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Abstract: Dwell time is a critical factor in constructing and adjusting railway timetables for efficient
and accurate operation of railways. This paper develops dwell time estimation models for a
Shinbundang line (S line) in Seoul, South Korea using support vector regression (SVR), multiple linear
regression (MLR), and random forest (RF) techniques utilizing archived real-time metro operation data
along with smart card-based passenger information. In the first phase of this research, the collected
data are processed to extract boarding and alighting passenger counts and observed dwell times
of each train at all stations of the S line under the current operational environment. In the second
phase, we develop SVR, MLR, and RF-based dwell time estimation models. It is found that the
SVR-based model successfully estimates the dwell times within 10 s of differences for 84.4% of
observed data. The results of this paper are especially beneficial for autonomous railway operations
that need constructing and maintaining dynamic railway timetables that require reliable dwell time
predictions in real-time.

Keywords: smart card; railway operation data; transit ridership; dwell time estimation; metro
timetable; artificial intelligence

1. Introduction

The relatively reliable schedule adherence of railway systems is one of the most attractive merits
of the mode for the railway passengers [1]. However, it is still a challenge to operate on railways with
perceived reliability. Railway schedules are constructed based on passenger demand, although the
arrival patterns of passengers at stations are not uniform or deterministic in real-life. If a particular
train’s arrival at a station is delayed, an additional accumulation of arriving passengers in the meantime
will result in extended boarding and alighting times when the train dwells at the station, and this event
will further propagate delays with respect to subsequent trains upstream.

Railway operators and authorities have considered different strategies when determining train
schedules with respect to stations with expected passenger demands. They employ a “running time
supplement” [2,3], a buffering time that can help to recover from delays if they occur. To minimize the
delay, larger railway operators often control the passenger demand with a more direct approach of
employing dedicated personnel on the platforms at stations, who can restrict passengers from boarding
trains when they are delayed. There have been various studies in predicting delays and analyzing
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their intrinsic nature [2,3], timetable optimization [4–7], developing appropriate performance indices,
and utilizing them for timetable construction [8].

For railway-related research, it is essential to have access to real-life data, including the operation
of trains and passenger flows, while a larger amount of data will further benefit the reliability of the
analysis. Automatic passenger counters (APCs) and smart card-based fare payment systems have been
utilized for such purposes. Um et al. [9] utilized big data based on the smart card system in Seoul,
South Korea for assessing performance measures of the public transit services including schedule
adherence and crowdedness of passengers. Using smart card-based passenger fare and rail operation
data, Hong et al. [10] developed models for predicting actually taken passenger-routes, the number
of boarding and alighting passengers at stations, and the number of passengers on board between
stations. Berbey et al. [11] used data from Line 1 of the Panama Metro and passengers’ preferences
of train ticket classes in order to estimate dwell times at each station. Lam et al. [12] developed a
regression model to investigate the relationship between dwell time and the number of boarding
and alighting passengers, and tested it using Monte-Carlo simulations. Lee et al. [13] developed a
timetable adjustment model for the Hong Kong metro, MTR, by analyzing the departure and arrival
information of trains, boarding and alighting passenger counts at stations, and historical data of past
causes of delays. Markovic et al. [14] developed a machine learning model based on a support vector
regression method for predicting delays at railway stations operated with different classes of trains.
Wang and Work [15] proposed a regression-based estimation model for future train delays using only
the operation records of trains. Despite numerous efforts in research works regarding train delays,
there have not been any significant research works for modeling dwell/delay time of trains utilizing
boarding and alighting passenger counts, or onboard crowdedness (load factor), for all trains at all train
stations of a metro line. Jiang et al. [16] conducted a similar line of research for Line 8 of the Shanghai
Metro in China, yet with limited data and simulated values for load factor, boarding, and alighting
passenger counts. Adachi et al. [17] adopted a Gompertz curve to overcome a limited data set of
boarding and alighting passenger counts collected at 30-min intervals.

