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Featured Application: The application of the article lies in the monitoring and diagnosis of
failures in gearbox and rotating machines.

Abstract: In gearboxes, the occurrence of unexpected failures such as wear in the gears may
occur, causing unwanted downtime with significant financial losses and human efforts. Nowadays,
noninvasive sensing represents a suitable tool for carrying out the condition monitoring and fault
assessment of industrial equipment in continuous operating conditions. Infrared thermography
has the characteristic of being installed outside the machinery or the industrial process under
assessment. Also, the amount of information that sensors can provide has become a challenge for
data processing. Additionally, with the development of condition monitoring strategies based on
supervised learning and artificial intelligence, the processing of signals with significant improvements
during the classification of information has been facilitated. Thus, this paper proposes a novel
noninvasive methodology for the diagnosis and classification of different levels of uniform wear
in gears through thermal analysis with infrared imaging. The novelty of the proposed method
includes the calculation of statistical time-domain features from infrared imaging, the consideration
of a dimensionality reduction stage by means of Linear Discriminant Analysis, and automatic fault
diagnosis performed by an artificial neural network. The proposed method is evaluated under
an experimental laboratory data set, which is composed of the following conditions: healthy, and
three severity degrees of uniform wear in gears, namely, 25%, 50%, and 75% of uniform wear.
Finally, the obtained results are compared with classical condition monitoring approaches based on
vibration analysis.

Keywords: infrared thermography; thermal analysis; supervised learning; gearbox; sensor

1. Introduction

Sensors are important elements in automation and the new concept of industry 4.0 because they
allow the monitoring and assessment of the physical conditions of equipment, in order to achieve a
better capacity for the control, reliability and integrity of industrial equipment [1]. In recent years,
sensing has become more important in the research field, resulting from technological advances in
detection that allow multivariate sensor monitoring [2], generating significant improvement in the
observability of industrial systems. However, multivariate monitoring in engineering systems provides
a large amount of varied data, generating a challenge for data processing [3]. With the significant
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development of intelligent detection techniques and artificial intelligence, data analysis offers a
promising approach to effectively learning complex multivariable data, which is why supervised and
unsupervised learning techniques may be considered as two powerful tools for solving problems
presented as a result of a large amount of data to be processed, allowing the reduction of information
and a significant improvement in the analysis and the classification of data [4].

Thus, condition monitoring and fault assessment strategies play an important role in ensuring the
availability of industrial processes; in this regard, it is desirable that most industrial systems will be
monitored by different sensors for ensuring the integrity of the industrial equipment. The gearbox
transmission system is one of the important elements due to the fact that it contains mechanical
elements that are commonly included in a wide variety of industrial applications; the reason for its
common use is because it is needed in order to handle different rotating speeds and maintain specific
torques between the electric machines and the load mechanics. Although these components are robust,
efficient, reliable and have a low cost, their monitoring and continuous assessment are necessary [5].
Even so, the occurrence of unexpected faults in gearboxes can occur at any time, causing production
losses, system malfunctions or unwanted downtime, with significant financial losses and human
efforts [6].

Various faults may occur within the gearbox transmission system. In the literature, it has been
reported that the occurrence of faults in the gears represents 80% in transmission machinery systems
and 10% in rotating machinery systems [7], resulting from several factors ranging from inadequate
lubrication, fluctuating loads, decoupling, misalignment, poor cooling, and gear design, among
others [8]. In the literature, different methodologies for monitoring and detecting gearbox faults have
been reported based on different sensing techniques and methods for analyzing and classifying data.
For example, acoustic emissions are used to detect angular misalignments of shafts in the gearbox [9].
Furthermore, the influence of the oil film thickness has been considered in the detection of failures
in helical gearboxes [10], and also the application of the discrete wavelet transform and the use of
artificial neural networks for acoustic signals have been taken into account for the detection of faults in
gearboxes [11]. On the other hand, vibration-based analysis represents the most classical approach
to perform fault detection in gearbox transmission systems; in this sense, a time-frequency signal
analysis using a generalized synchronism transformation is applied to diagnose gearbox failures and
bearing defects from vibration signals [12,13], and intelligent diagnostic models for gearboxes have
also been proposed from wavelet support vector machines and genetic algorithms using vibration
signals [14]. Other physical magnitudes have been also considered; thus, the use of motor current
signature analysis (MCSA (Table 1 shows the definition)) has also been a classical approach to identify
the characteristic frequencies of gearbox failures [15] and also to diagnose eccentricity failures during
transient speeds [16]. Yet, although some investigations have focused on the analysis of faulty
conditions in gearbox transmission systems, there exists a lack of analysis to diagnose the occurrence
of incipient faults, such as uniform wear in the gears, in such systems.

Table 1. Acronyms and definitions.

