
applied
sciences

Article

A Novel Fast Parallel Batch Scheduling Algorithm for
Solving the Independent Job Problem

Bin Zhang 1,2, Dawei Wu 3, Yingjie Song 2,*, Kewei Liu 1 and Juxia Xiong 4

1 School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005,
China; zhangb@sdtbu.edu.cn (B.Z.); liukewei0110@163.com (K.L.)

2 Shandong Co-Innovation Center of Future Intelligent Computing, Shandong Technology and Business
University, Yantai 264005, China

3 School of Traffic, Northeast Forestry University, Harbin 150040, China; wdw2017211666@nefu.edu.cn
4 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for

Nationalities, Nanning 530006, China; xiongjuxia1107@163.com
* Correspondence: songjy@sdtbu.edu.cn; Tel.: +86-0535-690-3541

Received: 17 December 2019; Accepted: 6 January 2020; Published: 8 January 2020
����������
�������

Abstract: With the rapid economic development, manufacturing enterprises are increasingly using an
efficient workshop production scheduling system in an attempt to enhance their competitive position.
The classical workshop production scheduling problem is far from the actual production situation, so
it is difficult to apply it to production practice. In recent years, the research on machine scheduling has
become a hot topic in the fields of manufacturing systems. This paper considers the batch processing
machine (BPM) scheduling problem for scheduling independent jobs with arbitrary sizes. A novel
fast parallel batch scheduling algorithm is put forward to minimize the makespan in this paper. Each
of the machines with different capacities can only handle jobs with sizes less than the capacity of
the machine. Multiple jobs can be processed as a batch simultaneously on one machine only if their
total size does not exceed the machine capacity. The processing time of a batch is determined by
the longest of all the jobs processed in the batch. A novel and fast 4.5-approximation algorithm is
developed for the above scheduling problem. For the special case of all the jobs having the same
processing times, a simple and fast 2-approximation algorithm is achieved. The experimental results
show that fast algorithms further improve the competitive ratio. Compared to the optimal solutions
generated by CPLEX, fast algorithms are capable of generating a feasible solution within a very short
time. Fast algorithms have less computational costs.

Keywords: independent job sizes; fast scheduling algorithm; machine capacities; makespan; parallel
batch machines

1. Introduction

How to reduce the production cycle and improve the utilization rate of resources is an important
problem under the constraints of workshop production, such as delivery time, technical requirements
and resource status, etc. Most enterprises adopt workshop scheduling technology to solve this problem.
An effective scheduling optimization method can take advantage of many production resources in the
workshop. The research and application of a workshop scheduling optimization method has become
one of the basic contents of advanced manufacturing technology [1–3].

Batch processing machines (BPMs) are widely applied in many enterprises, for example, steel
casting, chemical and mineral processing, and so on [4–6]. BPMs scheduling problem is a hot topic in
workshop scheduling problem. In the traditional scheduling problem, each machine can only process,
at most, one job at a time [7]. However, BPMs can process a number of jobs simultaneously as a batch

Appl. Sci. 2020, 10, 460; doi:10.3390/app10020460 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10020460
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/2/460?type=check_update&version=2

Appl. Sci. 2020, 10, 460 2 of 17

and all jobs in a batch have the same processing time [8]. The processing time of one batch is equal to
the maximum processing time of all the jobs processed by the batch [9].

In this paper, we analyze the parallel batch processing machine scheduling problem where the jobs
have arbitrary size and the machines have different capacities. We give a set of n jobsJ = {J1, J2, . . . , Jn}

and a set of m parallel batch machines M = {M1, M2, . . . , Mm}, and we let all the jobs be released
simultaneously (release time of job is 0). Let p j and s j denote the processing time and the size of job
J j ∈ J (j = 1, 2, . . . , n), respectively, where p j ≥ 0 and s j > 0. Machine Mi (i = 1, 2, . . . , m) has a finite
capacity Ki. Without loss of generality, we assume K1 ≤ K2 ≤ · · · ≤ Km and s j ≤ Km for each job J j in
order to ensure job J j can be processed by at least one machine. However, there might be s j > Ki for
some J j and Mi. Machine Mi (i = 1, 2, . . . , m) can handle multiple jobs at the same time, but the total
size of these jobs cannot exceed Ki. The longest processing time of all jobs in a batch determines the
processing time of a batch. The purpose of this problem is to allot each job to a batch and to schedule
the batch on the machine to minimize the maximum completion time of the schedule, Cmax = max jC j,
where C j represents the completion time of job j in the schedule [10,11]. Using the notations proposed
in [12,13], this problem can be denoted as P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax .

The notations used in this paper are summarized in Table 1.

Table 1. Notations.

Notation Description

J set of jobs, J = {J1, J2, . . . , Jn}

J j jth job
p j processing time of job J j
s j size of job J j
M set of machines,M = {M1, M2, . . . , Mm}

Mi ith machine
Ki capacities of Mi

Bi,g gth batch scheduled on ith machine
UB upper bound of makespan
LB lower bound of makespan

Cmax makespan

Before we move on, let us introduce some useful notations and terminologies. Let Ji ={
J j ∈ J

∣∣∣Ki−1 < s j ≤ Ki
}
, and i = 1, 2, . . . , m, j = 1, 2, . . . , n; when i = 1, K0 was used, but it was

meaningless, so we set K0 = 0. It is possible that Ji = φ for some i. We have J = ∪m
i=1Ji. Let a j = i

denote the index of a machine with the minimum capacity that can process the job J j ∈ J j, and then J j

can be assigned to each machine inM j =
{
Ma j , Ma j+1, . . . , Mm

}
where 1 ≤ a j ≤ m. Ma j , Ma j+1, . . . , Mm

are called the golden machines for job J j,M j is the golden machines set, J j is called the golden job
for M ∈ M j, and all of the jobs that can be processed by Mi are called the golden jobs set for Mi. In a
scheduling process, the running time of the machine is equal to the total processing time of batches
scheduled on this machine.

The structure of the paper is as follows. Section 2 reviews the previous research in related areas.
Section 3 gives the definition of the research problem. In Section 4, a novel fast 4.5-approximation
algorithm is proposed for problem P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax . In Section 5, a fast 2-approximation algorithm

is proposed for problem P
∣∣∣s j, p j = p, p− batch, Ki

∣∣∣Cmax . Section 6 designs several computational
experiments to show the effectiveness of fast algorithms. Finally, conclusions are given in Section 7.

2. Literature Review

Since the 1980s, scholars have studied the job scheduling problem of parallel batch machines
extensively [1]. In this section, we review the results of research dealing with different job sizes and
minimization of the maximum completion time [14–20].

Appl. Sci. 2020, 10, 460 3 of 17

In the one-machine case of problem P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax , we denote 1
∣∣∣s j, p− batch, B

∣∣∣Cmax .
Uzsoy [21] proved that 1

∣∣∣s j, p− batch, B
∣∣∣Cmax is a strong NP-hard (non-deterministic polynomial)

problem, and presented four heuristics. Zhang et al. [22] also proposed a 1.75-approximation
algorithm for 1

∣∣∣s j, p− batch, B
∣∣∣Cmax . Dupont and Flipo presented a branch and bound

method for 1
∣∣∣s j, p− batch, B

∣∣∣Cmax . Dosa et al. [23] presented a 1.7-approximation algorithm
for 1

∣∣∣s j, p− batch, B
∣∣∣Cmax . Li et al. [24] presented a (2 + ε)-approximation algorithm for

1
∣∣∣r j, s j, p− batch, B

∣∣∣Cmax (the more general case where jobs have different release times), where ε
is a number greater than 0 and is arbitrarily small.

The special case of P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax is where all Ki = B (B < n) is represented as
P
∣∣∣s j, p− batch, B

∣∣∣Cmax . Chang et al. [25] studied P
∣∣∣s j, p− batch, B

∣∣∣Cmax and provided an algorithm
that is based on the simulated annealing approach.