A smart card-based transit fare system has been in use in Seoul, South Korea since 2004 and
currently 99% of all passengers use the smart card, which provides an excellent basis to collect
real-life data for passenger flows. The smart card-based database includes each passenger’s origin and
destination stops or stations, associated times, transit transfer locations, etc. This paper utilizes data
from real-life operations of trains in the Seoul Metro, and the smart card-based passenger information,
for estimating dwell times for each station of a metro line. Section 2 describes the data structures
of train operations and smart card-based passengers’ information, and how the two databases are
processed for further analysis. Section 3 develops a methodology based on extracting observed dwell
times for each station using real-time data of train operations. Section 4 uses the observed dwell times,
along with boarding and alighting passenger counts, onboard loading factors, to estimate dwell times.
Section 5 concludes the paper.

2. Matching the Automatic Fare Collection Data with the Real-Time Train Operation Data

This paper develops a dwell time estimation model using boarding and alighting passenger
counts, and onboard passenger counts between stations for each train. The initial dataset for
analysis was prepared according to the method suggested by Hong et al. [10] based on the smart
card passenger information and archived real-time train operation data. This dataset includes the
number of trains operating and their current status with respect to their nearest station as one of
3 stages—“approaching,” “arrival,” and “departure”—along with timestamps for when the current
stage was acquired. The approaching status is gained as soon as the arriving train passes a balise
located at 1000 m upstream of an associated station. The arrival status is achieved as soon as the train
passes a balise located 400 m upstream. The status changes to departure when the train passes a balise
at 200 m downstream. The smart card-based passenger information includes the serial number of the
card, boarding station, boarding time, alighting station, alighting time, transfer station, and transfer
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time. It is noted that the time associated with boarding, alighting, and transfer refers to the time when
the passenger checks in or out with the gates at stations.

In this paper, both archived real-time train operation and smart card-based passenger data from
the Shinbundang line (S Line) on 31st October 2017 was used. The S line has concentrated commuting
passenger demands during both morning and afternoon peak periods, with dominating directions of
the majority of passengers: towards the CBD in the morning and towards Bundang in the afternoon
(See Figure 1). In this study, to show the morning peak clearly with maximum crowdedness, the S
line’s Central Business District (CBD)-bound direction towards Gangnam station was selected for
the analysis. The S line has a total length of 31.29 km, consisting of 12 stations, of which 4 stations
allow inter-line transfers. The fleet size is 20 trains, and they run 327 cycles and 271 cycles in total
on weekdays and weekend days, respectively; mostly throughout the entire route, except for the first
and last trains each day. There is only 1 class of tickets, and daily ridership on the S line is roughly
247,000, as of 2017. For train operation data, arrival and departure times were identified for each train
and each station. However, in cases where departure data were missing, average dwell times based
on visual observations with video cameras were added to the arrival times to estimate the missing
departure times.
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Figure 1. Route map and the station ID of Shinbundang S line.

Figure 2 shows the process of matching the smart card passenger information with the archived
real-time train operation data. The process starts with identifying a passenger who has alighted at
a station. Then, the train that arrived at the station most recently is assumed to be the one that the
passenger got off from. The departure time of the train that the passenger had boarded earlier is found.
If the boarding time is earlier than the departure time of the train, the train number is assigned to that
passenger, assuming that the passenger has boarded and will alight from that train. If the matching
process does not succeed, the data from the smart card is not used, since there may be logical errors in
the data. This is reasonable, because there is no way to reduce the travel time by overtaking between
trains, or transferring through the other lines since the S line has a single class of train. The process
stops when the number of the smart-card data that have been processed is equal to the total number of
the smart-card data, N.