Acronym Definition
AC Alternative Current
Al Artificial Intelligence
ANN Artificial Neural Network
DC Direct Current
HTL Healthy
k-NN k-Nearest Neighbor
LDA Linear Discriminant Analysis
LTSA Load Torque Signature Analysis
MCSA Motor Current Signature Analysis
MLP Multilayer Perceptron
RTD Resistance Temperature Detector

SVM Support Vector Machine
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Gears are the main part of the gearbox transmission system because they are responsible for
transmitting the circular motion through the contact of cogwheels inside of them. In spite of this,
their continuous operation makes the occurrence of incipient failures inherent in this type of element.
Indeed, the friction between the gears leads to reduction in the mechanical properties and accelerates
the degradation of the gears; the appearance of uniform wear in gears is known as the most common
and initial fault condition [17]. On the other hand, the most common faults that have been reported
are related to the presence of irregularities in the teeth of the gears such as tooth breakage; chipping
and cracks in the root; and chipping, pitting and damage to the surface of the tooth [18,19]. To detect
these problems, adaptive wavelet filters are effectively applied to vibration signals acquired from the
monitoring of the gearbox [20]. In addition, diagnosis methodologies based on vibration signals are
proposed for the identification of wear in gears [7], with MCSA and load torque signature analysis
(LTSA) being applied to detect faults such as misalignment, wear and mass imbalances of gears [21].
Nevertheless, few reported papers analyze and study gradual and uniform wear in the gears of the
transmission system. Moreover, most techniques used for monitoring the condition in gearboxes have
their limitations, with the vibration and the acoustic signal being affected by environmental noise and
the location of the sensors [22]. MCSA is not a direct measurement of the equipment; it is based on the
current of the electric motor, which can cause confusion when it comes to condition monitoring and
failure detection in a gearbox [23]. Also, when a gear presents a fault, it manifests with an increase
in temperature. One technique widely used for temperature monitoring is infrared thermography,
and this may be a complementary and helpful method in conjunction with the most used and proven
techniques for monitoring and detecting faults in a gearbox transmission system.

Thereby, infrared imaging is a noninvasive and nondestructive technique that efficiently monitors
temperature and possesses a wide range of monitoring and the possibility to visualize and locate hot
spots [24] through the increase in temperature caused by the faults present in the gearbox transmission
system. Although this technology was expensive in the beginning, low-cost cameras and cores have
emerged that make it more accessible and used in various areas such as medicine, manufacturing, and
electrical engineering, among others [25-27].

Besides that, there are multivariable and multiple sensors, in which each pixel of the image
represents a temperature value as well as a color intensity value. In the literature, few papers are
reported that use infrared imaging for monitoring and diagnosis of gearbox failures. A thermal analysis
was proposed based on MLP neural networks for the diagnosis of failures in helical gears [28]. Further,
there was a review published discussing different studies with infrared imaging to detect failures in
gearboxes [29], and infrared imaging was used as a complement to other techniques such as vibration
signals and acoustic signals for the diagnosis of failures in a gearbox [30]. Even so, the papers reported
in the literature that use infrared imaging only focus on failures in the gearbox and do not study the
wear in the gears of the gearbox transmission system. Furthermore, not all the information generated
by infrared imaging is used, and the analysis and classification of data may be chaotic. In addition, the
use of artificial intelligence (Al) techniques has increased as an emerging field in industrial applications;
in this regard, techniques such as k-Nearest Neighbor (k-NN), Naive Bayes Classifier, Support Vector
Machine (SVM) and Deep Learning are used to represent an effective solution for the recognition
and automatic diagnosis of failures in rotary machines. However, although most of them may be
included in condition monitoring schemes, sometimes their improper application can produce several
limitations; for example, k-NN needs a lot of storage space, Naive Bayes must have combinatorial
and calculation problems and there is a need for prior probability, SVM has low efficiency, and Deep
Learning needs large samples and training for a long time, plus it only focuses on failures in the
gearbox. The proposal and choice of an Al technique such as an Artificial Neural Network (ANN)
may lead to the performance of automatic fault diagnosis and condition assessment of the incipient
occurrence of wear in gears, providing a high classification performance [31].

For this reason, the main contribution of this paper lies in the proposal of a novel noninvasive
methodology that combines the analysis of thermographic images, supervised learning and artificial



Appl. Sci. 2020, 10, 506 40f18

neural network (ANN) for the automatic diagnosis and assessment of different levels of uniform
wear conditions in a gearbox transmission system. Also, it helps to contribute and complement all
the techniques used for the continuous diagnosis and identification of incipient faults in industrial
machinery composed of gearboxes. Additionally, the novelty of this work includes the use of thermal
images that come from a thermographic camera, which is used for the analysis of the thermal behavior
of the gearbox. The thermal matrix of the thermography is used to extract a set of suitable features
and to perform their dimensionality reduction through LDA to obtain a visual representation of the
considered conditions; in addition, the implementation of an ANN allows the automatic classification
and final diagnosis outcome. Thereby, the proposed methodology consists in detecting the hot spots of
the infrared imaging produced by the uniform wear in the gears, and then extracting thermal statistical
features that characterize the different levels of wear in the gears. Based on the extracted data sets,
linear discriminant analysis (LDA) is applied for the reduction of dimensionality features. An ANN is
proposed for the classification and detection of uniform wear in the gears. A novel methodology is
applied to the study of four states in the gears: healthy (HTL), and with 25%, 50%, and 75% uniform
wear in the gear. Finally, the novel methodology is compared to vibration signals, obtaining an
improvement for the diagnosis and classification of faults by uniform wear in the gears of the gearbox
transmission system when using infrared imaging.