Dosa et al. [23] demonstrated that although the processing time for all jobs is the same (unless
P = NP), P

∣∣∣s j, p− batch, B
∣∣∣Cmax cannot be approximated to a ratio less than 2. Dosa et al. presented

a (2 + ε)-approximation algorithm. Cheng et al. [26] presented a 8/3-approximation algorithm for
P
∣∣∣s j, p− batch, B

∣∣∣Cmax with running time O(n log n). Chung et al. [27] developed a mixed integer
programming model and some heuristic algorithms for P

∣∣∣r j, s j, p− batch, B
∣∣∣Cmax (the problem where

jobs have different release times). A 2-approximation algorithm for P
∣∣∣r j, s j, p j = p, p− batch, B

∣∣∣Cmax

(the special case of P
∣∣∣r j, s j, p− batch, B

∣∣∣Cmax where all jobs have the same processing times) was given
by Ozturk et al. [28]. Li [29] obtained a (2 + ε)-approximation algorithm for P

∣∣∣r j, s j, p− batch, B
∣∣∣Cmax .

More recently, several research groups have focused on the scheduling problems on parallel
batch machines with different capacities and applications in many fields [30–41]. The special
case of P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax , where all s j ≤ K1 (i.e., all jobs can be assigned to any machine),

is denoted as P
∣∣∣s j ≤ K1, p− batch, Ki

∣∣∣Cmax . Costa et al. [30] studied P
∣∣∣s j ≤ K1, p− batch, Ki

∣∣∣Cmax

and developed a genetic algorithm for it. Wang and Chou [31] proposed a metaheuristic for
P
∣∣∣r j, s j ≤ K1, p− batch, Ki

∣∣∣Cmax (the problem where jobs have different release times). Damodaran
et al. [32] proposed a PSO method for P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax . Jia et al. [33] presented a heuristic

and a metaheuristic for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . Wang and Leung [34] analyzed the problem
P
∣∣∣s j, p j = 1, p− batch, Ki

∣∣∣Cmax where each job has its own unit processing time. They designed
a 2-approximation algorithm for the problem. They also obtained an algorithm with asymptotic
approximation ratio 3/2. Li [35] proposed a fast 5-approximation algorithm and a (2+ ε)-approximation
algorithm for P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax , but the presented (2 + ε)-approximation algorithm has high time

complexity when ε is small. Jia et al. [36] presented several heuristics for P
∣∣∣r j, s j, p− batch, Ki

∣∣∣Cmax

(the problem where jobs have different release times) and evaluated the validity of the heuristics by
computational experiments. Other methods have also been proposed in the literature [42–53].

In this paper, a novel fast 4.5-approximation algorithm was developed for problem
P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax , and we evaluate the algorithm performance via computational experiments.
We also provide a simple and fast 2-approximation algorithm for the case that all jobs have the
same processing time, (P

∣∣∣s j, p j = p, p− batch, Ki
∣∣∣Cmax), improving upon and generalizing the results

in [54–57]. The approximation ratio of the 2-approximation algorithm in this paper is equal to the
presented algorithm in [26], but is now simpler to understand and easier to implement.

3. Mathematic Formulation of the Problem

In this section, we present the problem under consideration as a mixed integer linear programming
(MILP) model. First, the problem parameters and decision variables are given, and then the model is
provided. Table 2 shows the problem indices.

Appl. Sci. 2020, 10, 460 4 of 17

Table 2. Indices.

Indices Description

i index of machine, i = {1, 2, . . . , m}
j index of job, j = {1, 2, . . . , n}
l index of batch, l = {1, 2, . . . , n}

Table 3 shows the problem decision variables.

Table 3. Decision variables.

Decision Variables Description

x jil 1, if job J j is assigned to the lth batch processed on machine Mi; 0, otherwise.
yil the processing time of lthbatch processed on machine Mi.

Cmax makespan.

The research problem can be denoted as P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . The mathematical formulation of
the research problem P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax is shown as follows:

MinimizeCmax, (1)

which is subject to
m∑

i=1

n∑
l=1

x jil = 1, j = 1, 2, . . . , n; (2)

n∑
j=1

s jx jil ≤ Ki, i = 1, 2, . . . , m; l = 1, 2, . . . , n; (3)

yil ≥ p jx jil, j = 1, 2, . . . , n; i = 1, 2, . . . , m; l = 1, 2, . . . , n; (4)

Cmax ≥

n∑
l=1

yil, i = 1, 2, . . . , m; (5)

x jil ∈ {0, 1}, j = 1, 2, . . . , n; i = 1, 2, . . . , m; l = 1, 2, . . . , n. (6)

The Objective Function (1) shows that our aim is to find a schedule to minimize the makespan
Cmax. Constraint (2) is to make sure that each job is assigned exactly to one machine. Constraint (3)
guarantees that all batches are feasible; in other words, the total size of all jobs assigned to the batch
does not exceed the capacity of machine where the batch is scheduled. Constraint (4) indicates that
the processing time of a batch is not less than the processing time of the jobs in the batch. Constraint
(5) guarantees that the makespan of the schedule is not less than maximum load of all the machines.
In Constraint (6), the 0–1 variable x jil indicates whether the jth job is assigned into the lth batch on
machine Mi (x jil = 1) or not (x jil = 0).

4. 5-Approximation Algorithm for P
∣∣∣sj, p− batch, Ki

∣∣∣Cmax

We denote the optimal makespan of the problem P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax as OPT. The main focus
of the research is to develop a fast scheduling model to get a minimized makespan as close to OPT
as possible.

To solve the problem P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax , we used the MBLPT (modified longest processing
time batch) rule [35], a modification of the BLPT (longest processing time batch) rule. For a given jobs
set Ji that can be assigned to machine Mi, we apply the MBLPT rule, which sorts jobs to get J ′i . We
build a batch Bi,1 on machine Mi, and then the rule repeatedly pops the first job from J ′i and assigns it
to Bi,1 until the sum of all the jobs assigned to Bi,1 just exceeds the capacity of Mi. Batch Bi,1 is called

Appl. Sci. 2020, 10, 460 5 of 17

the one-job-overfull batch. Once the one-job-overfull batch exists, a new batch should be built on the
same machine, unless the machine runs out of maximum completion time (maximum completion time
is in the initialization parameters of the algorithm). We repeat the above job assignment procedure
until the job list J ′i is empty.

Let Bi =
{
Bi,g : g = 1, 2, . . . , hi

}
denote the set of batches generated using the MBLPT rule to J ′i

and machine Mi, and hi is the total number of batches scheduled on machine Mi. Let p(Bi,g) and ps(Bi,g)

denote the longest processing time (the processing time of batch Bi,g is equal to the longest processing
time of jobs on it) and the shortest processing time of the jobs in batch Bi,g, respectively, such that
p(Bi,1) ≥ p(Bi,2) ≥ · · · ≥ p(Bi,hi). The batches Bi,1, Bi,2, . . . , Bi,hi−1 are one-job-overfull batches, while Bi,hi

can be one-job-overfull or not. We have ps(Bi,g) ≥ p(Bi,g+1) (g = 1, 2, . . . , hi − 1). The Inequality (7)
below (refer to [27]) is easy to prove.

hi−1∑
g=1

(p(Bi,g) − ps(Bi,g)) + p(Bi,hi) ≤ p(Bi,1). (7)

By the Inequality (7), we have

Lemma 1.
hi∑

g=1
p(Bi,g) ≤

hi−1∑
g=1

ps(Bi,g) + p(Bi,1).

We now propose the 4.5-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . Similar frameworks
have been used in [58–62]. In [58], Ou et al. developed a 4/3 approximation algorithm to solve classical
scheduling problems with minimized maximum completion time on parallel machines with processing
set constraints. In [59], Li proposed a 9/4-approximation algorithm for P

∣∣∣s j = 1, p− batch, Ki
∣∣∣Cmax (the

special case of P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax where all s j = 1). The algorithm to be described extends the
previous research by involving non-identical job sizes.

We first run the 5-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . The algorithm generates a
feasible schedule with a maximum completion time of UB ≤ 5OPT in O(n log m + n2) time. Let the
minimum completion time LB = UB/5. We have LB ≤ OPT ≤ UB. We use the binary search method to
find the makespan of a feasible solution in the range of the [LB, UB] interval. Firstly, set T =

⌈
LB+UB

2

⌉
,

and then classify both the jobs and batches into long, short, and median. A job J j is long if p j > T/2,
median if T/4 < p j ≤ T/2, or short if p j ≤ T/4. Similarly, a batch Bi,g is long if p(Bi,g) > T/2, median
if T/4 < p(Bi,g) ≤ T/2, or short if p(Bi,g) ≤ T/4. Certainly, long batches may contain median and
short jobs, and median batches may contain short jobs. After classification, we use the following
SCMF-LPTJF (smallest capacity machine first processed and longest processing time job first processed)
procedure to search for a schedule with a makespan at most 9T/4, which permits one-job-overfull
batches. If our above operation fails, we will continue searching for the upper half of the interval and
set LB = T; otherwise, we will continue searching for the lower half of the interval, record OPT = T,
and set UB = T. The binary search method is then repeated in the new range of the [LB, UB] interval
until LB ≥ UB.