Figure 3 shows smart card-based passenger data and train operation data from the S07 station to
the S11 station in a passenger entry-exit map suggested by Hong et al. [10]. The x-axis represents the
time at the S07 station, and the y-axis represents the time at the S11 station. Circles, triangles, and plus
signs represent groups of individual passenger’s smart card data who have completed their trips from
S07 to S11 with associated boarding and alighting times at those stations. Train number 477 arrives
at the S07 at 7:25:56 and S11 at 7:38:02. Any potential passengers who were on train 477 during the
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trip must be on the 2nd quadrant of the horizontal and vertical lines intersecting at train 477. If the
passengers used train 477, they must pass the boarding gate at S07 station before train 477 arrives at S07
station, and must also alight after the train arrives at S11 station. Therefore, the group of passengers
surrounded by the dotted lines roughly represents all of the potential users of train 477 from S07 to S11
station. It is noted that there were some passengers who boarded and alighted at the same stations,
and these were excluded from the analysis.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 12 

the passengers used train 477, they must pass the boarding gate at S07 station before train 477 arrives 
at S07 station, and must also alight after the train arrives at S11 station. Therefore, the group of 
passengers surrounded by the dotted lines roughly represents all of the potential users of train 477 
from S07 to S11 station. It is noted that there were some passengers who boarded and alighted at the 
same stations, and these were excluded from the analysis. 

 
Figure 2. Smart card-based passenger information matching process against the real-time train 
operation data. 

 
Figure 3. Entry-exit map of the trip from Jeongja (S07) station to Yangjae (S11) station. 

Figure 4 shows the number of passengers boarding, alighting, and arriving onboard at each 
station on the S line. Trains depart from the right towards the left, and each line in each graph 

Figure 2. Smart card-based passenger information matching process against the real-time train
operation data.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 12 

the passengers used train 477, they must pass the boarding gate at S07 station before train 477 arrives 
at S07 station, and must also alight after the train arrives at S11 station. Therefore, the group of 
passengers surrounded by the dotted lines roughly represents all of the potential users of train 477 
from S07 to S11 station. It is noted that there were some passengers who boarded and alighted at the 
same stations, and these were excluded from the analysis. 

 
Figure 2. Smart card-based passenger information matching process against the real-time train 
operation data. 

 
Figure 3. Entry-exit map of the trip from Jeongja (S07) station to Yangjae (S11) station. 

Figure 4 shows the number of passengers boarding, alighting, and arriving onboard at each 
station on the S line. Trains depart from the right towards the left, and each line in each graph 

Figure 3. Entry-exit map of the trip from Jeongja (S07) station to Yangjae (S11) station.



Appl. Sci. 2020, 10, 476 5 of 12

Figure 4 shows the number of passengers boarding, alighting, and arriving onboard at each station
on the S line. Trains depart from the right towards the left, and each line in each graph represents
a train. Red lines represent trains operated during the morning peak-hours from 6:30 a.m. to 10:30
a.m., and blue lines represent trains run during the afternoon-peak hours from 6:00 p.m. to 9:00 p.m.
Trains run outside of peak-hours are represented by gray lines.
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Figure 4. (a) The number of boarding passengers at each station. (b) The number of alighting passengers
at each station. (c) The number of onboard passengers when the train had been arrived at each station.

Figure 4 shows passenger boarding, alighting and onboard counts. When observed from the
right, starting with the first station S01, in the morning peak, the boarding counts from S01 to S08
stations, inclusive, are significantly higher than the rest of stations combined. This is due to the fact
that the regions covered by stations from S01 to S08 are dedicated residential areas (bed towns) of the
Greater Seoul Area (GSA), S09 and S10 are located in an outskirts of Seoul, and S11 and S12 are located
in the CBD of Gangnam area of Seoul. During the evening peak period, boarding counts at the S08
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station stands out as there is also a large concentrated commercial area called “Pangyo Techno Valley”.
This area is also related to the high number of alighting at S08 in the morning.