2. Theoretical Considerations

2.1. Infrared Imaging

Infrared imaging is a technique used to record infrared radiation, which permits the estimation of
a body’s surface temperature. Any object at a temperature above absolute zero (0 K or —273.15 °C)
emits energy electromagnetic radiation depending on its temperature [32]. An infrared imaging
camera absorbs the infrared radiation emitted by a body through a noncontact method and, using
Stefan-Boltzmann law, the body’s temperature is obtained [33].

Additionally, the consideration of infrared cameras allows us to obtain either digitized intensity
values or temperature values, and depending on the application, one or both values are used. In this
sense, it should be mentioned that although several research studies exist that consider these values for
carrying out condition monitoring and fault identification in rotating machinery, most of the reported
works have not based the fault assessment on the estimation of the thermal matrix.

2.2. Linear Discriminant Analysis (LDA)

In regard to the condition monitoring of gearbox transmission systems, the estimation of a
characteristic and significative set of features plays an important role in determining the occurrence of
faults. Yet, although a high-dimensional set of features may be estimated to assess the actual condition
of transmission systems, the calculation of non-useful and correlated information is inevitable. Thus,
dimensionality reduction techniques play an important role in reducing high-dimensional sets of
features and also for removing such non-significative and correlated information that may lead to
low performances during the condition assessment [34]. Since the LDA technique is a supervised
technique, its consideration in condition monitoring schemes is suitable due to the fact that it can face
multi-class problems; moreover, through LDA an original n-dimensional feature space is reduced,
aiming to maximize as much as possible the linear separation between the considered classes.

Indeed, such dimensional reduction is performed by means of a linear transformation, where the
resulting low-dimensional space represents a linear combination containing different weights from the
original features. Thus, to guarantee the maximum class separability, the ratio of the between-class
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variance to the within-class variance is estimated [35]; thereby, by considering a multi-class problem
with C classes of N number of samples, the between-class scatter matrix is calculated as follows:

C
Sy = Z{ N(m; — ) (m; — ) (1)
p

where N; belongs to the total number of samples for the j-th class C;; considering all the evaluated
classes, m is the global mean of all data samples, and mj is the local mean of each class C;. Thus, the
within-class scatter matrix is calculated as:

C
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where xZ], is the i-th sample that corresponds to each class C]-; as a result, in Swj, the corresponding
covariance matrix of class C; is estimated.

Accordingly, the optimum and resulting vector of projection Wrpa chosen by the LDA allows us
to perform a good separation of the evaluated classes, since the estimated transformation matrix has
orthonormal columns that maximize the ratio of the determinant of the between-class matrix of the
projected samples to the determinant of the within-class scatter matrix of the projected samples, that is:
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where {w;li = 1,2,--- ,m} is the set of generalized eigenvectors, also known as discriminant vectors, of
Sp and Sy, that correspond to the C-1 largest generalized eigenvalues {A;li = 1,2,--- ,m}.

Thereby, the resulting extracted features represented in V are calculated by means of projecting
the original data set of features X into the low-dimensional space Wrpa as follows:

V=WipaTX 4)

2.3. Artificial Neural Network (ANN)

One of the popular artificial neural networks for pattern classification is the multilayered
perceptron neural network (MLP). To define an ANN, it is necessary to establish parameters such as the
connections, the number of layers, the activation functions, the propagation rules, etc. [32]. In the case
of the MLP, it needs to consider its two different stages: the learning stage and the prediction process.
In the case of the MLP, the propagation rule is the weighted sum, and it is defined according to (5).

Y wiit) ®)
i=1

where wj; is the weight that connects neuron i in the input layer with neuron j in the hidden layer, x; is
the output from neuron i in the input layer, n is the number of neurons in the input layers, and ¢ is the
pattern [36].

3. Methodology

In this section, we describe the proposed diagnosis methodology applied to the identification
and classification of different levels of uniform wear in gears as an incipient failure in a gearbox
transmission system. The methodology is mainly composed of six steps, as shown in Figure 1.
In the first step, different conditions of uniform wear in gears are experimentally evaluated under
continuous working conditions in a gearbox transmission system. Then, the second step considers
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the continuous monitoring of the different conditions under evaluation, and from the continuous
monitoring, infrared images are acquired, which contain meaningful information related to the
current condition under assessment. Afterward, in the third step, the detection of hot spots over the
infrared image is identified, aiming to compute its corresponding thermal matrix. Subsequently, in
the fourth step, for each evaluated condition, a significative statistical set of features is estimated
from the previous thermal matrices. Then, in the fifth step, a dimensionality reduction is carried out
by means of linear discriminant analysis, aiming to obtain a visual representation of all considered
conditions in a 2D space. Additionally, with the consideration of the dimensionality reduction stage,
the classification task is facilitated for the considered classification algorithm. Finally, in the last step,
automatic fault identification is performed by means of an artificial neural network; thus, the condition
assessment results in the classification of the different levels of uniform wear in the gears of the gearbox
transmission system.

