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Abstract: Partial orders are the natural mathematical structure for comparing multivariate data
that, like colours, lack a natural order. We introduce a novel, general approach to defining rank
features in colour spaces based on partial orders, and show that it is possible to generalise existing
rank based descriptors by replacing the order relation over intensity values by suitable partial orders
in colour space. In particular, we extend a classical descriptor (the Texture Spectrum) to work with
partial orders. The effectiveness of the generalised descriptor is demonstrated through a set of
image classification experiments on 10 datasets of colour texture images. The results show that the
partial-order version in colour space outperforms the grey-scale classic descriptor while maintaining
the same number of features.

Keywords: mathematics of colour and texture; hand-designed image descriptors; rank features;
partial orders

1. Introduction

It is, at first sight, peculiar that one of the most robust tools for image description, namely rank
features, have only seen limited application to colour images. The problem is, of course, that while
they are very effective at dealing with noise, rank features run afoul of the main theoretical difficulty
associated with colour spaces—that is the absence of a natural order.

In recent years there has been a revival of interest in ranking of colour pixels. Notably,
Ledoux et al. [1] published an extensive comparative study in the use of total orders as rank features
for texture recognition. However, interest has been keenest in the field of colour morphology, where
several solutions have been proposed—f{rom adaptive orders that work around the ‘false colour
problem’ to the natural mathematical structure for ordering higher-dimensional sets—that is partial
orders [2-6].

In partially-ordered sets we simply admit that there will be couples of elements incomparable
to each other. Partial orders are therefore particularly suitable for dealing with colour spaces, where
statements like “yellow is greater than green” make little or no sense at all.

The objective of this work is to introduce a novel category of rank features based on partial orders.
In the remainder, after providing some background on partial orders (Section 2), we detail the ways
in which rank features can be defined (Section 2.5) and extend a classical descriptor (the Texture
Spectrum) to work with partial orders (Section 3.1). We demonstrate the feasibility of the method
through a set of experiment on 10 datasets of colour texture images (Section 3.2) and show that partial
orders in colour space can outperform grey-scale total ordering (Section 4).
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2. Background

2.1. Rank Features

Rank features are a well established technique for dealing with noise in images, enforcing
invariance to all sorts of contrast or illumination variations and sensor nonlinearities [7]. Because of
their robustness, they were first developed in the context of wide-baseline stereo matching—see for
instance the census and rank transforms [8]. More recently, descriptors in the popular Local Binary
Pattern (LBP) family, including Texture Spectrum, Binary Gradient Contours, etc. [9,10] have turned
rank features into a general purpose tool, with applications—among others—in texture classification,
face recognition, surface inspection and content-based image retrieval [11]. The descriptive power of
rank features has been expanded to explicitly capture orientation (Ranklets [12]) and second-order
stimuli (Variance Ranklets [13]), all types of information that were seen as the preserve of linear filters
or ad-hoc algorithms.

Common to all rank features is the fact that they are defined in terms of ordinal information
between pixels only, with the actual pixel values being discarded. This can be done in terms of pairwise
pixel comparisons (rank and census transform, LBP), pixel ranks (Ranklets) or a permutation of ranks
(Variance Ranklets), but it is easy to see that the two approaches are equivalent [12] and that all
descriptors rely on the natural order relation (<) between pixel values.

Before proceeding to definitions it is worth noting that, notwithstanding the trend towards the
use of convolutional neural networks as feature extractors [14], rank features are still competitive in
texture applications [15]. In the following section we recall the axioms for an order relation.

2.2. Order Relations

An order relation is an abstraction of the common notion of “greater than” used to compare
numerical values, in our case pixel values in P (typically the set of 8-bit intensity values). In order to
be called a (total) order, a binary relation < needs to satisfy the following four conditions:

Definition 1 (Order axioms). Forall (x,y,z) € P3,

x < x (reflexivity).

ifx <yandy < x then y = x (antisymmetry).
ifx <yandy < z then x < z (transitivity).
either x <y ory < x (totality).

oo =

The last condition guarantees that we know how to compare any pair of pixel values.

2.3. Ordering High-Dimensional Data

The application of rank features to multi-channel images or higher dimensional data is hindered
by the fact that there is no natural way of ordering multivariate data. It is certainly possible to provide
a total order for a colour space; for instance, one could order RGB data lexicographically using the
R channel as the primary sorting key, followed by G and finally by B. However, like other similar
options, this has a disadvantage, namely, there are colours that are very close to each other in colour
space, but very far in the order—and is therefore of limited practical interest (a sub-relation of the
lexicographical order, the product order, is indeed of practical interest and will be discussed in detail
in this paper, see Section 2.5.1). In general, it is best to resort to some sort of sub-ordering principle.
These can be broadly divided in four categories [16]:

Marginal ordering (M-ordering).