Lemma 2. If OPT ≤ T, then the SCMF-LPTJF algorithm will generates an optimal schedule for
P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax with one-job-overfull batches whose makespan is at most 9T/4.

Proof. Let Σ be an optimal schedule whose makespan is OPT. Let H be the set of long jobs and median
jobs. �

Appl. Sci. 2020, 10, 460 6 of 17

Algorithm 1. SCMF-LPTJF (smallest capacity machine first processed and longest processing time job first processed)

Input: J = ∪m
i=1Ji, T

Output:Cmax—best found solution, RT—running time
1: Q0 = φ, AssignedJS = φ // denote the jobs have been assigned to batch as AssignedJS
2: for i = 1 to m do
3: Sort Ji according to the rule that processing time of jobs is not increased, denote J ′i
4: end for
5: for i = 1 to m do
6: Qi = Qi−1 ∪J

′

i −AssignedJS
7: Apply the MBLPT rule to Qi and Mi, get Bi =

{
Bi,g : g = 1, 2, . . . , hi

}
8: Sort Bi according to the rule that processing time of batches is not increased, denote B′i
9: Denote long batches set, median batches set, and short batched set as LongBS, MedianBS, and ShortBS
10: LongBS = φ, MedianBS = φ, ShortBS = φ

11: for batch b in B′i do // classify batches into long, median and short.
12: if p(b) > T/2 then
13: append b to LongBS
14: else if T/4 < p(b) ≤ T/2 then
15: append b to MedianBS
16: else
17: append b to ShortBS
18: end if
19: end for
20: if LongBS , φ then
21: LongBSmax = max(LongBS) // the longest processing time batch in LongBS

22:
schedule LongBSmax on Mi; remove LongBSmax from B′i ; remove jobs assigned to LongBSmax from Qi and

add these jobs to AssignedJS
23: RT = LongBSmax.p // LongBSmax.p is the processing time of batch LongBSmax

24: end if
25: for batch b in MedianBS do
26: if RT + b.p ≤ 9T/4 then
27: schedule b on Mi; remove b from B′i ; remove jobs assigned to b from Qi and add these jobs to AssignedJS
28: RT = RT + b.p// the processing time of batch b
29: end if
30: end for
31: for batch b in ShortBS do
32: if RT + b.p ≤ 9T/4 then
33: schedule b on Mi; remove b from B′i ; remove jobs assigned to b from Qi and add these jobs to AssignedJS
34: RT = RT + b.p// the processing time of batch b
35: end if
36: end for
37: Update Cmax// append the batches scheduled on Mi to Cmax

38: end for
39: return Cmax, RT

In Σ, each machine can process up to three median batches or one long batch and one median
batch. On the other hand, the SCMF-LPTJF program will allocate a long batch on the machine as
much as possible. After it assigns a long batch on a machine, this machine still has enough time
(at least 5T/4 time) to handle at least two median batches. Note that the SCMF-LPTJF procedure
forms batches greedily. (It overfills each batch with the longest currently unassigned jobs.) Therefore,
the SCMF-LPTJF procedure allocates more processing times for long jobs and median jobs on the
machines with smaller capacities than Σ does. Equivalently, we claim that

∑
j∈H∩

m
∪

l=i
Bl

p j is the lower

limit of the overall processing time in a long working state, and the median job arranged on machines
Mi, Mi+1, . . . , Mm in Σ, i = 1, 2, . . . , m. Hence, if OPT ≤ T, then all long and median jobs will be
allocated by SCMF-LPTJF.

Therefore, if there is OPT ≤ T, but there is still a job j when executing to the end of the SCMF-LPTJF
process, then job j must be a short job. When job j is assigned, all of machines Ma j , Ma j+1, . . . , Mm have

Appl. Sci. 2020, 10, 460 7 of 17

a load greater than 2T. Let imax < a j be the largest index such that machine Mimax has a load less than
or equal to 2T. If all of the machines have load greater than 2T, then set imax = 0. Therefore, all of
machines Mimax+1, Mimax+2, . . . , Mm have load greater than 2T. There is room on the machine Mimax for

scheduling any short job. Hence, by the rule of the SCMF-LPTJF procedure, no short job from
imax
∪

i=1
Ji

can be assigned to machines Mimax+1, Mimax+2, . . . , Mm.
By Lemma 1, for i = imax + 1, imax + 2, . . . , m, we have

hi−1∑
g=1

ps(Bi,g) ≥

hi∑
g=1

p(Bi,g) − p(Bi,1) > T. (8)

It follows that ∑
j∈

m
∪

i=imax+1

hi
∪

g=1
Bi,g

p j·s j >
m∑

i=imax+1

Ki · T. (9)

In Σ, all the short jobs in
m
∪

i=imax+1

hi
∪

g=1
Bi,g have to be processed on machines Mimax+1, Mimax+2, . . . , Mm.

In addition, we have also proved that the overall processing time
∑

j∈H∩
m
∪

l=imax+1
Bl

p j of the planned long

and median jobs on machines Mimax+1, Mimax+2, . . . , Mm in Σ as a lower bound. Therefore, the above
inequality shows that Σ cannot make all of the jobs done in the T ≥ OPT time, which is a contradiction.

The algorithm performs a binary search within the range [LB, UB]. Finally, we will get a schedule
with one-job-overfull batches (Figure 1a) whose makespan is at most 9OPT/4. We can turn it into a
viable scheduling solution (Figure 1b), where the maximum completion time is 9OPT/2, as follows: for
each one-job-overfull batch, move the last packed job into a new batch and calculate the new batch on
the same machine. Since the iterative number could be O(log(

∑n
j=1 p j)), then the following theorems

are obtained.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 19

The algorithm performs a binary search within the range [,]LB UB . Finally, we will get a
schedule with one-job-overfull batches (Figure 1a) whose makespan is at most 9 / 4OPT . We can turn
it into a viable scheduling solution (Figure 1b), where the maximum completion time is 9 / 2OPT , as
follows: for each one-job-overfull batch, move the last packed job into a new batch and calculate the

new batch on the same machine. Since the iterative number could be 1
(log())n

jj
O p

= , then the

following theorems are obtained.

Theorem 1. There is a 4.5-approximation algorithm for max| , , |j iP s p batch K C− that runs in
2(log)sumO n mn p+ time, where 1

n
sum jj
p p

=
= .

(a)

(b)

Figure 1. Illustration of the 4.5-approximation algorithm. (a) The 4.5-approximation algorithm with
one-job-overfull batches. (b) The 4.5-approximation algorithm with a feasible schedule.

In order to achieve a strongly polynomial time algorithm, we use a technique described to
modify the above algorithm slightly. Therefore, the following theorems are obtained.

Theorem 2. There is a (4.5)ε+ -approximation algorithm for max| , , |j iP s p batch K C− that runs in
2(log(1/))O n mn ε+ time, where 0ε > can be made arbitrarily small.

5. A 2-Approximation Algorithm for max| , , , |j j iP s p p p batch K C= −

In this section, we study max| , , , |j j iP s p p p batch K C= − , i.e., the problem of minimizing the
makespan with equal processing times (jp p=), arbitrary job sizes (may exceed the processing
power of certain batches), and non-identical machine capacities.

The 2-approximation algorithm is called LIM (largest index machine first consider). It groups
the jobs in 1 1, , ,m m−    (this ordering is crucial), respectively, into batches greedily. During the
run of the algorithm, iLoad represents the load on machine iM , i.e., the overall processing time of

Figure 1. Illustration of the 4.5-approximation algorithm. (a) The 4.5-approximation algorithm with
one-job-overfull batches. (b) The 4.5-approximation algorithm with a feasible schedule.

Appl. Sci. 2020, 10, 460 8 of 17

Theorem 1. There is a 4.5-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax that runs in O(n2 +

mn log psum) time, where psum =
∑n

j=1 p j.

In order to achieve a strongly polynomial time algorithm, we use a technique described to modify
the above algorithm slightly. Therefore, the following theorems are obtained.