3.1. Condition Monitoring

During the continuous condition monitoring, different levels of uniform wear are iteratively
evaluated in the gearbox transmission system; in this regard, several hot spots are identified over the
gearbox transmission system in order to obtain the most significative information related to its thermal
behavior for each evaluated condition. Once the identification of the hot spots has been performed, the
system is prepared to be monitored.

3.2. Data Acquisition

A thermographic infrared camera (FLIR A310 [9 Hz], FLIR Systems Inc., Wilsonville, Oregon,
USA) is used as the primary sensor for data acquisition; therefore, the continuous monitoring of the
thermal behavior of the gearbox transmission system under evaluation is performed by capturing
images. In this regard, as a result of the acquisition and capture of images, two different images are
obtained: first, a pseudo-color infrared image related to the digitized intensity values, and second, a
gray-scale infrared image, which is associated with the temperature values. Thus, for the proposed
condition monitoring strategy, gray-scale infrared images are used to estimate the corresponding
thermal matrix.

' N 2 N 2( YN [ )
Gearbox Transmission ‘c-‘ Data Acquisition ?é‘ - Thermal 2 - Feature
@ i it .
System = &3 Matrix & 2| Calculation
S w2 i " o E
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Figure 1. Methodology proposed to identify gear tooth wear in a gearbox transmission system.
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3.3. Thermal Matrix

As aforementioned, the consideration of infrared cameras allows the obtainment of either digitized
intensity values or temperature values; in this sense, it should be mentioned that in this proposed work,
gray-scale infrared images are used to estimate the thermal matrix due to its simplicity. Therefore, the
procedure of calculation of the thermal matrices is based on the estimation of the true temperature
(thermogram) from each pixel that composes the gray-scale infrared image (Figure 2).

Tgray (x/ ]/)

Ttme(x/ }/) = Tcpin + T
mgou

* (Temax — TCmin) (6)
where T (x, y) is the value of the true temperature derived from the pixel intensity, Tcyax and Tcypn
are the maximum and the minimum temperature of the infrared image, respectively, Tgay(x, y) is
the value of the pixel intensity in the gray-scale image, and Ty,¢, is the peak intensity value in the
infrared image.

'8 r 3
« 139,713, 739,739, 7] -
39.7139. 7197907 ~
- 139,713,770 7]
GrayScale Thermal
| Thermography | f Matrix

J |

Thermogram

Figure 2. Thermal matrix of the infrared thermography.

3.4. Calculation of Features

Commonly, condition monitoring strategies are based on the calculation of a high-dimensional set
of features from different acquired physical magnitudes [37]. However, in this proposed work, we
consider the estimation of a specific set of significant features to characterize the thermal behavior of
the gearbox transmission system under assessment; thus, the set of features is: maximum temperature,
minimum temperature, and average temperature; and the analysis of the asymmetry of thermographic
images is also considered based on the calculation of characteristics’ stated features of first statistical
order (average histogram, medium, standard deviation, variance, skewness, kurtosis, entropy, and
energy). In addition, these features have the ability to adapt to changes according to the operating
conditions of the system.

Table 2 summarizes the mathematical equations of the set of considered features to characterize
the thermal behavior of the gearbox transmission system. In these equations, f, indicates the number
of pixels per column (width of the image), and g, the number of pixels per row (height of the image); p
is the number of distinct gray levels in the quantized image, h(p) is the intensity of the pixel in the
histogram, and q is the level of intensity of the image.

On the other hand, the average intensity determines the brightness or darkness of the image,
skewness defines the degree of asymmetrical property of the histogram with respect to average
intensity, kurtosis measures the peakness or flatness of the intensity distribution with respect to the
normal distribution, entropy measures the randomness of the input image, and variance outlines the
deviation of gray-level pixels from the mean [32].
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Table 2. Extraction of statistical features from the thermography image.

Feature Equation No.
Maximum value Tmax = max(I(x, y)) @)
Minimum value Tin = min(I(x,y)) ®)

q-1
Average intensity U= f%gy ZO ph(p) ©)
p=
-1 2
Standard deviation g = ergy qz (p- y)zh(p) (10)
<81
q-1
Variance 02 = f:gy x (P‘H)zh(P) 1)
p=0
q-1
Skewness Sk = O-gfl_,mgy ZO (p—w)’h(p) (12)
v p=
q-1
Kurtosis k= ﬁ z (P‘H)4h(P) (13)
X3y p:0
q-1
Entropy Entropy = _fyl_gy ZO” log(p) (14)
<8
fo 8y 1 2
Energy Energy = Lo Zyo [0 ijxz () (15)

3.5. Reduction of Features

After carrying out the feature calculation, a dimensionality reduction stage, by means of LDA, is
also included in the proposed condition monitoring methods. Such a dimensionality reduction, which
is based on a linear transformation, allows us to obtain a visual representation of all the evaluated
conditions in a 2D space. Therefore, the new extracted features in the 2D space retain the most
significative and discriminative information of the original set of statistical features since the new
extracted features are composed of a combination containing different weights from the original
features. Thus, these non-useful or correlated features may have low weights, whereas the significative
features will have greater weighting.