Reduced (aggregate) ordering (R-ordering).
Conditional (sequential) ordering (C-ordering).
Partial ordering (R-ordering).
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In marginal ordering, ranking is carried out on one or more components (marginals) of the
multivariate data. Ranking colour data in the RGB space by the value of red is an example of
M-ordering; lexicographical ordering is another one. Reduced (aggregate) ordering relies on converting
multivariate data to univariate through suitable transformations. A common way to do this consists of
establishing a reference point in the data space and using the distance from that point to rank the data.
Conditional ordering occurs when we sort a random multivariate sample based on the corresponding
(usually marginally-sorted) values of another sample. C-ordering is closely related to the concept of
concomitants in Statistics [17]. Partial ordering will be discussed in detail in Section 2.5.

Interestingly, many of the common ways of dealing with order in colour space fall under the
first two categories, i.e., marginal and reduced (aggregate) ordering. For instance, ranking based on
intensity can be seen as a marginal ordering of the HSV space along the V axis; or as a reduced or
aggregate ordering over the RGB space, where the aggregating function is the grey-level intensity.
Other examples of aggregating orders will be given in Section 3.1.

In this paper, we will focus on rank features based on partial orders. Before introducing these,
we review recent approaches to using multivariate orders on colour images.

2.4. Rank-Based Approaches to Colour Processing

Previous approaches to rank-based colour features typically extend grey-scale rank-based methods
to the colour domain by considering either the colour channels separately (intra-channel features)
and/or in pairwise combination (inter-channel features). Mdenpéa and Pietikédinen [18] for instance
extended classic LBP by applying it both to each R, G and B colour channel separately and pairwise
between each of the R-G, R-B and G-B pairs. Bianconi et al. [19] adopted the same approach for
extending grey-scale ranklets [12] to the colour domain. Lee et al. [20] defined Local Colour Vector
Binary Patterns (LCVBP) by decomposing the colour triplets into a norm and angular component
and by computing LBP on each of them. More recently, Cusano et al. [21] introduced Local Angular
Patterns (LAP) which consider the angular component only and discard the norm part altogether.

Another possible strategy consists of establishing some sort of a priori total ordering
on the colour data. This approach is not uncommon in colour morphology—see for instance
Angulo [4], van De Gronde and Roerdink [6]—and has been advocated for extending LBP to colour
images by Barra [22]. Of late, this family of methods has been extensively investigated by Ledoux et al. [1]
and Bello-Cerezo et al. [23]. The problem is that imposing a total ordering on the colour data
inevitably entails a certain degree of arbitrariness, with the consequence that the results tend to be
dataset-dependent. On the other hand, morphology for tensor-valued images (that arise from certain
magnetic resonance techniques) has relied on the Loewner order, that is in fact a partial order (see
for instance Burgeth et al. [24]; more on this in Section 2.5.2). More recently, this approach has been
extended to morphology for colour images Burgeth and Kleefeld [5]. Partial ordering circumvents the
problem of ordering multivariate data totally, at the expense of not allowing comparisons between some
colour values.

2.5. Partial Orders

A partial order differs from a total order in that the fourth axiom in Definition 1 is waived,
i.e., there are pairs of elements in the set that are incomparable. In order to distinguish this from a total
order we use the notation x < y. If the elements x and y are incomparable, we shall write x ~ y.

In the following, we describe two types of partial orders that are applicable to colour spaces with
Cartesian and polar coordinates respectively.
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2.5.1. Product Order

By product order we mean the relation obtained from the component-wise comparison of colour
values. Given u = (c1y, €2y, ¢3,) and v = (1, €2y, €3p) two triplets representing colours in a generic
space we write:

)

u = v if cqy <epp,c0u < 00p, 034 <03
u =y v if neither u <4 v nor v <y u.

Note that this is a subset of the lexicographical order introduced in Section 2.3; it is however of
higher practical interest as it treats all three channels symmetrically. In the RGB space, for instance, a given
colour u weakly dominates the rectangular parallelepiped C(u) with three edges along the axes and a
vertex in the colour itself (see Figure 1). For any colour v that does not dominate all of C(u), v » u.

