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Abstract: Many algorithms have been developed for automated electrocardiogram (ECG) classification.
Due to the non-stationary nature of the ECG signal, it is rather challenging to use traditional handcraft
methods, such as time-based analysis of feature extraction and classification, to pave the way for
machine learning implementation. This paper proposed a novel method, i.e., the ensemble of
depthwise separable convolutional (DSC) neural networks for the classification of cardiac arrhythmia
ECG beats. Using our proposed method, the four stages of ECG classification, i.e., QRS detection,
preprocessing, feature extraction, and classification, were reduced to two steps only, i.e., QRS detection
and classification. No preprocessing method was required while feature extraction was combined
with classification. Moreover, to reduce the computational cost while maintaining its accuracy, several
techniques were implemented, including All Convolutional Network (ACN), Batch Normalization
(BN), and ensemble convolutional neural networks. The performance of the proposed ensemble
CNNs were evaluated using the MIT-BIH arrythmia database. In the training phase, around 22% of
the 110,057 beats data extracted from 48 records were utilized. Using only these 22% labeled training
data, our proposed algorithm was able to classify the remaining 78% of the database into 16 classes.
Furthermore, the sensitivity (Sn), specificity (Sp), and positive predictivity (Pp), and accuracy (Acc)
are 99.03%, 99.94%, 99.03%, and 99.88%, respectively. The proposed algorithm required around
180 µs, which is suitable for real time application. These results showed that our proposed method
outperformed other state of the art methods.

Keywords: depthwise separable convolution (DSC); all convolutional network (ACN); batch
normalization (BN); ensemble convolutional neural network (ECNN); electrocardiogram (ECG);
MIT-BIH database

1. Introduction

ECG signals can be easily acquired by putting one’s finger on the sensor for about 30 s [1].
There are at least two types of important information contained in the ECG signal, including those
related to health or biomedical [2–4] and those related to the person identification or biometrics [5–
7]. Due to its convenience, many ECG classification algorithms have been developed, including
handcraft [4,8,9] and machine learning [10–15] methods. The handcraft method is rather difficult to
utilize on non-stationary signals, such as ECG, while machine learning methods normally require
high computational resources. Due to its high accuracy, the machine learning method is preferable
compared to the handcraft method. However, an efficient algorithm is required to minimize the
computational requirements while still maintaining its high accuracy.
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Many researches have been conducted on the implementation of handcraft techniques, including
the extraction of time-based ECG features using Fourier [8] and wavelet [4,9] transforms. Both Fourier
and wavelet transform can be used for ECG beats detection (QRS detection), as well as feature
extraction, such as R-peak, RR-interval, T-wave region, and QT-zone. After QRS detection, amplitude
and duration-based ECG features can also be measured using weighted diagnostic distortion (WDD) [16].
The feature extraction stage is usually followed by a classification stage with various methods such as
vector quantization [17], random forest [18–20], k-nearest neighbor (kNN) [10,20,21], support vector
machine (SVM) [10,13,18,20], multi-layer perceptron (MLP) [22–24] and convolutional neural network
(CNN) [25].

If the feature extraction and classification stages are done separately, SVM can be used and
optimized using particle swarm optimization (PSO) [10]. As presented in [10], after supervised training
was conducted using 500 beats, the model can classify 40,438 test beats into five classes with accuracy
of 89.72%, outperforming the other methods such as kNN or radial basis function (RBF). Nevertheless,
the quality of this classification can still be improved in terms of increasing the number of classes
and/or accuracy. For example, discrete orthogonal Stockwell transform (DOST) could be used during
feature extraction followed by principal component analysis (PCA) to reduce feature dimensions [13].
As shown in [13], after supervised training was conducted on 23,996 beats, the remainder 86,113 test
beats could be classified into 16 classes with better accuracy of 98.82%.

Another promising method for improving efficiency is by combining both feature extraction and
classification stages using MLP [26] and CNN [27]. For example, in [27], a neural network model
containing three layers of CNN and two layers of MLP was proposed. The input of this model is
a raw ECG beat signal containing 64 or 128 samples centered on the R-peak. While the number of
ECG beats used for training is kept at minimum at 245 and the testing beats is set to 100,144, it can
achieve accuracy of 95.14% to classify five classes. In [28], autoencoder was utilized with a rather good
result but it needs to fairly evaluate the performance with and without denoising. Moreover, the deep
networks configuration could be further optimized to reduce computational time.