During the morning peak-hour period, at stations from S01 to S06, inclusive, and S09, there are
nearly zero alighting passengers. At S07 and S08 stations, some passengers alight, while most of the
passengers alight at S11 and S12 stations in the CBD. There are relatively high numbers of alighting
passengers at S07 and S08 compared to other residential areas because there are concentrations of office
buildings near those stations. Note that S07 and S08 also serve as transfer stations connected with other
metro lines. In the case of station S09, there are only residential facilities near the station, hence resulting
in very low alighting counts. In the afternoon-peak and non-peak periods, most alighting counts occur
at S11 and S12 stations.

Due to the various characteristics mentioned earlier, the onboard passenger counts, as shown in
Figure 4c, continue to increase as trains approach the final station S12 in the CBD. It is also noted that
most trains in the morning-peak period experience passengers occupying at the full capacity of the
trains and even exceeding the capacity with a factor of 2 between the S07 and S11 stations.

3. Estimating Observed Dwell Time of Train When Departure Information Is Missing

This paper utilizes the real-time operation data of the metro trains. The collected data have
relatively well-recorded arrival times of trains, while often missing the departure times. Therefore,
in cases where the departure times are missing, the observed dwell time for each train at each station
was estimated by using typical travel times between stations.

As illustrated in Figure 5, the train arrival times at station S and S + 1 is easily determined from
the train operation data. The arrival time refers to the time when a train passes 400 m upstream of an
associated station. The time difference between the 2 stations consists of the braking time at station
S (BS), dwell time at station S (DWS), and the travel time between the station S and 400 m upstream
location of station S + 1. If we assume the braking times are similar for all stations, the braking time
at station S (BS) can be subtracted from the time difference between the two stations S and S + 1 in
order to estimate the actual dwell time. The S line, from which the data were collected, is specifically
suitable for such assumptions, because it is autonomously operated and has constant braking times
at stations with a large headway of 4 min, and has a relatively low chance of congestion occurring
due to the influence of trains downstream. The assumption of constant braking times was verified
visually with video cameras installed on all trains. Figure 6 shows the time difference between arrivals
of trains at all stations (solid black and red lines), and average travel times visually observed from
trains equipped with video cameras (blue dotted line). The difference, DWS, between the TTS and TDS

is the estimated dwell time for each train at each station in the case of missing departure data. It is
noted that the red lines represent time difference between arrivals at stations of the first 5 trains in the
early morning period, where there are no delays, while black lines represent for all other trains.
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Figure 7 shows a relationship between the estimation of observed dwell times for all trains at all
stations versus the sum of boarding and alighting passenger counts. The x-axis represents the sum
of boarding and alighting passengers while the y-axis represents the estimation of observed dwell
times. Each symbol represents a station, as illustrated in Table 1. The minimum observed dwell time
is 16 s. The variability of dwell times is found to be larger when the passenger counts are smaller,
and smaller when the passenger counts are larger. In addition, it is found that the minimum dwell
time increases as the passenger counts increase. It is interesting to note that many observed dwell
times at certain stations seem to have constant dwell times regardless of passenger counts. This is a
result of enforced dwell times at some major stations being assisted by dedicated employees on the
platforms, limiting the number of boarding passengers.
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Table 1. Symbols of each station.
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Suji-gu Office S05  Yangjae S11  

Dongcheon S06  Gangnam S12  

4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Gwanggyo Jungang S02
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4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Pangyo S08
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  

Suji-gu Office S05  Yangjae S11  
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4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Sanghyeon S03
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  

Suji-gu Office S05  Yangjae S11  

Dongcheon S06  Gangnam S12  

4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Cheonggyesan S09
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  

Suji-gu Office S05  Yangjae S11  

Dongcheon S06  Gangnam S12  

4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Seongbok S04
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  

Suji-gu Office S05  Yangjae S11  

Dongcheon S06  Gangnam S12  

4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Yangjae Citizen’s Forest S10
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  

Suji-gu Office S05  Yangjae S11  
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4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Suji-gu Office S05
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  

Suji-gu Office S05  Yangjae S11  
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4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Yangjae S11
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  

Suji-gu Office S05  Yangjae S11  
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4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Dongcheon S06
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Gwanggyo S01  Jeongja S07  

Gwanggyo Jungang S02  Pangyo S08  

Sanghyeon S03  Cheonggyesan S09  

Seongbok S04  Yangjae Citizen’s Forest S10  
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4. Dwell Time Estimation Model 

In this second phase of research, we utilize the results from the first phase, including the 
observed dwell times (which required estimations when the departure information was missing), 
boarding and alighting passenger counts for all trains at all stations, in order to develop dwell time 
estimation models. The proposed models estimate dwell times at all stations with given boarding 
and alighting passenger counts and onboard passenger counts on arriving trains. 