Figure 1. Product order in the RGB space: A generic colour (rg, o, bp) dominates all the colours in the
blue volume and is dominated by all the colours in the red volume.

The product order can of course be applied to any colour space, giving relations of various degree
of interpretability and effectiveness for pattern recognition (see Sections 3.1 and 4).

2.5.2. Loewner Order

The Loewner (partial) order is defined on symmetric matrices. Given two symmetric matrices A,

B we write:
A=<,B if (B—A)eS,
{ 2

A ~, B ifneither A <, BnorB <, A

where S indicates the set of positive semi-definite matrices. Applying this to a colour space requires
mapping colour values to symmetric matrices. Following [5], we start from a modified colour space
HCL obtained from HSL ([25], Section 4.6) by setting L = 2L — 1 for the (modified) luminance and
replacing saturation with chroma C = max{R, G, B} — min{R, G, B}. The resulting colour gamut fills
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a bicone with axis L and opening angle 90°. We isometrically map colours to the space Sym(2) of
symmetric 2 x 2 matrices by setting [5]:

1 (I—c h
M(h,c,l)zﬁ(h T+c>' )

For two colours u = (hy, ¢y, I,) and v = (hy, co, I) in the HCL space we therefore write:

{u =Lv if M (htlrc‘l)/ Tv) =cM (hu/ Cuju) 4)

u~p v ifneither u <; v nor v <; u

where < is defined in Equation (2). Geometrically (Figure 2), a given colour v weakly dominates all
colours of lower luminance that fall in a cone with its vertex in v and its axis parallel to the L axis.

(0,0,1)

Figure 2. Loewner order in the HCL space: A generic colour (h, co, ly) dominates all the colours in the
blue volume and is dominated by all the colours in the red volume.

3. Materials and Methods

3.1. Rank Features on Partial Orders

In this section we show how to generalise existing rank-based descriptors by replacing total order
in grey-scale with suitable partial orders in colour space. In the remainder we shall use the Texture
Spectrum [26] as our reference model—though other descriptors such as Local Binary Patterns and
Local Ternary Patterns are amenable to the same procedure with virtually no effort.
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In Texture Spectrum, a local image pattern P = {pg, p1,...,Pn} is assigned a unique decimal
code as follows:

3"t (g (po), g (pi)] ®)

™=

frs (P) =
i=1

where p( represents the central pixel and p;, i € {1,...,n} the peripheral pixels, which we assume
to be arranged on a circle around the central pixel. We also assume that p represents a point in a 3D
colour space, though again extension to multi-spectral data is straightforward. In Equation (5) the
function g (po) stands for a generic conversion from colour into grey-scale, whereas 7 (1, w) indicates
the ternary thresholding function:

0 fw<z
T(w,z) =<1 ifw=z (6)
2 ifw >z

An image is represented by the dense, orderless statistical distribution over the set of possible
codes. For Texture Spectrum, the number of (directional) features generated by the method is clearly 3".
Invariance under rotations and/or reflections can be obtained by grouping together all those codes that
represent patterns which can be transformed into one another by such transforms. The corresponding
mathematical structures are necklaces and bracelets, respectively for invariance under rotations (i.e., cyclic
group of order n; C,;) and under rotations + reflections (i.e., dihedral group of order ; D;). For general
formulas about the number of resulting C;,- and Dj,-invariant features and for other mathematical details
please refer to Gonzélez et al. [27], Zelenyuk and Zelenyuk [28]. Specifically, for n = 8 (which is the case
considered herein—see below) the number of features is respectively 834 and 498.

A ternary rank feature for partially ordered data analogous to Texture Spectrum—the Partial
Order Texture Spectrum (POTS)—can easily be defined in the following way:

n

frots (P) =Y 3'¢ (po, pi) 7)
i—1
0 ifu<v
p(uv)=41 ifu>v ®)

2 fuwv

where = indicates a generic partial order relation in the colour space (see Section 2.5). Notably,
the number of features generated by this formulation is the same as generated by the Texture Spectrum.

In the experiments we considered the following partial order/colour space combinations: product
order (Section 2.5.1) in the RGB, Ohta’s and opponent spaces [25]; Loewner order (Section 2.5.2) in the
HCL space. When reporting experimental results we use subscripts ‘RGB’, ‘ohta” and ‘opp’ to indicate
the colour spaces, and superscripts < and =< respectively for the product and Loewner orders (see
Equations (1) and (4)). No superscript was used to indicate the natural total order on greyscale values.