Although many researches have been conducted, an efficient algorithm for cardiac arrhythmia
classification is still required. Therefore, the objective of this paper was to simplify the overall process
to lower the computational cost, while maintaining high accuracy. A neural network model presented
in [27] was adopted and modified to now classify 16 classes as in [13]. The performance of our proposed
algorithms was evaluated using number of classes, prediction stages, and accuracy.

2. 1D Convolutional Neural Network and Its Enhancement

In this paper, we use two stages of ECG classification, namely beat segmentation and
classification. For classification purposes, CNN could be used as stated in [27,29]. Although
CNN hyperparameters such as number of filters, filter size, padding type, activation type, pooling,
backpropagation, still have to be done intuitively or by trial and error, there are still some techniques
that can be used to reduce the amount of trial and error attempts to achieve the best results. Further
enhancement to the CNN could be done using All Convolutional Network (ACN) [30], Batch
Normalization (BN) [31]. Depthwise Separable Convolution (DSC) [32], ensemble CNN [33], which
are further elaborated in this section. Out of various methods for CNN enhancement, DSC has the
greatest effect on decreasing training time, while ensemble CNN enables further improvement on the
classification rate.

ACN is used to replace pooling layer with stride during convolution. Pooling or stride is used
for downsampling as CNN output parameters are less than the input parameter. In our case, the
CNN input parameter is set to 256, while the output parameter is set to 16. Normally, the last or
output layer of CNN uses the SoftMax activation function to determine the output class based on its
highest probability. To reduce the number of layers, pooling layer could be replaced with stride during
convolution [30].
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Input normalization is required to solve internal covariate shift, i.e., the change in the distribution
of network activations due to the change in network parameters during training. Without normalization,
this will slow down the training iteration or even stop the iteration before reaching adequate accuracy.
To solve this issue, BN can be conducted for each training mini-batch [31]. To reduce computational
cost, BN could be conducted during the convolution process before nonlinear activation, such as
rectified linear unit (ReLU). On the other hand, DSC could be used to reduce the number of parameters
and floating points multiplication operation, with negligible performance degradation [34]. DSC could
be performed on one layer or a group of layers of CNNs.

Another thing that must be considered in designing the CNN model is the implementation of the
Flatten layer before the Fully Connected (FC) layer. Even though Flatten technically can be replaced
by the AveragePool layer, these two techniques differ in terms of execution time and the final results
obtained. The Flatten process does not require any further calculations, it only changes the arrangement
of parameters in the last layer, while AveragePool must perform arithmetic operations to get the
average value of each group in the last layer according to its position. The next effect of Flatten causes
more neurons connected to FC, in comparison to the number of neurons produced by AveragePool
which is obviously related to the number of arithmetic operations at the FC layer. It should be noted
that the number of neurons in the Flatten layer represents all local features on the last layer without
having to be combined in the average value.

2.1. 1-D CNNs

As described in [27,29], during the forward propagation, the input map of the next layer neuron
will be obtained by the cumulation of the final output maps of the previous layer neurons convolved
with their individual kernels as follows:

xl
k = βl

k +

Nl−1∑
i=1

conv1D
(
ωl−1

ik , sl−1
i

)
(1)

where conv1D(·, ·) is 1-D convolution, xl
k is the input, βl

k is the bias of the k-th neuron at layer l, sl−1
i is

the output of the i-th neuron at layer l− 1, ωl−1
ik is the kernel (weight) from the i-th neuron at layer l− 1
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where rev(·) flips the array, and conv1Dz(·, ·) performs full convolution in 1-D with K − 1 zero padding.
Lastly, the weight and bias sensitivities can be expressed as follows:
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2.2. All Convolutional Network

All Convolutional Network (ACN) [30] is utilized by removing the max pooling layer and replacing
it with convolutional stride. As a result, the computational cost will be reduced, as it removes several
layers as well as reducing the floating point operation on the convolution operation. For example,
conv stride = 1 continued with max pooling 2 could be replaced with one layer, i.e., conv stride = 2
with an almost similar result.
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Let f denote a feature map produced by some layer of a CNN, while N is the number of filters in
this layer. Then p-norm subsampling with pooling size m (or half-length m

