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Abstract: With the rapid economic development, manufacturing enterprises are increasingly using an
efficient workshop production scheduling system in an attempt to enhance their competitive position.
The classical workshop production scheduling problem is far from the actual production situation, so
it is difficult to apply it to production practice. In recent years, the research on machine scheduling has
become a hot topic in the fields of manufacturing systems. This paper considers the batch processing
machine (BPM) scheduling problem for scheduling independent jobs with arbitrary sizes. A novel
fast parallel batch scheduling algorithm is put forward to minimize the makespan in this paper. Each
of the machines with different capacities can only handle jobs with sizes less than the capacity of
the machine. Multiple jobs can be processed as a batch simultaneously on one machine only if their
total size does not exceed the machine capacity. The processing time of a batch is determined by
the longest of all the jobs processed in the batch. A novel and fast 4.5-approximation algorithm is
developed for the above scheduling problem. For the special case of all the jobs having the same
processing times, a simple and fast 2-approximation algorithm is achieved. The experimental results
show that fast algorithms further improve the competitive ratio. Compared to the optimal solutions
generated by CPLEX, fast algorithms are capable of generating a feasible solution within a very short
time. Fast algorithms have less computational costs.

Keywords: independent job sizes; fast scheduling algorithm; machine capacities; makespan; parallel
batch machines

1. Introduction

How to reduce the production cycle and improve the utilization rate of resources is an important
problem under the constraints of workshop production, such as delivery time, technical requirements
and resource status, etc. Most enterprises adopt workshop scheduling technology to solve this problem.
An effective scheduling optimization method can take advantage of many production resources in the
workshop. The research and application of a workshop scheduling optimization method has become
one of the basic contents of advanced manufacturing technology [1–3].

Batch processing machines (BPMs) are widely applied in many enterprises, for example, steel
casting, chemical and mineral processing, and so on [4–6]. BPMs scheduling problem is a hot topic in
workshop scheduling problem. In the traditional scheduling problem, each machine can only process,
at most, one job at a time [7]. However, BPMs can process a number of jobs simultaneously as a batch
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and all jobs in a batch have the same processing time [8]. The processing time of one batch is equal to
the maximum processing time of all the jobs processed by the batch [9].

In this paper, we analyze the parallel batch processing machine scheduling problem where the jobs
have arbitrary size and the machines have different capacities. We give a set of n jobsJ = {J1, J2, . . . , Jn}

and a set of m parallel batch machines M = {M1, M2, . . . , Mm}, and we let all the jobs be released
simultaneously (release time of job is 0). Let p j and s j denote the processing time and the size of job
J j ∈ J ( j = 1, 2, . . . , n), respectively, where p j ≥ 0 and s j > 0. Machine Mi (i = 1, 2, . . . , m) has a finite
capacity Ki. Without loss of generality, we assume K1 ≤ K2 ≤ · · · ≤ Km and s j ≤ Km for each job J j in
order to ensure job J j can be processed by at least one machine. However, there might be s j > Ki for
some J j and Mi. Machine Mi (i = 1, 2, . . . , m) can handle multiple jobs at the same time, but the total
size of these jobs cannot exceed Ki. The longest processing time of all jobs in a batch determines the
processing time of a batch. The purpose of this problem is to allot each job to a batch and to schedule
the batch on the machine to minimize the maximum completion time of the schedule, Cmax = max jC j,
where C j represents the completion time of job j in the schedule [10,11]. Using the notations proposed
in [12,13], this problem can be denoted as P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax .

The notations used in this paper are summarized in Table 1.

Table 1. Notations.

Notation Description

J set of jobs, J = {J1, J2, . . . , Jn}

J j jth job
p j processing time of job J j
s j size of job J j
M set of machines,M = {M1, M2, . . . , Mm}

Mi ith machine
Ki capacities of Mi

Bi,g gth batch scheduled on ith machine
UB upper bound of makespan
LB lower bound of makespan

Cmax makespan

Before we move on, let us introduce some useful notations and terminologies. Let Ji ={
J j ∈ J

∣∣∣Ki−1 < s j ≤ Ki
}
, and i = 1, 2, . . . , m, j = 1, 2, . . . , n; when i = 1, K0 was used, but it was

meaningless, so we set K0 = 0. It is possible that Ji = φ for some i. We have J = ∪m
i=1Ji. Let a j = i

denote the index of a machine with the minimum capacity that can process the job J j ∈ J j, and then J j

can be assigned to each machine inM j =
{
Ma j , Ma j+1, . . . , Mm

}
where 1 ≤ a j ≤ m. Ma j , Ma j+1, . . . , Mm

are called the golden machines for job J j,M j is the golden machines set, J j is called the golden job
for M ∈ M j, and all of the jobs that can be processed by Mi are called the golden jobs set for Mi. In a
scheduling process, the running time of the machine is equal to the total processing time of batches
scheduled on this machine.