Theorem 2. There is a (4.5 + ε)-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax that runs in O(n2 +

mn log(1/ε)) time, where ε > 0 can be made arbitrarily small.

5. A 2-Approximation Algorithm for P
∣∣∣∣sj, pj = p, p− batch, Ki

∣∣∣∣Cmax

In this section, we study P
∣∣∣s j, p j = p, p− batch, Ki

∣∣∣Cmax , i.e., the problem of minimizing the
makespan with equal processing times (p j = p), arbitrary job sizes (may exceed the processing power
of certain batches), and non-identical machine capacities.

The 2-approximation algorithm is called LIM (largest index machine first consider). It groups
the jobs in Jm,Jm−1, . . . ,J1 (this ordering is crucial), respectively, into batches greedily. During the
run of the algorithm, Loadi represents the load on machine Mi, i.e., the overall processing time of the
batches on Mi, i = 1, 2, . . . , m. The algorithm dynamically maintains a variable x, which represents the
currently largest index such that Loadx < Loadm. If there is no such index, then we can set x = m. We
can assign the next generated batch to machine Mx.

Algorithm 2. LIM (largest index machine first consider)

Input: J = ∪m
i=1Ji

Output: Cmax—best found solution, RT—running time
1: AssignedJS = φ//the jobs have been assigned to any batch
2: for i = 1 to m do
3: Loadi = 0// the load on machine Mi, equals to the overall processing time of the batches on Mi,
4: end for
5: x=m
6: for i = m to 1 do
7: if x == m and loadm > 0 then
8: x = i
9: end if
10: create new batch b, Ji = Ji −AssignedJS
11: for job j in Ji do
12: if b.size ≤ Kx then
13: assign job j to batch b
14: b.size = b.size + j.size
15: remove job from Ji and add it to AssignedJS
16: else
17: schedule b to Mx

18: Loadx = Loadx + b.p
19: initiate b
20: end if
21: end for
22: if b is not empty and b.size ≤ Kx then
23: while b.size ≤ Kx and Ji−1

∣∣∣∣∣∣Ji−2
∣∣∣∣∣∣· · ·∣∣∣∣∣∣J1 −AssignedJS is not empty do

24: get first job j from Ji−1
∣∣∣∣∣∣Ji−2

∣∣∣∣∣∣· · ·∣∣∣∣∣∣J1 −AssignedJS
25: assign job j to b
26: b.size = b.size + j.size
27: remove job j from Ji−1||Ji−2||· · ·||J1 and add it to AssignedJS

Appl. Sci. 2020, 10, 460 9 of 17

28: end while
29: schedule b to Mx

30: Loadx = Loadx + b.p
31: end if
32: if Loadx ≥ Loadm then
33: if x > i then
34: x = x− i
35: else if x == i then
36: x = m
37: end if
38: end if
39: end for
40: for i = 1 to m do
41: for batch b in Mi do
42: if b.size ≥ Ki then
43: create new batch b′

44: pop the last job from b and assign it to b′

45: schedule b′ to Mi
46: Loadi = Loadi + b′.p
47: end if
48: end for
49: Update Cmax// append the batches scheduled on Mi to Cmax

50: end for
51: return Cmax,RT = max(Loadi), i = 1, 2, 3 . . .m.

Theorem 3. Algorithm LIM is a 2-approximation algorithm for P
∣∣∣s j, p j = p, p− batch, Ki

∣∣∣Cmax .

Proof. Let Σ1 be the schedule with makespan SOL1 generated by LIM after Step 2. In Σ1, all batches can
be processed at the same time as they are assigned to a machine. During the running of the algorithm,
the load on any machine is always less than or equal to the load on Mm. Therefore, Mm finishes last
in Σ1. Let Blast be the last batch assigned to Mm. Let

{
Ml, Ml+1, . . . , Mm

}
be the processing set of Blast,

which can be defined as the largest size processing set of the job in Blast. In Σ1, let S(Blast) denote the
start time of Blast. We have: SOL1 = S(Blast) + p. �

Since we assigned Blast to Mm, at that moment x = m must hold. Hence, machines Ml, Ml+1, . . . , Mm

are busy in the time interval (0, S(Blast)). All the batches allocated to machines Ml, Ml+1, . . . , Mm before
S(Blast) are one-job-overfull batches. All jobs in these batches, together with the largest size job
in Blast, must be processed on machines Ml, Ml+1, . . . , Mm in any feasible schedule. Hence, we get
OPT ≥ S(Blast) + p. So we can draw the conclusion that SOL1 ≤ OPT.

For a feasible schedule with makespan SOL generated by LIM, we have SOL ≤ 2SOL1 ≤ 2OPT.

6. Computational Experiments

6.1. Experimental Environment

For the performance evaluation of the 4.5-approximation and 2-approximation algorithms, all the
instances are generated by a random algorithm, as in the papers [63–68]. In the process of the instances
generation, five factors affecting the solution of the problem are determined: the number of jobs, the
number of machines, the variation in job sizes, the variation in job processing time, and the variation
in machine capacities [69–75].

The experiment is divided into two parts: (1) the 4.5-approximation algorithm is compared with
the CPLEX result. (2) The 2-approximation algorithm is compared to CPLEX. The 4.5-approximation
algorithm and 2-approximation algorithm were coded in C# and the CPLEX was programed by OPL

Appl. Sci. 2020, 10, 460 10 of 17

(Optimization Programming Language), compiled, and run with the IBM ILOG CPLEX Optimization
Studio 12.5.1.0 (Education Version). All the algorithms were run on the same machine (Win10, Intel (R)
i7-4790, 16 GB).

First, we set the number of machines to two or four, and the capacity of each machine is represented
by a uniform integer [10,40]. Then, random problem instances with number of jobs equals to 10, 20, 50,
100, 200, and 300 are generated, and each job processing time P j is generated by random sampling
from a uniform distribution [1,10]. The factor settings of the experiment are summarized in Table 4.

Table 4. Factors setting of the experiment.

Factors Levels

Number of jobs (n) 10, 20, 50, 100, 200, 300
Number of machines (m) 2, 4
Size of jobs (s) [1,10], [11, max(Ki)]
Processing time of jobs (P) [1,10]
Capacity of machines (K) [10,40]

We combine the parameters and randomly generate 50 instances for each combination (a test
suite). Each test suite is denoted by a code. For instance, a test suite with 50 jobs and two machines is
denoted by J3M1S1P1K1.

6.2. Comparison of 4.5-Approximation Algorithm and CPLEX

Here, a CPLEX algorithm is used to solve the MILP model given in Section 3, and we compare
the CPLEX algorithm with the results of the 4.5-approximation algorithm. CPLEX always gives the
optimal solution, but it cannot give the optimal solution for all instances even after operating several
hours. Therefore, we set an upper execution time 1800s for CPLEX, and the best-known solution was
compared. The job size and machine capacity distribution as shown in Figure 2.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 19

Table 4. Factors setting of the experiment.

Factors Levels
Number of jobs (n) 10, 20, 50, 100, 200, 300
Number of machines (m) 2, 4
Size of jobs (s) [1,10], [11, max()]iK
Processing time of jobs (P) [1,10]
Capacity of machines (K) [10,40]

We combine the parameters and randomly generate 50 instances for each combination (a test
suite). Each test suite is denoted by a code. For instance, a test suite with 50 jobs and two machines is
denoted by J3M1S1P1K1.

6.2. Comparison of 4.5-Approximation Algorithm and CPLEX

Here, a CPLEX algorithm is used to solve the MILP model given in Section 3, and we compare
the CPLEX algorithm with the results of the 4.5-approximation algorithm. CPLEX always gives the
optimal solution, but it cannot give the optimal solution for all instances even after operating several
hours. Therefore, we set an upper execution time 1800s for CPLEX, and the best-known solution was
compared. The job size and machine capacity distribution as shown in Figure 2.

Figure 2. Job size and machine capacity distribution.

Regarding the 4.5-approximation algorithm, LB and UB are initialized as follows:
max()jLB P=

1

n
jj

UB P
=

= .
(10)

Figure 3 shows the result of test suite J1M1S1P1K1.

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Jo
b

siz
e/

 M
ac

hi
ne

 ca
pa

cit
y

Test-suite No.

Job Size and Machine Capacity Distribution Job Size

Figure 2. Job size and machine capacity distribution.