2 ) and stride r applied to the
feature map f is a 3-dimensional array s( f ) with the following entries:

si, j,u( f ) =


b

m
2 c∑

h=−bm
2 c

b
m
2 c∑

w=−bm
2 c

∣∣∣ fg(h, w, i, j, u)
∣∣∣p


1
p

(5)

where g(h, w, i, j, u) = (r · i + h, r · j + w, u) is the function mapping from positions in s to positions in f
representing the stride, p is the order of the p-norm (p→∞ represents max pooling). If r > m, pooling
regions do not overlap. The standard definition of a convolution layer c applied to the feature map f is
given as:

ci, j,o( f ) = σ
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θh,w,u,o · fg(h,w,i, j,u)

 (6)

where θ are the convolutional weights, σ(·) is the activation function, typically a rectified linear
activation ReLU σ(x) = max(x, 0), and o ∈ [1, M] is the number of output features of the convolutional
layer. From the two equations, it is evident that the computational cost will be reduced.

2.3. Batch Normalization

Batch Normalization (BN) is intended to avoid non-linear saturation or internal covariate shifts
causing a faster learning process [31]. The Batch Normalization allows much higher learning rates
and reduces dependence on the initialization process. It can also act as a regularizer to reduce the
generalization error and to avoid overfitting without the implementation of dropout layer. To reduce
computation, the Batch Normalization is carried out directly after the convolution and before ReLU.
ReLU before BN can mess up the calculations due to the non-linear nature of ReLU. Suppose we have
network activation as follows:

z = g(ωu + β) (7)

where ω and β are learned parameters of the model, and g(·) is the nonlinear activation function such
as sigmoid or ReLU. Since we normalize ωu + β, the bias β can be ignored since its effect will be
cancelled by the subsequent mean subtraction. Therefore, Equation (7) is replaced with:

z = g(BN(ωu)) (8)

where the BN transform is applied indenpendently to each dimension of x = ωu, with a separate pair
of learned parameters.

2.4. Depthwise Separable Convolution

In addition to the implementation of BN, the convolution part can also be further optimized,
for example by using depthwise separable convolution (DSC) to reduce the computational costs
by reducing the number of arithmetic operations while preserving the same final results [32,34,35].
This technique is applied with changes in filter sizes 3, 1, and 3, respectively. In addition to DSC, the size
of the stride in the third convolution should be set to be greater than one, for example 2, 3, or 4, allowing
the downsampling process to be implemented within the convolution process, instead of on a special
layer such as the MaxPool layer [30]. DSC [34] splits the convolution into two calculation stages, i.e.,
depthwise and pointwise, as follows:

Conv(ω, y)(i, j) =
K.L.M∑
k.l.m

ω(k.l.m) · y(i+k, j+l,m) (9)
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PointwiseConv(ω, y)(i, j) =
M∑
m
ωm.y(i, j,m) (10)

DepthwiseConv(ω, y)(i, j) =
K,L∑
k,l

ω(k,l)
⊙

y(i+k, j+l) (11)

SepConv
(
ωp,ωd, y

)
(i, j)

= PointwiseConv(i, j)
(
ωp, DepthwiseConv(i, j)(ωd, y)

)
(12)

3. Proposed Ensemble of Depthwise Separable Convolutional Neural Networks

Traditional methods of ECG classification are varied in stages, including four, three, and two.
The four stages are beat detection morphology feature extraction, feature dimension reduction,
and classification, as stated in [13,36]. The three stages are beat detection, feature detection, and
classification [10]. Moreover, the two stages of classification are beat detection and classification [27,37],
in which the feature extraction stage is combined with classification. In [38], one stage was used
for arrhythmia detection using 34 layer CNNs. However, it cannot be directly compared to our
proposed algorithm as they used a different database with 12 heart arrhythmias, sinus rhythm, and
noise for a total output of 14 classes. This paper proposes a two-stage ECG beat detection, as one
patient might experience a normal beat and another arrhythmia beats as described in the MIT-BIH
database. Furthermore, as will be explained in Section 5, the beat detection and segmentation require
minimum computational time while improving the classification process. In this section, beat detection
and segmentation, and ensemble of Depthwise Separable CNNs consists of around 34,719 train
parameters with 21 layer CNNs are explained.