Boarding, alighting, and onboard passenger counts for each train at each station are set as 
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times are 
mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains 
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data as 
described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR), and 
Random Forest (RF) methods were used to develop 3 different estimation models, and their 
estimation performances were compared. Seventy percent of the data were used as a training set to 
develop the model, and 30% of the data were used as a validation set. 

To compare the performances of the different models, performances were compared for 3 
different scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and 
estimated dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less 
than 3 s of errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation 
by the RF model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that 
the dwell times used for training are in integer values while the estimated dwell times from the 
models are in real numbers, and making distinctions between the 3 scenarios separated by a few 
seconds may be practically insignificant in real-life metro operations. 

When compared from the perspective of percentage accuracy, the SVR model performed the 
best in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 
and 9 show the comparison of dwell time estimation results derived from each model. The orange 
square represents the trains operated during the morning peak hour, the blue circle represents the 
trains operated during the evening peak hour, and the black triangle represents the trains operated 
outside the two rush-hour periods. 

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell 
time and estimated dwell time by the model types. 

Model Type <3 s (%) <5 s (%) <10 s (%) 
SVR 53.6 67.2 84.4 
RF 43.7 62.2 87.5 

MLR 39.0 54.3 74.0 

Gangnam S12
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4. Dwell Time Estimation Model

In this second phase of research, we utilize the results from the first phase, including the observed
dwell times (which required estimations when the departure information was missing), boarding and
alighting passenger counts for all trains at all stations, in order to develop dwell time estimation
models. The proposed models estimate dwell times at all stations with given boarding and alighting
passenger counts and onboard passenger counts on arriving trains.

Boarding, alighting, and onboard passenger counts for each train at each station are set as
independent variables and the dwell time as dependent variable. This is intuitive, as dwell times
are mainly affected by the boarding and alighting counts, while the onboard crowdedness in trains
indirectly affects them. The dependent variable, dwell time, was extracted from the observed data
as described in Section 3. Support Vector Regression (SVR), Multiple Linear Regression (MLR),
and Random Forest (RF) methods were used to develop 3 different estimation models, and their
estimation performances were compared. Seventy percent of the data were used as a training set to
develop the model, and 30% of the data were used as a validation set.

To compare the performances of the different models, performances were compared for 3 different
scenarios of dwell time estimation accuracy of less than 3, 5, and 10 s between the actual and estimated
dwell times. Among the validation set, the SVR model shows that 53.6% of cases have less than 3 s of
errors, and 67.2% have less than 5 s of errors. On the other hand, 87.5% of the estimation by the RF
model in the validation set marked below 10 s of error, as shown in Table 2. It is noted that the dwell
times used for training are in integer values while the estimated dwell times from the models are in
real numbers, and making distinctions between the 3 scenarios separated by a few seconds may be
practically insignificant in real-life metro operations.

Table 2. The proportion of estimated data depends on the absolute difference between actual dwell
time and estimated dwell time by the model types.

Model Type <3 s (%) <5 s (%) <10 s (%)

SVR 53.6 67.2 84.4
RF 43.7 62.2 87.5

MLR 39.0 54.3 74.0

When compared from the perspective of percentage accuracy, the SVR model performed the best
in the case of less than 30% errors followed by RF and MLR models as seen in Table 3. Figures 8 and 9
show the comparison of dwell time estimation results derived from each model. The orange square
represents the trains operated during the morning peak hour, the blue circle represents the trains
operated during the evening peak hour, and the black triangle represents the trains operated outside
the two rush-hour periods.