Regarding the 4.5-approximation algorithm, LB and UB are initialized as follows:

LB = max(P j)

UB =
∑n

j=1 P j.
(10)

Figure 3 shows the result of test suite J1M1S1P1K1.

Appl. Sci. 2020, 10, 460 11 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 19

(a)

(b)

(c)

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ak

es
pa

n

Test-suite No.

Makespan
CPLEX
C'max
Cmax

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ak

es
pa

n

Test-suite No.

Makespan
C'max
T
9T/4

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ak

es
pa

n

Test-suite No.

Makespan
Cmax
T
4.5T

Figure 3. Cont.

Appl. Sci. 2020, 10, 460 12 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 19

(d)

Figure 3. Results of J1M1S1P1K1. (a) Comparison makespan of CPLEX and the 4.5-approximation
algorithm with one-job-overfull batches and the 4.5-approximation algorithm with a feasible schedule.
(b) Comparison makespan of the 4.5-approximation algorithm with one-job-overfull batches and
9 / 4T . (c) Comparison makespan of the 4.5-approximation algorithm with a feasible schedule and
4.5T. (d) Comparison running time of CPLEX and the 4.5-approximation algorithm with one-job-
overfull batches and the 4.5-approximation algorithm with a feasible schedule.

max'C is the makespan of the 4.5-approximation algorithm with one-job-overfull batches and

maxC is the makespan of 4.5-approximation algorithm with a feasible schedule. Figure 3a shows the
makespan of the 4.5-approximation algorithm with one-job-overfull batches and the algorithm with
a feasible schedule. Figure 3b,c shows that the 4.5-approximation algorithm substantiates the
feasibility of this research method:

max' 9 / 4C T≤

max 4.5C T≤ .

Figure 3d shows that the run time of the 4.5-approximation algorithm is clearly better than
CPLEX. Table 5 shows the results of all test suites. Though CPLEX is the best solver for linear
programming problems, it cannot give an optimal solution for a long time, so we terminated CPLEX
after running for 1800 s and used the best integer for comparison.

The results illustrate that the 4.5 approximation algorithm is more effective than CPLEX in any
scale test-suite. For the small-scale test-suite (10 jobs and two machines), the best solution obtained
by the 4.5-approximation algorithm is closest to the CPLEX best solution. For the medium-scale and
large-scale test-suites, the average result of the 4.5-approximation algorithm is no bigger than 4.5T .

6.3. Comparison of 2-Approximation Algorithm (LIM) and CPLEX

For the problem max| , , , |j iP s p p p batch K C= − , minimizing the makespan with equal running
times, arbitrary job sizes (which may exceed the processing power of certain batches), and different
machine capacities should be the solution. The running time of jobs was set to a default value of 8.
Then, the LB and UB are denoted as

8LB =
*8UB n= .

Table 6 show the experimental results given by the CPLEX and the LIM algorithm for all the test
suites. Column SQL-AVG (the average value of SQL) reports the average makespan obtained using
the LIM algorithm. Compared with the CPLEX makespan, the LIM algorithm can obtain the efficient
solution in only little running time (Column Run Times).

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ru
n

tim
e(

s)

Test-suite No.

Algorithm Run Time CPLEX
4.5 One-Job-Overfull
4.5 Feasible Schedule

Figure 3. Results of J1M1S1P1K1. (a) Comparison makespan of CPLEX and the 4.5-approximation
algorithm with one-job-overfull batches and the 4.5-approximation algorithm with a feasible schedule.
(b) Comparison makespan of the 4.5-approximation algorithm with one-job-overfull batches and 9T/4.
(c) Comparison makespan of the 4.5-approximation algorithm with a feasible schedule and 4.5T. (d)
Comparison running time of CPLEX and the 4.5-approximation algorithm with one-job-overfull batches
and the 4.5-approximation algorithm with a feasible schedule.

C′max is the makespan of the 4.5-approximation algorithm with one-job-overfull batches and
Cmax is the makespan of 4.5-approximation algorithm with a feasible schedule. Figure 3a shows the
makespan of the 4.5-approximation algorithm with one-job-overfull batches and the algorithm with a
feasible schedule. Figure 3b,c shows that the 4.5-approximation algorithm substantiates the feasibility
of this research method:

C′max ≤ 9T/4
Cmax ≤ 4.5T.

Figure 3d shows that the run time of the 4.5-approximation algorithm is clearly better than CPLEX.
Table 5 shows the results of all test suites. Though CPLEX is the best solver for linear programming
problems, it cannot give an optimal solution for a long time, so we terminated CPLEX after running for
1800 s and used the best integer for comparison.

The results illustrate that the 4.5 approximation algorithm is more effective than CPLEX in any
scale test-suite. For the small-scale test-suite (10 jobs and two machines), the best solution obtained
by the 4.5-approximation algorithm is closest to the CPLEX best solution. For the medium-scale and
large-scale test-suites, the average result of the 4.5-approximation algorithm is no bigger than 4.5T.

6.3. Comparison of 2-Approximation Algorithm (LIM) and CPLEX

For the problem P
∣∣∣s j, p = p, p− batch, Ki

∣∣∣Cmax , minimizing the makespan with equal running
times, arbitrary job sizes (which may exceed the processing power of certain batches), and different
machine capacities should be the solution. The running time of jobs was set to a default value of 8.
Then, the LB and UB are denoted as

LB = 8
UB = n ∗ 8.

Table 6 show the experimental results given by the CPLEX and the LIM algorithm for all the test
suites. Column SQL-AVG (the average value of SQL) reports the average makespan obtained using
the LIM algorithm. Compared with the CPLEX makespan, the LIM algorithm can obtain the efficient
solution in only little running time (Column Run Times).

Appl. Sci. 2020, 10, 460 13 of 17

Table 5. Simulation results of CPLEX and the 4.5-approximation algorithm with one-job-overfull batches and a feasible schedule.

Test Suite
CPLEX C

′

max Cmax T 9T/4 4.5T
Makespan GAP (%) Run Time (s) Best AVG Worst Run Time (s) Best AVG Worst Run Time (s)

J1M1S1P1K1 9 0 0.02 9 14.92 21 0.02 10 23.23 34 0.02 9.49 21.35 42.71
J1M2S1P1K1 8 0 0.09 9 13.02 22 0.02 9 19.06 36 0.02 9.63 21.66 43.32
J2M1S1P1K1 19 42.11 2.10 17 21.62 27 0.01 30 35.76 51 0.01 10.26 23.10 46.19
J2M2S1P1K1 10 40.00 2.26 15 19.44 22 0.01 24 32.04 48 0.01 10.09 22.7 45.4
J3M1S1P1K1 52 79.87 466.47 35 47.39 68 0.13 61 86.61 136 0.13 21.86 49.19 98.37
J3M2S1P1K1 47 80.85 25.39 21 28.84 40 0.02 37 53.53 106 0.02 13.57 30.53 61.07
J4M1S1P1K1 59 90.68 1800 76 94.57 129 0.04 150 175.8 255 0.04 42.73 96.14 192.29
J4M2S1P1K1 29 86.21 1800 40 52.75 108 0.04 76 99.20 180 0.04 24.22 54.50 108.99
J5M1S1P1K1 197 97.46 1800 151 185.53 255 0.08 250 352.33 496 0.08 83.29 187.40 374.81
J5M2S1P1K1 - - 1800 78 105.49 186 0.08 146 203.96 365 0.08 47.55 106.99 213.98
J6M1S1P1K1 161 97.2 1800 213 283.43 387 0.12 377 535.71 739 0.12 126.65 284.96 569.93
J6M2S1P1K1 - - 1800 104 143.73 283 0.12 190 275.35 560 0.13 64.65 145.46 290.93

1 Note: (1) Column 2 is the minimum makespan of 50 instances for each test suite. ‘-’ represents that CPLEX could not find a feasible solution in 1800 s. (2) Each test suite contains 50
instances. Columns 5, 6, and 7 report the best, average, and worst C′max, respectively. Columns 9, 10, and 11 report the best, average, and worst Cmax, respectively. (3) Columns 13, 14, and
15 report the average T, 9T/4, and 4.5T of 50 instances, respectively.

Table 6. Simulation results of CPLEX and the 2-approximation algorithm with one-job-overfull batches and a feasible schedule.

