1CTC)E(x̃) + E(Φ(x̂, x)) + E(Φ̃1(x̂, x))θ + Φ1(x̂, u)E(θ̃)
+ Υ(t)E( ˙̃θ) + (E(w(t)) + S−1CTE(v(t))),

d(E(θ̃))
dt = −P(t)ΥT(t)CTCE(x̃) + P(t)ΥT(t)CTE(v(t)),

(18)

where E is an operator for calculating the mean value. As w(t) and v(t) are Gaussian distribution
signals with zero mean, it can be derived that{

d(E(x̃))
dt = (A− S−1CTC)E(x̃) + E(Φ(x̂, x)) + E(Φ̃1(x̂, x))θ + Φ1(x̂, u)E(θ̃) + Υ(t)E( ˙̃θ),

d(E(θ̃))
dt = −P(t)ΥT(t)CTCE(x̃).

(19)

Then we have E(x̃)→ 0, E(θ̃)→ 0 when t→ ∞. The proof is completed.

According to Theorem 1, it is known that the mean value E(θ̂) of observed parameters θ̂ can
converge to the true value of θ. Therefore, the proposed detection algorithm is available for the fault
detection of n-DoF robot manipulator.

4. Health Degree Assessment

Based on the fault detection algorithm proposed above, the observed parameters θ̂ can be obtained.
Here, we take the mean value θ̄(t) = 1

T
∫ t

t−T θ̂(τ)dτ of θ̂ over a period of time as a criterion for
health assessment.

For the n-link (n-joint) robot manipulator, a weight vector ω = [ω1, ω1, · · ·, ωn]T is given according
to the importance of each joint. We define a nonlinear function

f (x, a, b) =

{
0, |x− a| < b,
g(|x− a| − b), otherwise,

(20)

with a convex function g(·), then the health degree of the robot manipulator is evaluated by G(θ̄, α, h) =
h− ωT f (θ̄, 1, α), where h ∈ R+ is the upper bound of the health degree, α ∈ R+N is the nonlinear
dead zone threshold.

Once the health degree G(θ̄, α, h) drops below a certain threshold that can be set in accordance
with the specific situation, relevant alarm and emergency measures should be implemented timely.
Therefore, the health assessment index can be used to evaluate the failure risk of the robot manipulator.

5. Simulation

In the simulations, we consider a 2-DoF robot manipulator moving in the vertical plane with
gravity. The robot links are assumed to be a rod of length 1 m and 0.8 m with concentrated mass at
the rod end of 1 kg and 1.5 kg, respectively. The dynamics of the 2-DoF robot manipulator can be
described as

M(q) =

[
(m1 + m2)l2

1 + m2l2
2 + 2m2l1l2 cos(q2) m2l2

2 + m2l1l2 cos(q2)

m2l2
2 + m2l1l2 cos(q2) m2l2

2

]
, (21)

C(q, q̇) =

[
−m2l1l2q̇2 sin(q2) −m2l1l2(q̇1 + q̇2) sin(q2)

m2l1l2q̇1 sin(q2) 0

]
, (22)

G(q) =

[
(m1 + m2)gl1 cos(q2) + m2gl2 cos(q1 + q2)

m2gl2 cos(q1 + q2)

]
, (23)

where m1 = 1, m2 = 1.5, l1 = 1, l2 = 0.8, w(t), v(t) are white Gaussian noise signals with mean 0 and
variance 0.01.
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We set u(t) = [2, 2]T , k = 10, θ̂(0) = [1, 1]T , P(0) = I2, Υ(0) = [ 0 I2 ]T , x(0) = [1, 1, 1, 1]T and
x̂(0) = [0, 0, 0, 0]T . The simulation results are presented in Figure 1.

simulation graphics can be obtained as  follows.
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(a) The state estimation errors of q̂1 − q1
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(c) The state estimation errors of ˆ̇q1 − q̇1
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(d) The state estimation errors of ˆ̇q2 − q̇2

Figure 1. The state estimation errors of four states.

As discussed in Section 3, the actual dynamic robotic system can be regarded as a drive system,
and our proposed ASO is treated as the response system. The errors between estimated state values
and true values can be seen in Figure 1. The four states eventually converge to the real values, and the
errors approach zero. This demonstrates the convergence of the proposed algorithm.

In Figure 2, we testify the performance of our algorithm for the observation of unknown
parameters. For comparison, we introduce the extended state observer (ESO) proposed in [23].
Before 10th second, the real system runs at the expected state, i.e., θ = [1, 1]. At 10th second, the fault
occurs due to several unpredictable external or internal disturbances, and θ = [0.6, 0.8]. From Figure 2,
it can be seen that due to the random fluctuations in the system, the estimated parameters based on
both ASO and ESO will eventually converge to a value near the true value. However, the proposed
ASO shows a faster convergence rate than the ESO. This also verifies the effectiveness of our fault
detection algorithm.

Choose T = 1, we can obtain θ̄1, θ̄2 based on the health assessment approach proposed in Section 4.
Compared with Figure 2, the mean value of the estimated parameters over a period of time is closer to
the true value as shown in Figure 3. This is consistent with our theorem. In addition, this also shows
that a health assessment θ̄ based on the mean estimation over a period of time is more effective than
that based on only one estimation.
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Figure 2. The state estimation of unknown parameters.
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Figure 3. The state estimation of θ̄1 and θ̄2.

Finally, we select α = 0.05, h = 100 and ω = [0.5, 0.5]T to quantify the health degree. Given
a nonlinear function g(·) as a quadratic function g(x) = 500x2, the evolution curve of the health
degree of the 2-DoF robot manipulator over time is shown in Figure 4. As the fault occurs, the health
degree drops sharply to around 60, which verifies the rapidity of our fault detection algorithm and the
applicability of our health degree assessment index.
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Figure 4. The health degree of the 2-DoF robot manipulator.

It is noted that the 2-DoF robot manipulator in the simulations is used only as an illustrative
example for testifying the performance of the proposed fault detection algorithm and health degree
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assessment index. Since our theoretical analysis in Sections 3 and 4 is based on the dynamic model of
an n-DoF robot manipulator (1), the results of Figures 1–4 can be generalized to robot manipulators
with arbitrary DoF.

6. Conclusions

In this paper, a state-space model of the n-link manipulator is formulated based on the physical
characteristics of manipulators. The internal system disturbance and the output measurement
disturbance are further considered. A novel fault detection algorithm for the robot manipulator
is proposed. The algorithm employs an adaptive observer to reconstruct the real robot manipulator
system, and compares the real system with the original system to judge the fault possibility.
Furthermore, we propose a health assessment approach based on the proposed fault detection
algorithm, which can better reflect the possibility of robot manipulator failure. The validity of our
fault detection algorithm and the rationality of our health assessment index are verified through
experimental data with a 2-degree-of-freedom robot manipulator. Due to the high penetration of robot
equipments in the current industrial field, it is envisioned that our work will provide an effective
method for the risk management in real systems. In the future, we will apply the proposed method to
the automated production and inspection lines in the electrical industry.
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