3.6. Fault Identification

Once the most significant and discriminant information has been highlighted by LDA, all the
considered conditions are represented in a 2D space, where the linear separation between classes is
retained as much as possible. After that, automatic fault identification is carried out by means of an
Artificial Neural Network (ANN); as a result, the final diagnosis outcome results in the classification
of four different conditions; HTL, and 25%, 50%, and 75% wear in the gears. Since the classification
task is facilitated by considering the dimensionality reduction through LDA, the structure of the ANN
classifier is based on a classical structure, which only considers the input layer, a single hidden layer,
and the output layer.

4. Experimental Setup

In this paper, an experimental test bench was used to test different levels of uniform wear in the
gears as an incipient failure in a gearbox transmission system. Figure 3 shows a kinematic chain with
the principal elements that an industrial system can have, where the main element is the gearbox,
which is used to validate the proposed methodology. The test bench is based on a kinematic chain that
consists of a three-phase induction motor of 1.5 kW (WEG00236ET3E145T-W22), electrically connected
to a frequency inverter (VFD) (WEGCFWO08) to feed and control the rotation speed. The AC machine
is mechanically coupled by rigid coupling to a 4:1 gearbox (BALDOR GCF4 x 01AA) that drives its
input shaft, and this gearbox is used to test the different levels of uniform wear in the gears studied in
this paper. Besides, the gearbox, in turn, is mechanically coupled by rigid coupling to a DC generator
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motor (BALDOR CDP3604), and the generator is used as a load, producing approximately 20% of the
rated load in the induction motor in working conditions. For the monitoring of the thermal behavior
of the gearbox, a thermographic infrared camera (model FLIR A310, from FLIR Systems Incorporated)
is used as the primary sensor for data acquisition. The FLIR A310 has a resolution of 320 x 240 (76,800)
pixels, and by means of a vanadium oxide microbolometer, detects infrared radiation with a thermal
sensitivity/Noice Equivalent Tempearture Difference (NETD) of 50 mK. The measurements carried
out with this camera are obtained with an accuracy of +2 °C, and it is capable of measuring the
object’s temperature within a range of —20 to +120 °C or 0 to +350 °C. The acquired thermal images
represent the digitized intensity values in 16 bits, and the FLIR Tool software is used for acquiring the
thermographic images. The infrared camera is adjusted for each test to different environmental factors
for a more accurate measurement. These factors are emissivity, atmospheric temperature, relative
humidity, reflected temperature, and the distance between the gearbox and the infrared camera. For
each test performed, measuring instruments are used, such as Fluke 975 AIMETER and Fluke 61,
for the measurement of environmental parameters, while the emissivity value is adjusted to 0.95, as
recommended in previous works related to electrical systems [38]. Calibration and validation are
performed for the thermographic temperature values of the camera. For the calibration, the temperature
values obtained with the thermographic camera are compared with the output of a comparative method.
Several Resistance Temperature Detectors (RTDs) were used to obtain the reference measurement.
The calibration guarantees that the measurement obtained with the thermographic camera is the same
as that of the equipment to be monitored. For this paper, a thermal image is captured every minute
from the start to the end of the test, in order to monitor the thermal behavior of the gears of the gearbox
transmission system.

In this paper, an alternative study of four different wear conditions is proposed in the gears of
the gearbox transmission system: healthy (HLT), and 25%, 50%, and 75% uniform wear, respectively.
To produce the condition of wear failure in the gears, a gear factory was commissioned to manufacture

it artificially.
B :
Lond S

=R

Gearbox

Thermography |
Camera

Figure 3. Experimental test bench used to test and recognize gearbox wear.

To produce the faults, the gears undergo a machining process where all their teeth are used by a
tungsten cutter. Then, these gears are also subjected to a lapping process with the aim of making the
wear induced on the gears as real as possible. Figure 4 shows the gears used for the tests carried out in
this paper, with three different levels of uniform wear (25%, 50%, and 75%) and a healthy condition
(HLT) being implemented to demonstrate the effectiveness of the proposed diagnostic methodology.

Four experimental conditions are studied on the gearbox: HLT, and 25%, 50%, and 75% wear.
Each test lasted 90 min, since in this time, the healthy motor reached thermal stability.
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(c) (d)

Figure 4. Proposed study cases for evaluating the gear in the gearbox: (a) HTL; (b) 25%, (c) 50%, and
(d) 75% of uniform wear in the gears.