Test Suite
CPLEX SOL 1 SOL

Makespan GAP (%) Run Time (s) Best AVG Worst Run Time (s) Best AVG Worst Run Time (s)

J1M1S1P1K1 24 0 0.25 16 18.82 24 0 24 31.84 48 0
J1M2S1P1K1 24 66.67 0.20 8 9.10 16 0 16 17.10 34 0
J2M1S1P1K1 40 13.93 3.11 24 38.27 56 0 44 66.20 88 0
J2M2S1P1K1 24 33.33 2.13 16 23.22 40 0 32 42.04 72 0
J3M1S1P1K1 80 87.06 1800 64 89.41 120 0 112 159.53 224 0
J3M2S1P1K1 64 87.5 38.34 40 61.96 96 0 72 109.96 160 0
J4M1S1P1K1 200 96 306.73 136 186.67 232 0 240 337.73 432 0
J4M2S1P1K1 144 95.83 1800 80 121.25 192 0 136 219.61 344 0
J5M1S1P1K1 412 98.59 1800 264 374.12 456 0 480 679.06 848 0
J5M2S1P1K1 - - 1800 160 245.49 336 0 296 453.02 656 0
J6M1S1P1K1 - - 1800 424 569.10 744 0 744 1031.37 1360 0
J6M2S1P1K1 - - 1800 232 343.22 512 0 416 633.57 944 0

1 Note: When run time is labeled as 0, it was less than 10−2.

Appl. Sci. 2020, 10, 460 14 of 17

7. Conclusions and Future Works

The paper analyzed the parallel batch scheduling problem of minimizing the makespan, where
arbitrary sizes of scheduling jobs are allowed and machines have different capacities. Each machine
can only deal with jobs whose sizes do not exceed that machine’s capacity. We developed an efficient
4.5-approximation algorithm for this problem. The experimental results show that the algorithms
can obtain a reasonable solution in a finite time. A 2-approximation algorithm is achieved under the
particular circumstances of equivalent processing times. Computational experiments show that the fast
algorithm can help to improve the efficiency of resource consumption and give researchers more choices
to balance the quality of the solution and the running time in the parallel batch scheduling problem.

Several important related directions for this problem are worth researching in the future. First
of all, how do we improve the fast algorithm to get closer to the optimal solution in shortest time?
In addition, jobs with release times are more common BPM problems in the manufacturing industry.
How to develop a fast scheduling algorithm for this problem is an import direction. Finally, BPM
problems with different service levels can be considered as well.

Author Contributions: Methodology—Y.S. and B.Z., Data analysis—B.Z. and D.W., Writing—Original Draft
Y.S., D.W. and K.L., Writing—Edit and Review, B.Z., Y.S., D.W., K.L. and J.X., Visualization—J.X., Funding
acquisition—B.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the CERNET Innovation Project (NGII20190605), High Education Science and
Technology Planning Program of Shandong Provincial Education Department under Grant (J18KA340, J18KA385),
National Natural Science Foundation of China (61976125, 61772319, 61976124, 61771087, 51605068), A Project of
Shandong Province Higher Educational Science and Technology Program (No.J16LN51), the Graduate science and
technology innovation fund of Shandong Technology and Business University (2018yc038), Yantai Key Research
and Development Program (2019XDHZ081).

Acknowledgments: We thank the anonymous referees for their constructive comments, which helped to improve
this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Marnix, K.; Van den Akker, M.; Han, H. Identifying and exploiting commonalities for the job-shop scheduling
problem. Comput. Oper. Res. 2011, 38, 1556–1561.

2. Xue, Y.; Xue, B.; Zhang, M. Self-adaptive particle swarm optimization for large-scale feature selection in
classification. ACM Trans. Knowl. Discov. Data 2019, 13, 50. [CrossRef]

3. Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient scheduling in manufacturing companies: A review
and research framework. Eur. J. Oper. Res. 2015, 248, 744–757. [CrossRef]

4. Deng, W.; Xu, J.; Zhao, H.M. An improved ant colony optimization algorithm based on hybrid strategies for
scheduling problem. IEEE Access 2019, 7, 20281–20292. [CrossRef]

5. Liao, C.J.; Liao, L.M. Improved MILP models for two-machine flowshop with batch processing machines.
Math. Comput. Model. 2008, 48, 1254–1264. [CrossRef]

6. Chang, P.Y. Heuristics to minimize makespan of parallel batch processing machines. Int. J. Adv. Manuf.
Technol. 2008, 37, 1005–1013.

7. Drozdowski, M. Classic scheduling theory. In Scheduling for Parallel Processing; Springer: London, UK, 2009;
pp. 55–86.

8. Deng, W.; Zhao, H.; Yang, X.; Xiong, J.; Sun, M.; Li, B. Study on an improved adaptive PSO algorithm for
solving multi-objective gate assignment. Appl. Soft Comput. 2017, 59, 288–302. [CrossRef]

9. Guo, S.K.; Liu, Y.Q.; Chen, R.; Sun, X.; Wang, X. Improved SMOTE algorithm to deal with imbalanced activity
classes in smart homes. Neural Process. Lett. 2019, 50, 1503–1526. [CrossRef]

10. Li, X.; Xie, Z.; Wu, J.; Li, T. Image encryption based on dynamic filtering and bit cuboid operations. Complexity
2019, 2019, 7485621. [CrossRef]

11. Deng, W.; Zhao, H.M.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in
solving complex optimization problems. Soft Comput. 2017, 21, 4387–4398. [CrossRef]

http://dx.doi.org/10.1145/3340848
http://dx.doi.org/10.1016/j.ejor.2015.07.017
http://dx.doi.org/10.1109/ACCESS.2019.2897580
http://dx.doi.org/10.1016/j.mcm.2008.01.001
http://dx.doi.org/10.1016/j.asoc.2017.06.004
http://dx.doi.org/10.1007/s11063-018-9940-3
http://dx.doi.org/10.1155/2019/7485621
http://dx.doi.org/10.1007/s00500-016-2071-8

Appl. Sci. 2020, 10, 460 15 of 17

12. Kim, S.; Kim, J.K. A method to construct task scheduling algorithms for heterogeneous multi-core systems.
IEEE Access 2019, 7. [CrossRef]

13. Leung, Y.T.; Li, C.L. Scheduling with processing set restrictions: A survey. Int. J. Prod. Econ. 2008, 116,
251–262. [CrossRef]

14. Su, J.; Sheng, Z.; Leung, V.C.M.; Chen, Y. Energy efficient tag identification algorithms for RFID: Survey,
motivation and new design. IEEE Wirel. Commun. 2019, 67, 118–124. [CrossRef]

15. Luo, J.; Chen, H.; Heidari, A.A.; Xu, Y.; Zhang, Q.; Li, C. Multi-strategy boosted mutative whale-inspired
optimization approaches. Appl. Math. Model. 2019, 73, 109–123. [CrossRef]

16. Fu, H.; Wang, M.; Li, P.; Jiang, S.; Hu, W.; Guo, X.; Cao, M. Tracing knowledge development trajectories of
the internet of things domain: A main path analysis. IEEE Trans. Ind. Inform. 2019, 15. [CrossRef]

17. Su, J.; Sheng, Z.; Liu, A.X.; Han, Y.; Chen, Y. A group-based binary splitting algorithm for UHF RFID
anti-collision systems. IEEE Trans. Commun. 2019. [CrossRef]

18. Liu, Y.; Yi, X.; Chen, R.; Hai, Z.; Gu, J. Feature extraction based on information gain and sequential pattern
for English question classification. IET Softw. 2018, 12, 520–526. [CrossRef]

19. Yu, H.; Zhao, N.; Wang, P.; Chen, H.; Li, C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model.
2020, 77, 1201–1215. [CrossRef]

20. Li, H.; Gao, G.; Chen, R.; Ge, X.; Guo, S.; Hao, L.Y. The influence ranking for testers in bug tracking systems.
International. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 93–113. [CrossRef]

21. Uzsoy, R. Scheduling a single batch processing machine with non-identical job sizes. Int. J. Prod. Res. 1994,
32, 1615–1635. [CrossRef]

22. Zhang, G.; Cai, X.; Lee, C.Y.; Wong, C. Minimizing makespan on a single batch processing machine with
nonidentical job sizes. Naval Res. Logist. 2001, 48, 226–240. [CrossRef]

23. Dosa, G.; Tan, Z.; Tuza, Z.; Yan, Y.; Lányi, C.S. Improved bounds for batch scheduling with nonidentical job
sizes. Naval Res. Logist. 2014, 61, 351–358. [CrossRef]