Appl. Sci. 2020, 10, 476 9 of 12

Table 3. The proportion of estimated data depends on the relative difference between actual dwell time
and estimated dwell time by the model types.

Model Type <10% (%) <20% (%) <30% (%)

SVR 52.8 71.4 81.6
RF 42.3 69.7 81.0

MLR 36.5 62.1 73.8
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To further enhance the SVR model with 3 variables (with boarding, alighting, and onboard
passenger counts at independent variables) which was found to be the most accurate model among
the 3 models, we developed different SVR models with 3 additional input variables: train arrival
time, station information, and time difference between arrivals at 2 consecutive stations. As shown in
Tables 4 and 5, it is found that the performances of SVRs with additional input variables were further
enhanced. In particular, the scenario with less than 5 s of error was improved by 20% in accuracy.
Most notably, the enhanced SVR model performed at 97.2% accuracy for the scenario with less than 10
s of error. Figure 10 shows the comparison of estimation performance between the 6-variable model
with the 3-variable model.

Table 4. The proportion of estimated data depends on the absolute difference between actual dwell
time and estimated dwell time by the number of variables of SVR models.

Model Type <3 s (%) <5 s (%) <10 s (%)

SVR: 3 variables (A) 53.3 67.2 84.4
SVR: 6 variables (B) 76.3 87.6 97.2
Improvements (B-A) 23.0 20.4 12.8

Table 5. The proportion of estimated data depends on the relative difference between actual dwell time
and estimated dwell time by the number of variables of SVR models.

Model Type <10% (%) <20% (%) <30% (%)

SVR: 3 variables (C) 52.8 71.4 81.6
SVR: 6 variables (D) 72.1 92.9 96.3
Improvements (D-C) 19.3 21.5 14.7
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5. Conclusions

This paper develops a railway dwell time estimation model using SVR, RF, and MLR methods.
In the first phase, smart card-based passenger information is matched against the real-time train
operation data from the S line of the Seoul Metro in Seoul, South Korea, for extracting boarding,
alighting, on-bard passenger counts, and the observed dwell times for all trains at all stations. When the
train departure times were missing, an assumption of constant braking time was adopted to estimate
actual/observed dwell times, since the S line is autonomously operated with minimal variability in
braking times.

In the second phase, the paper develops dwell time estimation models utilizing the extracted
information from the first phase. The SVR, RF and MLR-based models were developed for dwell time
estimations while boarding, alighting, and onboard passenger counts were treated as independent
variables and the dwell time was set as a dependent variable. In the comparative scenarios with less
than 3, 5, and 10 s of errors between the estimations and the observed values, the SVR model performed
the best, with an accuracy of 67.2% in the scenario with less than 5 s of error. Then the SVR model was
enhanced by including additional independent variables, including arrival times and time difference
of arrivals, at 2 consecutive stations for all trains at all stations. It was found that the enhanced SVR
model improved the accuracy by 20% to an accuracy of 87.6% for the scenario of less than 5 s of error.
In the case of less than 10 s of error, the improved SVR model performed at 97.2% accuracy.

This research is unique in the sense that, firstly, it extracts boarding, alighting, and onboard
passenger counts using data from real-life metro operations and smart card-based passenger information
for all trains at all stations on an urban metro line. Secondly, this research develops dwell time estimation
models with high performance accuracies that are validated by real-life data. The results of this
paper are especially beneficial for autonomous railway operation, which requires construction and
maintenance of dynamic railway timetables that require reliable dwell time real-time predictions.
However, this estimation model may not work well if incidents such as rolling stock failure, or big
events (i.e., sports games or exhibitions) occur near metro stations that may increase the demand
dramatically and present unseen data to the proposed models. Enhancing the proposed estimation
models to cover not only a general commute-based operation environment, but also the situations
affected by such special events, are topics of future studies.
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