Conversion from RGB to grey-scale was also performed in three different ways: (1) through the
standard PAL/NTSC formula ([25], Section 4.3.1); (2) by computing the average of the three channels;
and (3) by determining, for each image, the principal axes of the colour distribution in the RGB space
and projecting each (7, g, b) triplet onto the first axis. In the remainder we denote the corresponding
variations of Texture Spectrum respectively as TSgrey, TS, and TSp;.

Finally, we computed C;- and Dj-invariant features over 3 X 3, non-interpolated, square
neighbourhoods of radius 1px and 2px. The overall feature vector was obtained by concatenating the
feature vectors obtained at each resolution—see also Gonzalez et al. [27] for details. These settings
respectively generates 834 x 2 = 1668 and 498 x 2 = 996 features.
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3.2. Experiments

To test the effectiveness of the partial-order rank features described in Section 3.1 we ran a set of
supervised image classification experiments. Datasets, classification strategy and accuracy estimation
are described in the following subsections.

3.3. Datasets

We used ten datasets of colour texture images from different sources as described below. The main
properties of each dataset are summarised in Table 1.

Table 1. Datasets used in the experiments: round-up table.

ID Name No. of Classes  No. of Samples per Class  Variations in Imaging Conditions Sample Images
1  Epistroma 2 825/551 Unspecified
2 KTH-TIPS 10 81 ? O
3 KTH-TIPS2b 11 432 £ /O O

4 Kylberg-Sintorn 25 6 None ......
5  MondialMarmi 25 16 None .....
6 Outex-13 68 20 None .....!
\I/
7 Outex-14 68 60 v ......
3 .y i} =
¥ s 1 L
9 PlantLeaves 20 60 None ......
NI ), ¥ .
20 e M 3
10 RawFooT 68 184 v . j ..
A& =

N>
KEY TO SYMBOLS: @ = illumination, O = rotation, /O: scale.

8  Pap smear 2 204 Unspecified

3.3.1. Epistroma

Contains 1376 histopathological images from colorectal cancer representing either epithelium
(825 images) or stroma (551 images). The image size ranges from 93 px to 2372 px in width and from
94 px to 2373 px in height. Further details about tissue preparation and digitisation procedure are
available in Linder et al. [29].

3.3.2. KTH-TIPS

Includes 10 classes of common materials (e.g., aluminum foil, bread, corduroy, etc.) with 81 image
samples for each class [30,31]. Each material was acquired under nine scales, three rotation angles and
three lighting directions.

3.3.3. KTH-TIPS2b

Features 11 classes of materials (432 sample images per class) and is actually an extension of
KTH-TIPS. The image acquisition settings were the same as in KTH-TIPS, but four rather than three
illumination conditions were used in this case [32].
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3.3.4. Kylberg—Sintorn

Is composed of 25 classes of heterogeneous materials, such as food (e.g., lentils, oatmeal and sugar),
fabric (e.g., knitwear and towels) and tiles [33,34]. For each class one sample image was acquired using
invariable illumination conditions and under nine different rotation angles—of which only the images
at 0° were included in our experiments. Each image was further subdivided into six non-overlapping
sub-images of dimension 1728 x 1728 px.

3.3.5. MondialMarmi

Comprises 25 classes of marble and granite products identified by their commercial
denominations, e.g., Azul Platino, Bianco Sardo, Rosa Porrifio and Verde Bahia [35]. Each class is
represented by four tiles; ten images for each tile were acquired under steady illumination conditions
and at rotation angles from 0° deg to 90° in steps of 10°. In the experiments we only used the images
at 0°; moreover, we subdivided each image into four non-overlapping sub-images therefore obtaining
16 image samples for each class.

3.3.6. OUTEX-13 and OUTEX-14

Are based on the same sets of images that respectively make up the OUTEX_ TC_00013 and
OUTEX_TC_00014 test suites—see Ojala et al. [36] for details. Specifically, OUTEX-13 features
68 classes of materials with 20 images per class acquired under invariable illumination conditions;
OUTEX-14 contains the same classes—but in this case the image samples were acquired under three
different illumination conditions—therefore there are 60 samples per class. Please notice, however,
that in order to maintain the same evaluation protocol for all the datasets considered here (see
Section 3.4), the subdivisions into train and test sets used in our experiments were not the same as in
the OUTEX_TC_00013 and OUTEX_TC_00014 test suites.