3.1. Beat Detection and Segmentation

In this paper, beat detection, QRS detection, or R-peak detection are performed based on analysis
of gradient, amplitude, and duration of the ECG signals similar to [39]. R-peak detection of ECG signals
can be done through wavelet transforms with a detection accuracy of more than 99% [39,40]. R-peak
detection was performed on 48 records of the MIT-BIH database. With a 360 Hz sampling rate, each
record contains 650,000 samples or a duration of 30 min [41]. Each sample is a conversion of a range of
10 mV using an 11-bit ADC [41].

Figure 1 shows examples of ECG pieces of 3000 samples or 8.33 s from the 2nd, 18th, and 36th
records. The RR intervals on ECG chunk from the 2nd and 36th files tend to be uniform, while the RR
interval on the ECG chunk from the 18th file looks more diverse. Hence, the R-peak detection and the
RR interval measurement affect the beat segmentation process.
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Figure 1. The ECG chunk contains 3000 samples from 3 files, i.e., the 2nd, 18th, and 36th files.
The vertical axis is the voltage in mV, while the horizontal axis is time with a scale of 500 samples or
1388 s. The text on the horizontal axis contains the type of beat, and its R-peak position, for example,
/: 608, means that the beat is Paced Beat (see Table 1) with R-peak position at the 1608th sample from
650,000 samples in the 2nd file.

In this paper, after R-peak detection, beat segmentation starts from 1
4 Li to 3

4 Ri, in which Li is
the RR-interval right before the detected R-peak, while Ri is the RR-interval right after the detected
R-peak. This automatic segmentation window is necessary to ensure that there is only a single beat
or R-peak in each segment. The maximum number of samples taken for each segment is 256 points
which is equivalent to a duration of 256/360 s or 711 ms. The MIT-BIH database used a sampling rate
of 360 Hz, so the 256 sample segment size will be more than adequate as the typical RR interval is
around 500 ms [42].

Figure 2 shows the example of our proposed automatic beat segmentation. In our segmentation
method, if the RR-interval is too short, or there is more than one R-peak at the segment, then zero-
paddings are performed to keep the segment size to 256 samples with only one R-peak. If required,
this segment size could be downsampled to 128 or even 64 samples to further reduce the computational
cost. However, there will be a slight decrease in the classification accuracy. More experiments are
conducted on the sample sizes and its accuracy in the next section.
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Figure 2. Samples of 16 chunks out of 23,999 beats training data. The 10th chunk, our top left chunk,
contains the Normal beat taken from the 40th file. The first and third row were the original signals,
while the second and fourth row were the zero-padded signals.

3.2. Ensemble CNNs

Each segmented ECG beat can be replicated into three beat sizes, i.e., 64, 128, and 256 samples.
The 64 and 128 samples were the downsampled version of the original 256 beats segmented automatically
as explained in Section 3.1. In total, we have three CNN configurations with a difference only in layer 1
(input size), i.e., 64, 128, and 256. After the training and testing phase, the three outputs from three
CNNs were ensembled using the averaging method.

Using ensemble CNN by averaging, it can improve further the accuracy by reducing the
variance [33]. In our proposed algorithm, we calculate the average of all tensor SoftMax from 3 CNNs
as shown in Equation (13) and Figure 3. Let l = L denote the last layer of the CNN model, and sL

k is the
output of the k-th neuron at the output layer, and let m = 1, . . . , M denotes the number of CNNs to be
ensembled. The final output of the ensemble CNN using averaging can be calculated as follows:
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P( s) =
1
N

M∑
m=1

sL
k [m] (13)
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Figure 3. Ensemble CNN.

4. Implementation and Experimental Setup

This section discusses the ECG datasets from the MIT-BIH arrhythmia database, the computational
platform used for simulation, and the proposed ensemble CNN algorithm.

4.1. MIT-BIH Arrhythmia Database and Computing Platform

In this paper, ECG datasets from the MIT-BIH arrhythmia database [41] are used for the performance
evaluation of our proposed ensemble CNN algorithms. This database is the widely used database
for testing classification performance. It contains 48 records, in which each contain two- channel
ECG signals for 30 min duration selected from 24 h recording of 47 patients. The database consists of
19 types of ECG beats, in which 16 of them are related to cardiac arrhythmia.

From the total MIT-BIH database, we only used around 110,157 ECG beats out of 112,647 total
beats which were categorized into 16 classes as shown in Table 1. These beat samples were then further
divided into 23,999 beats for training and 86,158 beats for testing. As described in Figure 2, the total of
110,157 beats was also replicated with zero padding. Therefore, there are two sets of experimental data,
with and without zero padding.