5. Results

The diagnosis methodology proposed for the assessment of different levels of uniform wear in a
gearbox transmission system was implemented in Matlab (Matlab 2017a, MathWorks Inc.), which was
used for the processing of thermographic images, the estimation of statistical features, the reduction of
features with LDA, and the ANN integration to perform the fault classification.

As part of applying the proposed condition monitoring strategy, during the experimental
evaluation of the different levels of uniform wear in gears, a set of infrared images was acquired for
each case under study. Therefore, during the monitoring of each condition, each one of the tests was
run for 90 min, acquiring a thermographic image every minute, and for each condition the last 50
acquired infrared images from the last 50 min were acquired and stored; therefore, a database of 200
samples (infrared imaging) was acquired. In this regard, it should be highlighted that only the last 50
infrared images were acquired due to the first 40 min being associated with the time that the gearbox
transmission system requires to reach its thermal stability.

Subsequently, after the experimental evaluation of each considered condition, a complete database
of the thermal behavior of the gearbox transmission system was acquired. Thus, Figure 5a—d shows
the last thermal image acquired during the monitoring of each considered condition; these images
belong to the last acquisition obtained at the 90th minute. In this regard, Figure 5a corresponds to the
thermal monitoring of the gearbox when the gears are in a HTL state, Figure 5b corresponds to the
condition of the gears with 25% uniform wear, Figure 5c represents the infrared imaging observed
with 50% uniform wear of the gears, and Figure 5d shows the thermal behavior of the gearbox with
75% uniform wear of the gears. Additionally, from these Figures, it is possible to observe that there
exist some differences that should be considered to provide the fault assessment; yet, although these
thermal images show differences, an improved processing may lead to an accurate diagnosis.

Figure 5. Cont.
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(d)

Figure 5. Acquired signals for the condition monitoring of gears in a gearbox transmission system with
infrared thermography: (a) HTL gears, and (b) 25%, (c) 50%, and (d) 75% uniform wear in the gears.

Once the thermography images have been acquired, all the acquired images are then characterized
by obtaining their thermal matrices. Then, from each thermal matrix, a set of statistical features is
estimated, which for this proposed work are named as thermal statistical features. Therefore, each
considered condition is now characterized by a consecutive set of thermal statistical samples. Despite
the high level of characterization provided by the set of thermal statistical features, not all of them
contain the same representative information associated with the occurrence of uniform wear in the
gears of the gearbox transmission system under assessment. In this sense, in order to preserve the best
thermal statistical features extracted from the thermographic images, the estimated sets of statistical
features are processed through a dimensionality reduction approach, which allows us to retain the most
significant and discriminate information. In this regard, the LDA strategy is applied to the original set
of statistical features estimated from the thermal matrices; as a result, a visual representation of all
considered conditions in a 2D space is obtained.

Figure 6 shows the resulting projection of the new extracted set of features obtained by means of
applying LDA onto the original data sets that characterize the uniform wear conditions in the gears
of the gearbox transmission system, such as a healthy gear, and 25%, 50%, and 75% wear. From this
Figure, it is possible to observe that all the considered conditions appear separated from each other.
Moreover, it should be mentioned that this resulting 2D projection results from a linear combination
containing different weights from the original features, where the most significative features have a
greater weighting value.
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Figure 6. Projection of features, reduced by LDA, that characterize the condition of the gearbox onto
the data set of infrared thermography.

After obtaining the data set reduced into 2D space with the LDA strategy, the automatic fault
classification is carried out through the ANN-based algorithm. In this sense, due to the consideration
of the feature reduction stage by means of LDA, which allows the obtainment of a visual representation
of all considered conditions in a 2D space and facilitates the classification task, the structure of the
considered ANN classifier is based on a classical structure composed only of the input layer, a single
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hidden layer, and the output layer. The input layer consists of two neurons, the hidden layer has ten
neurons as the classical implementation of ANN classifiers suggests, and the output layer is composed
of four neurons.

Subsequently, in order to obtain statistically significant results, the ANN-based classifier is trained
and validated under a five-fold cross-validation scheme. In this regard, taking into consideration all the
conditions evaluated (HTL, and 25%, 50% and 75% uniform wear of gears), the original database that
consists of 200 samples, 50 samples per condition, is divided into two different data sets for training
and validation purposes. Therefore, the first data set used for training is composed of 160 samples,
40 samples per condition, while the data set used for validation consists of 40 samples, 10 samples
per condition. To analyze the performance of the classification, a five-fold cross-validation scheme is
applied to determine the variability of the training and the validation data of the classifier. Therefore,
four types of classification are averaged, obtaining 100% in the classification index for both training
and validation.

Tables 3 and 4 summarize the confusion matrices obtained during the training and validation of
the proposed ANN classifier. As it can be noted in these Tables, the global classification ratio achieved
during the training and validation is about 100%. Moreover, the consideration of the ANN as a classifier
also allows the calculation of the classification regions, which provides a visual representation of the
region that belongs to each evaluated condition. In this sense, Figure 7a,b shows the classification
regions obtained by the ANN classifier during the training and validation procedures, respectively.