3.3.7. Pap Smear

Consists of 917 PAP-stained images of variable dimension representing cells from the cervix [37].
The images represent either abnormal cases—675 samples or normal cases—242 samples. The dataset
also comes with a further subdivision into seven sub-classes which was not considered in our
experiments. The image size ranges from 84 x 88 px to 392 x 262 px. In our experiments we
considered a balanced sub-set containing 204 samples for each of the two classes.

3.3.8. Plant Leaves

Includes a total of 1200 samples of plant leaves from 20 different classes with 60 samples per
class [38]. The images were acquired using a planar scanner and have a dimension of 128 x 128 px.

3.3.9. RawFooT

Comprehends 68 classes of raw food and grains such as corn, chicken breast, pomegranate, salmon
and tuna [39,40]. The materials were acquired under 46 different illumination conditions resulting in
as many image samples for each class. We further subdivided the images into four non-overlapping
sub-images, thus obtaining 184 samples for each class. The dimension of the resulting image tiles was
400 x 400 px.

3.4. Classification and Accuracy Estimation

For each dataset described in Section 3.3 we performed supervised classification using a
nearest neighbour classifier (1-NN) with the L; (‘Manhattan’) distance. In detail, after extracting
a feature vector from all images according to one of the descriptors tested, we computed the
distance between such vectors as the sum of the absolute differences between components. We then
assigned each test vector to the class of the closest training vector. The absence of tuning parameters,
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the ease of implementation and other desirable asymptotic properties make the 1-NN particularly
appealing for comparison purposes. Its use in related works is indeed customary: see for instance
Cusano et al. [39], Kandaswamy et al. [41], Liu et al. [42].

Accuracy estimation was based on split-half validation with stratified sampling—for each dataset
we used half of the samples of each class to train the classifier (train set) and the other half (test set)
to compute the accuracy. This was defined as the ratio between of number of samples of the test set
correctly classified (N;) and the total number of samples of the test set (N):

_ Ne

N ©)

For a stable estimation we averaged the above value over a hundred different subdivisions into

train and test set:

. Li%a
TV (19

where g; indicates the accuracy achieved in the i-th subdivision into train and test set. In Table 2
we report the 95% confidence intervals for 4 (computed under the simplifying assumption of
normal distribution).

Table 2. Overall classification accuracy: confidence intervals for the cross-validated accuracy 4. Best
results highlighted for grey-level (orange) and colour space features (blue). Boldface figures indicate
statistically significant differences.

Descriptor  Inv. Dataset

1 2 3 4 5 6 7 8 9 10
LBPgrey Cu 91.3-91.7  932-93.8 926928  93.4-946  795-79.9 825827 974977  815-822  729-735  94.3-945
LBPgrey Dy 915919  933-939 925927 934946  79.7-80.1  824-827 973976  81.1-81.9  73.0-73.6  94.3-945

TSgrey Ci 913918 924930 [OHBEHB] 952962 795799 [GBBESEM 977981  835-843 745751 -

TSgrey Dy, 918922 923929 942943 [G5BE6E] [ABEOEl 24826

TS, Cn  916-920 927-933  937-939 928942  792-79.6 795797 971975 831-838  739-744 958960
TSy D, [OH9%3B] 928934 935937  928-942 788793 795797  97.0-974  837-845  743-748  959-96.0
TSp1 Cn 913916 929934 930932 944956 786790 80.0-802 968-973  80.6-814 732738 951952
TSp1 D, 915918 [0BOM8E] 928930 946-958 784789  80.0-80.3  96.8-973  80.9-8l7  73.0-736  95.1-953
POTSéhja Ci  869-87.3  893-89.8  947-949  933-944 [§2I3EEEl6l 820-822 976980 776786  69.3-69.9  945-946
POTS,, ~ Dn  87.0-87.3  89.4-89.9  949-951 933-944 824828 [G2I5060| [O77%8H] 783793  69.3-699 945946

POTS;; Ci 903906 89.9-905 951-953 [OBIBEOGIS| 80.1-80.5  78.9-792 975979  737-747  641-647  93.1-933

opp
POTSS{;*P Dy 902906 897903 952953  949-960  80.4-80.9  79.0-79.2  97.5-97.9  746-756 644650  93.2-934
POTSZL. G, 914918 936941 [OBBS9B| 907-925 738743 734737  961-967  829-837 677683  953-955
POTS L, D, [OBOMOFE 935940 952-954  907-925 743747 740743  962-967  839-847 681686  954-955