Table 1. Sixteen classes of cardiac arrhythmia ECG beats from the MIT-BIH Database and its amount of
Training and Testing beats.

No Symbol Annotation Description Total Training Testing

1 N Normal beat 75,052 11,257 63,795
2 L Left bundle branch block beat 8075 2826 5249
3 R Right bundle branch block beat 7259 2540 4719
4 V Premature ventricular contraction 7130 2495 4635
5 / Paced beat 7028 2459 4569
6 A Atrial premature contraction 2546 891 1655
7 f Fusion of paced and normal beat 982 491 491
8 F Fusion of ventricular and normal beat 803 401 402
9 ! Ventricular flutter wave 472 236 236

10 j Nodal (junctional) escape beat 229 114 115
11 x Non-conducted P-wave 193 96 97
12 a Aberrated atrial premature beat 150 75 75
13 E Ventricular escape beat 106 53 53
14 J Nodal (junctional) premature beat 83 41 42
15 e Atrial escape beat 16 8 8
16 Q Unclassifiable beat 33 16 17

Total 16-class beats 110,157 23,999 86,158

Extracted from total 112,647 of labeled ECG beats
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The proposed algorithm was implemented in Python with Tensorflow with GPU [43] and Keras
libraries [44]. The experiments were performed on a computer with Intel Core i7-7700 CPU with a total
of eight logical processors, memory of 8 GBytes, graphic card Nvidia GeForce GTX 1060 6 GB DDR5,
using Microsoft Windows 10 64 bits operating system. The experiments on the training and testing
time using this computing platform is elaborated further in Section 5.

4.2. Depthwise Separable and Ensemble of Depthwise Separable CNN Models

Using a heuristic approach and optimization, the proposed CNN model contains 21 layers.
Figure 4 shows the comparison between the CNN model with and without depthwise separable CNN
in terms of structure and number of train parameters. As shown in the figure, the total train parameters
are less with the implementation of depthwise separable. Hence, the training time will be faster for
depthwise separable CNN. Table 2 shows the depthwise separable CNN model summary along with
its total parameters’ calculation.
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Figure 4. CNN Models with and without the depthwise separable algorithm.

Table 2. Depthwise separable CNN model summary.

# Layer Number of Filters, Size, Stride Output Shape Number of Parameters

1 input_1 (256, 1) 0
2 separable_conv1d_1 32, 5, 4 (64, 32) 69
3 batch_normalization_1 (64, 32) 128
4 activation_1 (64, 32) 0
5 separable_conv1d_2 32, 5, 1 (64, 32) 1216
6 conv1d_1 32, 1, 1 (64, 32) 1056
7 separable_conv1d_3 32, 5, 4 (16, 32) 1216
8 batch_normalization_2 (16, 32) 128
9 activation_2 (16, 32) 0
10 separable_conv1d_4 32, 5, 1 (16, 32) 1216
11 conv1d_2 32, 1, 1 (16, 32) 1056
12 separable_conv1d_5 32, 5, 4 (4, 32) 1216
13 batch_normalization_3 (4, 32) 128
14 activation_3 (4, 32) 0
15 separable_conv1d_6 32, 5, 1 (4, 32) 1216
16 conv1d_3 32, 1, 1 (4, 32) 1056
17 separable_conv1d_7 32, 5, 4 (1, 32) 1216
18 batch_normalization_4 (1, 32) 128
19 activation_4 (1, 32) 0
20 flatten_1 (32) 0
21 dense_1 (Dense) (16) 528

Total parameters: 11,573
Trainable parameters: 11,317

Non-trainable parameters: 256
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The depthwise separable CNN as described in Table 2 was used to improve the training time,
while the ensemble of depthwise separable CNN, as depicted in Figure 5, was used to improve further
its classification accuracy. The input layer size is 256 representing the raw ECG beat waveform, while
the output layer size is 16 representing the number of classes as described in the MIT-BIH database
(see Table 1). There is a group of layers repeated three times, i.e., layer 5 to 9, layer 10 to 14, and layer
15 to 19. These five layers contain three convolution layers with filter size of 5, 1, and 5, respectively.
Layer 5 to 7 is configured according to the DSC algorithm. Moreover, layer 2, 7, 12, and 17 were
using stride 4 to replace the function of pooling layer according to the ACN algorithm. Suppose that we
use an ensemble of three DSC, the total number of parameters will be three times larger, i.e., 34,719 train
parameters, which is still less than the train parameters without DSC, i.e., 47,600. As is discussed in
Section 5, the use of ensemble improves its accuracy.
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5. Results and Discussion

This section elaborates beat segmentation and detection, the training process, experiments on
the CNN model with and without DSC, the experiments on zero padding and various ensemble
configurations, and benchmarking with other algorithms.