Table 3. Confusion matrix for the training of the ANN classifier with infrared imaging.

Target Class
HTL 25% 50% 75%
HTL 40 0 0 0
25% 0 40 0 0
1
Output Class 50% 0 0 40 0
75% 0 0 0 40

Table 4. Confusion matrix for the validation of the ANN classifier with infrared imaging.

Target Class
HTL 25% 50% 75%
HTL 10 0 0 0
25% 0 10 0 0
Output Cl
wputtiass 50% 0 0 10 0
75% 0 0 0 10
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Figure 7. Resulting projection of the classification regions obtained during the identification of
uniform wear in gearbox gears by means of the ANN-based classifier: (a) training procedure and (b)
validation procedure.
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6. Comparative Methodology

In order to highlight the contribution of the proposed condition monitoring based on the analysis of
acquired infrared images, the obtained results have been compared with classical condition monitoring
approaches that propose the estimation and evaluation of a high-dimensional set of features and
that also propose the analysis of vibration signals. Therefore, regarding the consideration of a
high-dimensional set of features, the set of thermal statistical features estimated from the thermal
matrices is directly evaluated under the same structure of the ANN classifier proposed in this work. As
a result, Tables 5 and 6 summarize the confusion matrices estimated by the proposed ANN structure
when the original set of statistical thermal features, estimated from the thermal matrices, is directly
assessed. From these obtained results, it should be highlighted that the exclusion of the dimensionality
reduction stage, performed by LDA, significantly affects the classification performance, and although
all the data variance of the original set of thermal features is evaluated by the ANN structure, a more
complex structure of ANN classifier must be required to perform accurate results. Subsequently,
during the training and evaluation of the original set of statistical thermal features, classification ratios
of about 86.2% and 60% were achieved, respectively. Therefore, it is demonstrated that including
a dimensionality reduction stage, by means of LDA, allows for an improved characterization of
the considered conditions due to only the most significative and useful information being retained;
additionally, the classification task is facilitated, resulting in the consideration of a classical structure for
the proposed ANN structure. Indeed, when the original set of features estimated from thermal matrices
is directly evaluated with the same structure of the proposed ANN classifier, a low classification
performance is obtained due to the original set of features requiring the consideration of a complex
structure of ANN classifier for modeling all the considered conditions.

Table 5. Confusion matrix for the training of the ANN classifier with extraction of statistical features.

Target Class
HTL 25% 50% 75%
HTL 33 0 10 0
25% 0 39 1 0
1
Output Class 50% ” 0 28 5
75% 0 1 1 38

Table 6. Confusion matrix for the validation of the ANN classifier with extraction of statistical features.

Target Class
HTL 25% 50% 75%
HTL 6 0 4 8
25% 4 10 0 0
Output Cl
- 0 0 6 0
75% 0 0 0 2

On the other hand, the results of the proposed condition monitoring methodology are also
compared with classical monitoring approaches that consider the analysis of vibration signals;
therefore, when the considered conditions were experimentally evaluated, at the same time that the
infrared images were captured, mechanical vibration signals were also continuously acquired by means
of a triaxial accelerometer model LIS3L02AS4. This accelerometer was installed on the top of the
gearbox to perform continuous vibration acquisition in the perpendicular plane of the axis of rotation
in the gearbox. The vibration signals were acquired at a sampling frequency of 3 kHz during 90 s of
the continuous working condition of the gearbox transmission system.

Once the vibration signals had been obtained, the proposed condition monitoring methodology
was applied by taking into account the acquired vibration signals instead of the thermal images;
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therefore, from the acquired vibration signals, the proposed set of statistical features was also estimated,
and then the feature reduction was carried out through LDA. Subsequently, all the considered
conditions, represented by the characterization of vibration signals acquired during the assessment of
gearbox condition, were represented in a 2D space.

Figure 8 shows the resulting projection of the estimated set of statistical features estimated by
considering vibration signals and then reduction by LDA. From this obtained projection, it is possible
to observe that an overlapping between the healthy condition and a faulty condition is obtained; also,
there is an overlapping between two of the faulty conditions. These overlapping problems will be
reflected in a low performance of classification. Subsequently, the same structure of the ANN classifier
was used to carry out the automatic fault diagnosis, and the obtained classification matrices achieved
during the training and validation are summarized in Tables 7 and 8, respectively.

Ar HLT

A

o 25%

» 50%
75%

Feature 2
1
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Figure 8. Projection of features, reduced by LDA, that characterize the condition of the gears onto the
data set of vibration signals.

Moreover, as the proposed method considers the classification performance of the ANN classifier
when vibration signals are also analyzed by considering a five-fold cross-validation scheme, the
resulting classification ratios achieved during the training and validation are about 81.2% and 83.5%,
respectively. Therefore, as was expected, the obtained results show a critical reduction in the
classification performance when vibration signals are considered; in this regard, the consideration of
thermal imaging makes the proposed methodology suitable to be applied in industrial environments,
with a high performance of assessment and also with the advantage of non-interruption of the working
condition due to the noninvasive monitoring.