24. Li, S.; Li, G.; Wang, X.; Liu, Q. Minimizing makespan on a single batching machine with release times and
non-identical job sizes. Oper. Res. Lett. 2005, 33, 157–164. [CrossRef]

25. Chang, P.Y.; Damodaran, P.; Melouk, S. Minimizing makespan on parallel batch processing machines. Int. J.
Prod. Res. 2004, 42, 4211–4220. [CrossRef]

26. Cheng, B.; Yang, S.; Hu, X.; Chen, B. Minimizing makespan and total completion time for parallel batch
processing machines with non-identical job sizes. Appl. Math. Model. 2012, 36, 3161–3167. [CrossRef]

27. Chung, S.; Tai, Y.; Pearn, W. Minimisingmakespan on parallel batch processing machines with non-identical
ready time and arbitrary job sizes. Int. J. Prod. Res. 2009, 47, 5109–5128. [CrossRef]

28. Ozturk, O.; Espinouse, M.L.; Mascolo, M.D.; Gouin, A. Makespanminimisation on parallel batch processing
machines with non-identical job sizes and release dates. Int. J. Prod. Res. 2012, 50, 1–14. [CrossRef]

29. Li, S. Makespan minimization on parallel batch processing machines with release times and job sizes. J.
Softw. 2012, 7, 1203–1210. [CrossRef]

30. Costa, A.; Cappadonna, F.A.; Fichera, S. A novel genetic algorithm for the hybrid flow shop scheduling with
parallel batching and eligibility constraints. Int. J. Adv. Manuf. Technol. 2014, 75, 833–847. [CrossRef]

31. Wang, H.M.; Chou, F.D. Solving the parallel batch-processing machines with different release times, job sizes,
and capacity limits by metaheuristics. Expert Syst. Appl. 2010, 37, 1510–1521. [CrossRef]

32. Damodaran, P.; Diyadawagamage, D.A.; Ghrayeb, O.; Vélez-Gallego, M.C. A particle swarm optimization
algorithm for minimizing makespan of nonidentical parallel batch processing machines. Int. J. Adv. Manuf.
Technol. 2012, 58, 1131–1140. [CrossRef]

33. Jia, Z.H.; Li, K.; Leung, J.Y.T. Effective heuristic for makespan minimization in parallel batch machines with
non-identical capacities. Int. J. Prod. Econ. 2015, 169, 1–10. [CrossRef]

34. Wang, J.Q.; Leung, J.Y.T. Scheduling jobs with equal-processing-time on parallel machines with non-identical
capacities to minimize makespan. Int. J. Prod. Econ. 2014, 156, 325–331. [CrossRef]

35. Li, S. Approximation algorithms for scheduling jobs with release times and arbitrary sizes on batch machines
with non-identical capacities. Eur. J. Oper. Res. 2017, 263, 815–826. [CrossRef]

36. He, Z.; Shao, H.D.; Zhang, X.Y.; Cheng, J.S.; Yang, Y. Improved deep transfer auto-encoder for fault
diagnosis of gearbox under variable working conditions with small training samples. IEEE Access 2019, 7,
115368–115377. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2944238
http://dx.doi.org/10.1016/j.ijpe.2008.09.003
http://dx.doi.org/10.1109/MWC.2019.1800249
http://dx.doi.org/10.1016/j.apm.2019.03.046
http://dx.doi.org/10.1109/TII.2019.2929414
http://dx.doi.org/10.1109/TCOMM.2019.2952126
http://dx.doi.org/10.1049/iet-sen.2018.0006
http://dx.doi.org/10.1016/j.apm.2019.09.029
http://dx.doi.org/10.1142/S0218194019500050
http://dx.doi.org/10.1080/00207549408957026
http://dx.doi.org/10.1002/nav.4
http://dx.doi.org/10.1002/nav.21587
http://dx.doi.org/10.1016/j.orl.2004.04.009
http://dx.doi.org/10.1080/00207540410001711863
http://dx.doi.org/10.1016/j.apm.2011.09.061
http://dx.doi.org/10.1080/00207540802010807
http://dx.doi.org/10.1080/00207543.2011.641358
http://dx.doi.org/10.4304/jsw.7.6.1203-1210
http://dx.doi.org/10.1007/s00170-014-6195-7
http://dx.doi.org/10.1016/j.eswa.2009.06.070
http://dx.doi.org/10.1007/s00170-011-3442-z
http://dx.doi.org/10.1016/j.ijpe.2015.07.021
http://dx.doi.org/10.1016/j.ijpe.2014.06.019
http://dx.doi.org/10.1016/j.ejor.2017.06.021
http://dx.doi.org/10.1109/ACCESS.2019.2936243

Appl. Sci. 2020, 10, 460 16 of 17

37. Zhao, H.M.; Liu, H.D.; Xu, J.J.; Deng, W. Performance prediction using high-order differential mathematical
morphology gradient spectrum entropy and extreme learning machine. IEEE Trans. Instrum. Meas. 2019.
[CrossRef]

38. Deng, X.; Feng, H.; Li, G.; Shi, B. A PTAS for semiconductor burn-in scheduling. J. Comb. Optim. 2005, 9,
5–17. [CrossRef]

39. Liu, R.; Wang, H.; Yu, X.M. Shared-nearest-neighbor-based clustering by fast search and find of density
peaks. Inf. Sci. 2018, 450, 200–226. [CrossRef]

40. Hu, B.; Wang, H.; Yu, X.; Yuan, W.; He, T. Sparse network embedding for community detection and sign
prediction in signed social networks. J. Ambient Intell. Humaniz. Comput. 2019, 10, 175–186. [CrossRef]

41. Zhao, H.M.; Zheng, J.J.; Xu, J.J.; Deng, W. Fault diagnosis method based on principal component analysis
and broad learning system. IEEE Access 2019, 7, 99263–99272. [CrossRef]

42. Xu, Y.; Chen, H.; Heidari, A.A.; Luo, J.; Zhang, Q.; Zhao, X.; Li, C. An efficient chaotic mutative
moth-flame-inspired optimizer for global optimization tasks. Expert Syst. Appl. 2019, 129, 135–155.
[CrossRef]

43. Su, J.; Sheng, Z.; Xie, L.; Li, G.; Liu, A.X. Fast splitting based tag identification algorithm for anti-collision in
UHF RFID system. IEEE Trans. Commun. 2019, 67, 2527–2538. [CrossRef]

44. Liu, W.; Li, H.; Zhu, H.; Xu, P. Properties of a steel slag-permeable asphalt mixture and the reaction of the
steel slag-asphalt interface. Materials 2019, 12, 3603. [CrossRef] [PubMed]

45. Zhou, J.; Du, Z.; Yang, Z.; Xu, Z. Dynamic parameters optimization of straddle-type monorail vehicles based
multiobjective collaborative optimization algorithm. Veh. Syst. Dyn. 2019, 41, 1–21. [CrossRef]

46. Li, T.; Shi, J.; Li, X.; Wu, J.; Pan, F. Image encryption based on pixel-level diffusion with dynamic filtering and
dna-level permutation with 3D Latin cubes. Entropy 2019, 21, 319. [CrossRef]

47. Wang, Z.; Pu, J.; Cao, L.; Tan, J. A parallel biological optimization algorithm to solve the unbalanced
assignment problem based on DNA molecular computing. Int. J. Mol. Sci. 2015, 16, 25338–25352. [CrossRef]

48. Kang, L.; Zhao, L.; Yao, S.; Duan, C. A new architecture of super-hydrophilic beta-SiAlON/graphene oxide
ceramic membrane for enhanced anti-fouling and separation of water/oil emulsion. Ceram. Int. 2019, 45,
16717–16721. [CrossRef]

49. Liu, Y.; Mu, Y.; Chen, K.; Li, Y.; Guo, J. Daily activity feature selection in smart homes based on pearson
correlation coefficient. Neural Process. Lett. 2020. [CrossRef]

50. Liu, G.; Liu, D.; Liu, J.; Gao, Y.; Wang, Y. Asymmetric temperature distribution during steady stage of flash
sintering dense zirconia. J. Eur. Ceram. Soc. 2018, 38, 2893–2896. [CrossRef]

51. Ren, Z.; Skjetne, R.; Jiang, Z.; Gao, Z.; Verma, A.S. Integrated GNSS/IMU hub motion estimator for offshore
wind turbine blade installation. Mech. Syst. Signal Process. 2019, 123, 222–243. [CrossRef]

52. Chen, H.; Jiao, S.; Heidari, A.A.; Wang, M.; Chen, X.; Zhao, X. An opposition-based sine cosine approach with
local search for parameter estimation of photovoltaic models. Energy Convers. Manag. 2019, 195, 927–942.
[CrossRef]

53. Liu, D.; Cao, Y.; Liu, J.; Gao, Y.; Wang, Y. Effect of oxygen partial pressure on temperature for onset of flash
sintering 3YSZ. J. Eur. Ceram. Soc. 2018, 38, 817–820. [CrossRef]

54. Wang, H.; Song, Y.Q.; Wang, L.T.; Hu, X.H. Memory model for web ad effect based on multi-modal features.
J. Assoc. Inf. Sci. Technol. 2019, 4, 1–14.

55. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation
strategy for global optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]

56. Chen, R.; Guo, S.K.; Wang, X.Z.; Zhang, T.L. Fusion of multi-RSMOTE with fuzzy integral to classify bug
reports with an imbalanced distribution. IEEE Trans. Fuzzy Syst. 2019, 27. [CrossRef]

57. Heidari, A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm
and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

58. Ou, J.; Leung, J.Y.T.; Li, C.L. Scheduling parallel machines with inclusive processing set restrictions. Naval
Res. Logist. 2008, 55, 328–338. [CrossRef]

59. Li, S. Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to
minimize makespan. Eur. J. Oper. Res. 2017, 260, 12–20. [CrossRef]

60. Fu, H.; Manogaran, G.; Wu, K.; Cao, M.; Jiang, S.; Yang, A. Intelligent decision-making of online shopping
behavior based on internet of things. Int. J. Inf. Manag. 2019, 50. [CrossRef]

http://dx.doi.org/10.1109/TIM.2019.2948414
http://dx.doi.org/10.1007/s10878-005-5480-7
http://dx.doi.org/10.1016/j.ins.2018.03.031
http://dx.doi.org/10.1007/s12652-017-0630-1
http://dx.doi.org/10.1109/ACCESS.2019.2929094
http://dx.doi.org/10.1016/j.eswa.2019.03.043
http://dx.doi.org/10.1109/TCOMM.2018.2884001
http://dx.doi.org/10.3390/ma12213603
http://www.ncbi.nlm.nih.gov/pubmed/31684050
http://dx.doi.org/10.1080/00423114.2019.1578384
http://dx.doi.org/10.3390/e21030319
http://dx.doi.org/10.3390/ijms161025338
http://dx.doi.org/10.1016/j.ceramint.2019.05.195
http://dx.doi.org/10.1007/s11063-019-10185-8
http://dx.doi.org/10.1016/j.jeurceramsoc.2018.02.012
http://dx.doi.org/10.1016/j.ymssp.2019.01.008
http://dx.doi.org/10.1016/j.enconman.2019.05.057
http://dx.doi.org/10.1016/j.jeurceramsoc.2017.09.009
http://dx.doi.org/10.1016/j.ins.2019.04.022
http://dx.doi.org/10.1109/TFUZZ.2019.2899809
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1002/nav.20286
http://dx.doi.org/10.1016/j.ejor.2016.11.044
http://dx.doi.org/10.1016/j.ijinfomgt.2019.03.010

Appl. Sci. 2020, 10, 460 17 of 17

61. Li, T.; Hu, Z.; Jia, Y.; Wu, J.; Zhou, Y. Forecasting crude oil prices using ensemble empirical mode decomposition
and sparse Bayesian learning. Energies 2018, 11, 1882. [CrossRef]

62. Wang, Z.; Ren, X.; Ji, Z.; Huang, W.; Wu, T. A novel bio-heuristic computing algorithm to solve the capacitated
vehicle routing problem based on Adleman–Lipton model. Biosystems 2019, 184, 103997. [CrossRef]

63. Ham, A.; Fowler, J.W.; Cakici, E. Constraint programming approach for scheduling jobs with release times,
non-identical sizes, and incompatible families on parallel batching machines. IEEE Trans. Semicond. Manuf.
2017, 30, 500–507. [CrossRef]

64. Sun, F.R.; Yao, Y.D.; Li, G.Z.; Liu, W. Simulation of real gas mixture transport through aqueous nanopores
during the depressurization process considering stress sensitivity. J. Pet. Sci. Eng. 2019, 178, 829–837.
[CrossRef]

65. Deng, W.; Xu, J.; Song, Y.; Zhao, H. An effective improved co-evolution ant colony optimization algorithm
with multi-strategies and its application. Int. J. Bio-Inspired Comput. 2019.

66. Wang, Z.; Ji, Z.; Wang, X.; Wu, T.; Huang, W. A new parallel DNA algorithm to solve the task scheduling
problem based on inspired computational model. BioSystems 2017, 162, 59–65. [CrossRef] [PubMed]

67. Wu, J.; Shi, J.; Li, T. A novel image encryption approach based on a hyperchaotic system, pixel-level filtering
with variable kernels, and DNA-level diffusion. Entropy 2020, 22, 5. [CrossRef]

68. Peng, Y.; Lu, B.L. Discriminative extreme learning machine with supervised sparsity preserving for image
classification. Neurocomputing 2017, 261, 242–252. [CrossRef]

69. Xu, J.; Chen, R.; Deng, W.; Zhao, H. An infection graph model for reasoning of multiple faults in software.
IEEE Access 2019, 7, 77116–77133. [CrossRef]

70. Zhou, J.; Du, Z.; Yang, Z.; Xu, Z. Dynamics study of straddle-type monorail vehicle with single-axle bogies
based full-scale rigid-flexible coupling dynamic model. IEEE Access 2019, 7, 2169–3536. [CrossRef]

71. Shao, H.; Cheng, J.; Jiang, H.; Yang, Y.; Wu, Z. Enhanced deep gated recurrent unit and complex wavelet
packet energy moment entropy for early fault prognosis of bearing. Knowl. Based Syst. 2019. [CrossRef]

72. Li, T.; Yang, M.; Wu, J.; Jing, X. A novel image encryption algorithm based on a fractional-order hyperchaotic
system and DNA computing. Complexity 2017, 2017, 9010251. [CrossRef]

73. Zhao, H.; Zheng, J.; Deng, W.; Song, Y. Semi-supervised broad learning system based on manifold
regularization and broad network. IEEE Trans. Circuits Syst. I Regul. Pap. 2019. [CrossRef]

74. Li, T.; Zhou, Y.; Li, X.; Wu, J.; He, T. Forecasting daily crude oil prices using improved CEEMDAN and ridge
regression-based predictors. Energies 2019, 12, 3603. [CrossRef]

75. Liu, Y.Q.; Wang, X.X.; Zhai, Z.G.; Chen, R.; Zhang, B.; Jiang, Y. Timely daily activity recognition from
headmost sensor events. ISA Trans. 2019, 94, 379–390. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en11071882
http://dx.doi.org/10.1016/j.biosystems.2019.103997
http://dx.doi.org/10.1109/TSM.2017.2740340
http://dx.doi.org/10.1016/j.petrol.2019.02.084
http://dx.doi.org/10.1016/j.biosystems.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/28890344
http://dx.doi.org/10.3390/e22010005
http://dx.doi.org/10.1016/j.neucom.2016.05.113
http://dx.doi.org/10.1109/ACCESS.2019.2922351
http://dx.doi.org/10.1109/ACCESS.2019.2933991
http://dx.doi.org/10.1016/j.knosys.2019.105022
http://dx.doi.org/10.1155/2017/9010251
http://dx.doi.org/10.1109/TCSI.2019.2959886,2019
http://dx.doi.org/10.3390/en12193603
http://dx.doi.org/10.1016/j.isatra.2019.04.026
http://www.ncbi.nlm.nih.gov/pubmed/31078294
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Mathematic Formulation of the Problem
	5-Approximation Algorithm for P| sj,p - batch,Ki | Cmax .
	A 2-Approximation Algorithm for P| sj,pj = p,p - batch,Ki | Cmax .
	Computational Experiments
	Experimental Environment
	Comparison of 4.5-Approximation Algorithm and CPLEX
	Comparison of 2-Approximation Algorithm (LIM) and CPLEX

	Conclusions and Future Works
	References