5.1. Experiment on ECG Beat Segmentation and Detection

The ECG beat segmentation and detection algorithm described in [39] were implemented in the
computing platform described in Section 4. We evaluated the algorithm on the 48 records of the
MIT- BIH database. The experiment was repeated 10 times for each record and then the average
time was calculated. The experimental result showed that, on average, it requires around 26 µs
to detect and segment one ECG beat with zero padding. This result justified the use of two stage
ECG classification as proposed in this paper, as the segmentation time is minimal compared to the
improvement achieved in the classification stage.

5.2. Training Process

Figure 6 shows the training history for 1000 epochs using the CNN model as described in Table 2
and for the training data described in Table 1. There is a gap of accuracy around 1.5% between training
and testing. The accuracy curve for validation shows that the best accuracy can be achieved at epoch
of 50. The training accuracy has convergent tendency reaching almost 100% with fluctuation around
99.7%. This result is achieved for a zero-padding input size of 256.
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curve is the classification accuracy of the training data. The orange curve is the classification accuracy
of the testing data. There is a visible gap around 1.5% between the two curves.

5.3. Performance Measures

We used the performance measure of sensitivity, specificity, positive predictivity, and accuracy
as shown in Figure 7 and described in [45]. Sensitivity is the rate of correctly classified classes among
all classes. Specificity is the rate of correctly classified nonevents among all events. Positive predictivity
is the fraction of real events in all detected events. Finally, the accuracy is the percentage of correctly
predicted classes.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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5.4. On the Effect of Depthwise Separable CNN

Table 3 shows the experimental result for CNN models with and without depthwise separable
algorithms as described in Figure 4 for the input size of 256 samples. The total parameters were 47,600
and 11,573 for without and with DSC algorithm, respectively. The training time for 1000 epochs and
the accuracy of both CNN models were comparable. This could be due to the use of GPU during
training, in which a faster training time was not apparent in the result. When CPU only was used
during training, a faster training time was evident for the CNN model with DSC. Nevertheless,
the smaller parameters in the CNN model with DSC provided a faster computation time during the
classification stage compared to the model without DSC. Therefore, the CNN model with DSC is used
in our next experiments.
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Table 3. Effect of DSC implementation on CNN layers

# DSC Total
Parameters TN FN TP FP Sn Sp Pp Acc Training

Time
Testing
Time

1 Without DSC 47,600 1,291,271 1099 85,059 1099 98.72 99.91 98.72 99.84 711.9 s 81 µs
2 With DSC 11,573 1,290,966 1404 84,754 1404 98.37 99.89 98.37 99.80 745.8 s 62 µs

5.5. On the Effect of Zero Padding

Zero padding in ECG beats was required due to there being a possibility that the distance
between RR intervals is less than 256, as well as to avoid more than one R-peak being detected in
one segment (see Section 3.1). Furthermore, zero padding has a positive impact on the performance, in
terms of sensitivity, specificity, positive predictivity, and accuracy, as evidenced in Table 4. The best
performance is highlighted in bold. As shown in Table 4, our proposed ECG segmentation of
256 samples with zero padding has the highest performance. Hence, zero padding is used in our
next experiments.

Table 4. Effect of zero padding on various input sizes.