Table 7. Confusion matrix for the training of the ANN classifier with vibration signals.

Target Class
HTL 25% 50% 75%
HTL 30 0 11 0
25% 0 34 5 0
1
Output Class 50% 10 5 " 0
75% 0 0 0 40

Table 8. Confusion matrix for the validation of the ANN classifier with vibration signals.

Target Class
HTL 25% 50% 75%
HTL 6 0 0 0
25% 4 10 3 0
1
Output Class 50% 0 0 - 0
75% 0 0 0 10
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7. Discussion

As presented in the literature review, different condition monitoring strategies have focused on
detecting the occurrence of faulty conditions in gearbox transmission systems; indeed, the occurrence
of most of the addressed conditions is related to inadequate lubrication, eccentricity failures, fluctuating
loads, decoupling, misalignment, poor cooling, and gear design, among others [8-11]. However, most
of the reported methodologies are limited to the diagnosis of gearbox faults as a single gear tooth
damage, whereas most analyzed conditions are related to the presence of irregularities in the teeth of
the gears such as tooth breakage; chipping and cracks in the root; and chipping, pitting and damage to
the surface of the tooth. [7,19-21]. In fact, from an industrial viewpoint, these faulty conditions may be
considered as a critical condition in gearbox transmission systems since their occurrence may produce
critical damage to the entire transmission system, leading to the machine breakdown. Therefore, as
the literature review depicts, few works have focused on analysis for monitoring and assessing the
appearance of incipient faults, such as uniform wear, in gearbox transmission systems, which is the
main objective of this proposed work.

In this regard, [39] proposes a multidimensional hybrid intelligent method for gear fault diagnosis;
this proposal includes the estimation of time-domain, frequency-domain and time-frequency-domain
features, from acquired vibration signals, through the Hilbert transform, the wavelet packet transform
(WPT) and the empirical mode decomposition (EMD); moreover, by means of multiple classifiers
combined with a genetic algorithm (GA), different levels of damage are identified in the tooth
root. Yet, although different severities of incipient damage in the tooth root are identified, the
estimation of frequency-domain and time-frequency-domain features requires additional knowledge
since their estimation is performed through complex signal processing techniques. In this sense, for the
proposed work, the consideration of only statistical time-domain features leads to a high-performance
characterization of the acquired thermal images.

On the other hand, a preview research work that assessed uniform wear in gears has also been
performed by our research group [7]; in this study, the assessment of the uniform wear in gears was
carried out by means of vibration signals. The novelty of this work includes the consideration of
feature selection and feature reduction stages, and the final diagnosis outcome was performed by
means of a fuzzy-based classifier, resulting in an average of 97.27% for the global classification ratio.
Yet, although the detection of different levels of uniform wear condition is performed, the application of
such a proposed method includes the installation of vibration sensors that represent a critical limitation
in industrial environments. Thereby, in order to face the consideration of invasive sensors, such as
accelerometers, the proposed condition monitoring presented in this work represents a suitable option
that leads to the obtainment of accurate responses during the assessment of incipient faults in gearbox
transmission systems.

Additionally, an improvement in the diagnosis and fault identification is also obtained in the
proposed work by taking into account continuous monitoring through infrared images; thus, the
obtained results make the proposed methodology appropriate to be considered as an attractive,
alternative tool for classical infrared imaging inspection procedures and for techniques used for the
diagnosis and classification of different levels of uniform wear in gears, such as an incipient failure in a
gearbox transmission system.

8. Conclusions

This paper presents a novel methodology based on noninvasive monitoring for assessing different
levels of uniform wear in a gearbox transmission system. There are four important point that must be
highlighted in this new proposed methodology. The first is the reliability of using infrared images and
the statistical features of hot spots, since they allow us to obtain a more suitable characterization of the
operation of the gears in terms of thermal behavior, due to the fact that the temperature increase in the
gears depends on the work performance of the uniform wear condition of the gears. The second is
the implementation of dimensionality reduction strategies for the optimization of the set of statistical
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features estimated from the infrared imaging, since it allows the elimination of less discriminant
features and the compression of more significant statistical features. The third is the classification based
on an artificial neural network, which is capable of identifying and classifying the different case studies
proposed in this paper for the study of uniform wear in the gears of the gearbox transmission system.
The fourth is the comparison that is made between infrared imaging and vibration signals to determine
the reliability in the results for the diagnosis of failures, obtaining 100% of the total classification index
when applying the novel methodology using infrared imaging, due to the good performance that was
obtained both in the training and validation of the classifier. Meanwhile, for the novel methodology
with vibration signals, a classification index of 81.2% was obtained.

The obtained results indicate that the proposed condition monitoring strategy is suitable to be
applied in the assessment of gearbox transmission systems in industrial applications, where the use of
invasive sensors represents a critical limitation. Further research will implement an online diagnosis
methodology for assessing faults in gears and other elements of the gearbox transmission system.
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