POTSzg  Cn 904908 [OHEEOAE 949-951  87.9-900 726730 745747  96.0-96.6  82.6-834  752-75.8
POTSggy  Dn  913-917  940-945 948950 879900  73.0-735 748750 962-9¢.8 |[6Bl6e0AB| |[7595764] 96.3-96.5

4. Results and Discussion

Table 2 reports the confidence intervals for the means of the overall classification accuracy (see
Section 3.4). For each dataset we highlighted in orange the best result obtained by total-order grey-scale
rank features; in blue the best result obtained by partial order rank features (POTS) in colour space.
When there was a statistically significant difference between the two, the best figure was indicated in
boldface. As can be seen, partial order rank features in colour space performed significantly better in
five datasets out 10, whereas the reverse occurred in one dataset only (dataset six). In the remaining
four datasets there was no significant difference between the two methods.

As for grey-scale rank features, the results show that in most cases (i.e., 8 datasets out of 10)
the best performance was obtained using standard PAL/NTSC grey-scale conversion. By contrast,
partial-order rank features denoted a higher dependence on the colour space used.

The computational cost of all the descriptors considered is roughly equivalent, as the number of
features is the same and the complexity of computing a partial or total order comparison in colour
space is comparable to the cost of a colour space transformation. Indeed, as we have just described,
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even the traditional TS requires a grey-scale conversion, the choice of which can be seen as an integral
part of the descriptor.

In Table 3 we compare our results to published results obtained using rank-based descriptors
in conjunction with other ordering methods in colour spaces. As can be seen, in most cases our
partial-order based approach improves significantly over previous results. We should here emphasise
that the computational requirements of our partial-order descriptors are not higher than those of the
other ordering methods cited.

Table 3. Comparison with the results obtained by other ordering methods as reported in the references
indicated. Key to symbols: ‘cvn” = colour vector norm, ‘lex’ = lexicographic ordering, ‘rcl’ = preorder
based on white as reference colour. Please refer to the cited works for further details.

Best Result (Literature)

Dataset Best Result (This Paper)
LBPcyn LBPjex LBP,q
KTH-TIPS 94.3 [23] 94.3[23] 94.0[23] 94.1-94.6 (POngéB/ Cn)
KTH-TIPS2b 92.3[23] 92.3[23] 92.1[23] 95.3-95.5 (POTSI:IéL /Cn)
Kylberg-Sintorn N/A 99.1 [43] N/A 95.3-96.5 (POTSEGXB /Cn)
Outex-13 85.3 [1] 86.3 [1] 85.9 [1] 82.3-82.5 (POTS, Xp/Dn)
Outex-14 74.3 [1] 73.4[1] 723 [1] 97.7-98.1 (POTSghfa/Dn)
PapSmear N/A N/A 66.2 [43] 83.6-84.5 (POTSEGXB /Dy)
PlantLeaves 69.9 [23] 65.2[23] 71.9][23] 75.9-76.4 (POTSEGX]3 /Dy)
RawFoot N/A N/A 80.5 [43] 96.4-96.5 (POTS%GXB /Cn)

5. Conclusions and Future Work

The lack of a natural order among colours represents an intrinsic impediment to the definition of
rank features in colour space. In this paper we have introduced a novel and general approach based
on partial orders. Partial orders overcome the problems inherent to ordering multivariate data at the
expense of admitting that not all pairs of colours can be compared to each other. We showed that this
scheme fits in well with existing grey-scale local image descriptors, that are amenable to extension
to the colour domain with little effort. Taking the Texture Spectrum as a model, we showed that its
partial-order version in colour space (POTS) can outperform the grey-scale classic descriptor while
maintaining the same number of features and with comparable computational complexity. Previous
studies have also demonstrated that the use of colour can improve texture discrimination, but at
the expense of employing a higher number of features [44-46]. Notably, our approach improves on
published results that use descriptors based specifically on (total) colour space ordering (see Table 3).

To the best of our knowledge this is the first time that partial orders have been used to define rank
features for pattern recognition. The method is conceptually simple, fairly general and shows potential for
application in a wide number of computer vision tasks. Future studies will be focussed on extending the
approach to the broader class of descriptors known as Histograms of Equivalent Patterns [9]. The effect of
the colour space on the performance of rank features based on partial orders is also an important topic
for further investigation. Finally, the insertion of partial order based algorithms in more involved image
processing pipelines (e.g., convolutional neural networks) also represents an interesting opportunity for
future research; integration at the level of matching [47] has so far been successful.
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