# Zero Padding Input Size TN FN TP FP Sn Sp Pp Acc

1 No 64 1,291,190 1180 84,978 1180 98.63 99.91 98.63 99.83
2 No 128 1,291,413 957 85,201 957 98.89 99.93 98.89 99.86
3 No 256 1,291,411 959 85,199 959 98.89 99.93 98.89 99.86
4 Yes 64 1,291,207 1163 84,995 1163 98.65 99.91 98.65 99.83
5 Yes 128 1,291,389 981 85,177 981 98.86 99.92 98.86 99.86
6 Yes 256 1,291,531 839 85,319 839 99.03 99.94 99.03 99.88

5.6. On the Effect of Various Ensemble Configurations

As described in Section 4.2, ensemble of depthwise separable CNNs has been experimented
with various input sizes and various numbers of ensembles. The result is shown in Table 5, in terms
of sensitivity, specificity, positive predictivity, and accuracy, in which the [256 256 256] ensemble
configuration shows the best performance. Hence, the [256 256 256] ensemble configuration is used for
benchmarking purposes with other algorithms.

Table 5. Performance of various ensemble of depthwise separable CNN configurations.

# Ensemble
Configuration TN FN TP FP Sn Sp Pp Acc Testing Time

1 [128 64] 1,291,194 1176 84,982 1176 98.64 99.91 98.64 99.83 111 µs
2 [256 128] 1,291,369 1001 85,157 1001 98.84 99.92 98.84 99.85 113 µs
3 [256 256] 1,291,460 910 85,248 910 98.94 99.93 98.94 99.87 111 µs
4 [64 64 64] 1,291,207 1163 84,995 1163 98.65 99.91 98.65 99.83 143 µs
5 [128 128 128] 1,291,389 981 85,177 981 98.86 99.92 98.86 99.86 146 µs
6 [256 256 256] 1,291,531 839 85,319 839 99.03 99.94 99.03 99.88 150 µs
7 [256 128 64] 1,291,408 962 85,196 962 98.88 99.93 98.88 99.86 150 µs

In the ensemble configuration, the CNN model was trained separately. For example, the [256
256 256] ensemble is trained three times. Therefore, the training time is increased by three times with
increased accuracy. As expected, the classification stage (testing time) will be increased around three
times as well but within the range of 150 µs. Hence, we can conclude that the proposed two stage
ECG classification requires around 180 µs for QRS detection and classification using the computing
platform described in Section 4.1.

For more detailed evaluation, the [256 256 256] ensemble confusion matrix is shown in Table 6.
The performance assessment of each class using the [256 256 256] ensemble configuration can be seen
in Table 7, in which the ECG class is sorted from the largest to the smallest available samples in the
MIT-BIH database. As can be seen from the table, fewer samples of data cause inaccurate classification.
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In conclusion, the [256 256 256] ensemble achieves the best performance in terms of sensitivity, specificity,
positive predictivity, and accuracy.

Table 6. Confusion matrix for [256 256 256] ensemble of CNNs.

Prediction

N L R V / A f F ! j x a E J e Q

Ground Truth 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N 0 63,521 4 13 70 2 79 11 36 3 44 6 2 0 1 0 3
L 1 22 5211 0 13 1 0 0 0 0 0 0 0 1 0 0 1
R 2 11 0 4699 0 0 9 0 0 0 0 0 0 0 0 0 0
V 3 46 10 0 4528 1 11 0 22 10 0 0 7 0 0 0 0
/ 4 3 0 0 3 4553 0 9 0 0 0 0 0 1 0 0 0
A 5 143 0 5 16 0 1484 0 2 0 3 0 0 0 2 0 0
f 6 13 0 0 1 6 0 470 0 0 0 0 0 0 1 0 0
F 7 52 0 0 36 0 0 0 313 0 0 1 0 0 0 0 0
! 8 2 0 0 8 0 0 0 0 225 0 0 1 0 0 0 0
j 9 15 0 1 0 0 0 0 0 0 97 0 0 0 2 0 0
x 10 1 0 0 1 0 0 0 0 5 0 89 1 0 0 0 0
a 11 6 0 0 15 0 9 0 0 1 0 0 44 0 0 0 0
E 12 2 0 0 1 0 0 0 0 0 0 0 0 50 0 0 0
J 13 7 0 0 0 0 3 0 0 0 0 0 0 0 32 0 0
e 14 3 0 0 0 0 1 1 0 0 0 0 0 0 0 3 0
Q 15 11 0 2 1 0 0 3 0 0 0 0 0 0 0 0 0

Table 7. Performance evaluation for each class using [256 256 256] ensemble of
depthwise separable CNNs.

ECG
Class

Total
Beats

Train
Beats

Test
Beats TN FN TP FP Sn Sp Pp Acc

N 75,052 11,257 63,795 22,026 274 63,521 337 99.57 98.49 99.47 99.29
L 8075 2826 5249 80,895 38 5211 14 99.28 99.98 99.73 99.94
R 7259 2540 4719 81,418 20 4699 21 99.58 99.97 99.56 99.95
V 7130 2495 4635 81,358 107 4528 165 97.69 99.80 96.48 99.68
/ 7028 2459 4569 81,579 16 4553 10 99.65 99.99 99.78 99.97
A 2546 891 1655 84,391 171 1484 112 89.67 99.87 92.98 99.67
f 982 491 491 85,643 21 470 24 95.72 99.97 95.14 99.95
F 803 401 402 85,696 89 313 60 77.86 99.93 83.91 99.83
! 472 236 236 85,903 11 225 19 95.34 99.98 92.21 99.97
j 229 114 115 85,996 18 97 47 84.35 99.95 67.36 99.92
x 193 96 97 86,054 8 89 7 91.75 99.99 92.71 99.98
a 150 75 75 86,072 31 44 11 58.67 99.99 80.00 99.95
E 106 53 53 86,103 3 50 2 94.34 100.00 96.15 99.99
J 83 41 42 86,110 10 32 6 76.19 99.99 84.21 99.98
e 16 8 8 86,150 5 3 0 37.5 100.00 100.00 99.99
Q 33 16 17 86,137 17 0 4 0 100.00 0.00 99.98∑

110,157 23,999 86,158 1,291,531 839 85,319 839 99.03 99.94 99.03 99.88

5.7. On Comparison with Other Algorithms

Table 8 shows the benchmarking results with another 10 algorithms, in terms of number of classes
(some of the algorithms did not classify all 16 classes), methods, number of prediction stages, and
accuracy. In terms of accuracy, refs. [46] and [47] have the closest but still a lower accuracy than
our proposed algorithm, i.e., 99.61% and 99.80%, respectively. Note that, ref. [46] only performs
classification for eight classes, while [47] only performs classification for four classes, while we perform
classification for sixteen classes. Hence, it is evident that our proposed algorithm with the [256 256 256]
ensemble of CNNs outperforms the other algorithms. Particularly, we managed to classify all 16 classes
from the MIT-BIH database, while reducing the number of stages to two (lower computational cost),
and achieving highest accuracy.
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Table 8. Benchmarking of the proposed algorithm with other algorithms using MIT-BIH database.

No Author, Year #Class Methods Prediction Stage Accuracy

1 Melgani and Bazi, 2008 [10] 6 SVM and PSO 3 89.72%

2 Ince et al., 2009 [36] 5 DWT, PCA,
and ANN 4 98.30%

3 Wen et al., 2009 [37] 16
Self Organizing
CMAC Neural

Network
2 98.21%

4 Sarfraz et al., 2014 [46] 8 ICA and BPNN 3 99.61%

5 Kiranyaz et al., 2015 [27] 5 1D-CNN 2 95.14%

6 Raj and Ray, 2017 [13] 16
DCT_DOST,

PCA,
SVM_PSO

4 98.82%

7 Nanjun and Meshram, 2018 [48] 2 DWT and DNN 3 98.33%

8 Zhai and Tin, 2018 [29] 5 2D-CNN 2 96.05%

9 Rangappa and Agarwal, 2018 [49] 2 k-NN 3 98.40%

10 Xia et al., 2018 [47] 4 SDAE, DNN 4 99.80%

11 Proposed Algorithm 16 Ensemble
CNNs 2 99.88%

6. Conclusions

In this paper, we presented an efficient algorithm for cardiac arrhythmia classification using
the ensemble of depthwise separable convolutional neural networks. First, we optimized the
beat segmentation by taking ECG samples centered around the R-peak. Second, we used all
convolutional network, batch normalization, and depthwise separable convolution, to achieve the best
accuracy while reducing the computational cost. Finally, we ensembled three depthwise separable
CNNs by averaging three CNNs of 256 sample input size. Performance evaluation showed that our
proposed algorithms achieved around 99.88% accuracy in 16 classes classification. The proposed
two-stage ECG classification required around 180 µs, which can be implemented in a real time
application. Future work will include the implementation of the current CNN on GPU to speed up
its training, as well as to vary the input segment for various patients, the use of different databases,
the use of other optimization methods, and the implementation in clinical application validated by
a cardiologist.
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