The structure of the paper is as follows. Section 2 reviews the previous research in related areas.
Section 3 gives the definition of the research problem. In Section 4, a novel fast 4.5-approximation
algorithm is proposed for problem P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax . In Section 5, a fast 2-approximation algorithm

is proposed for problem P
∣∣∣s j, p j = p, p− batch, Ki

∣∣∣Cmax . Section 6 designs several computational
experiments to show the effectiveness of fast algorithms. Finally, conclusions are given in Section 7.

2. Literature Review

Since the 1980s, scholars have studied the job scheduling problem of parallel batch machines
extensively [1]. In this section, we review the results of research dealing with different job sizes and
minimization of the maximum completion time [14–20].
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In the one-machine case of problem P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax , we denote 1
∣∣∣s j, p− batch, B

∣∣∣Cmax .
Uzsoy [21] proved that 1

∣∣∣s j, p− batch, B
∣∣∣Cmax is a strong NP-hard (non-deterministic polynomial)

problem, and presented four heuristics. Zhang et al. [22] also proposed a 1.75-approximation
algorithm for 1

∣∣∣s j, p− batch, B
∣∣∣Cmax . Dupont and Flipo presented a branch and bound

method for 1
∣∣∣s j, p− batch, B

∣∣∣Cmax . Dosa et al. [23] presented a 1.7-approximation algorithm
for 1

∣∣∣s j, p− batch, B
∣∣∣Cmax . Li et al. [24] presented a (2 + ε)-approximation algorithm for

1
∣∣∣r j, s j, p− batch, B

∣∣∣Cmax (the more general case where jobs have different release times), where ε
is a number greater than 0 and is arbitrarily small.

The special case of P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax is where all Ki = B (B < n) is represented as
P
∣∣∣s j, p− batch, B

∣∣∣Cmax . Chang et al. [25] studied P
∣∣∣s j, p− batch, B

∣∣∣Cmax and provided an algorithm
that is based on the simulated annealing approach.

Dosa et al. [23] demonstrated that although the processing time for all jobs is the same (unless
P = NP), P

∣∣∣s j, p− batch, B
∣∣∣Cmax cannot be approximated to a ratio less than 2. Dosa et al. presented

a (2 + ε)-approximation algorithm. Cheng et al. [26] presented a 8/3-approximation algorithm for
P
∣∣∣s j, p− batch, B

∣∣∣Cmax with running time O(n log n). Chung et al. [27] developed a mixed integer
programming model and some heuristic algorithms for P

∣∣∣r j, s j, p− batch, B
∣∣∣Cmax (the problem where

jobs have different release times). A 2-approximation algorithm for P
∣∣∣r j, s j, p j = p, p− batch, B

∣∣∣Cmax

(the special case of P
∣∣∣r j, s j, p− batch, B

∣∣∣Cmax where all jobs have the same processing times) was given
by Ozturk et al. [28]. Li [29] obtained a (2 + ε)-approximation algorithm for P

∣∣∣r j, s j, p− batch, B
∣∣∣Cmax .

More recently, several research groups have focused on the scheduling problems on parallel
batch machines with different capacities and applications in many fields [30–41]. The special
case of P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax , where all s j ≤ K1 (i.e., all jobs can be assigned to any machine),

is denoted as P
∣∣∣s j ≤ K1, p− batch, Ki

∣∣∣Cmax . Costa et al. [30] studied P
∣∣∣s j ≤ K1, p− batch, Ki

∣∣∣Cmax

and developed a genetic algorithm for it. Wang and Chou [31] proposed a metaheuristic for
P
∣∣∣r j, s j ≤ K1, p− batch, Ki

∣∣∣Cmax (the problem where jobs have different release times). Damodaran
et al. [32] proposed a PSO method for P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax . Jia et al. [33] presented a heuristic

and a metaheuristic for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . Wang and Leung [34] analyzed the problem
P
∣∣∣s j, p j = 1, p− batch, Ki

∣∣∣Cmax where each job has its own unit processing time. They designed
a 2-approximation algorithm for the problem. They also obtained an algorithm with asymptotic
approximation ratio 3/2. Li [35] proposed a fast 5-approximation algorithm and a (2+ ε)-approximation
algorithm for P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax , but the presented (2 + ε)-approximation algorithm has high time

complexity when ε is small. Jia et al. [36] presented several heuristics for P
∣∣∣r j, s j, p− batch, Ki

∣∣∣Cmax

(the problem where jobs have different release times) and evaluated the validity of the heuristics by
computational experiments. Other methods have also been proposed in the literature [42–53].

In this paper, a novel fast 4.5-approximation algorithm was developed for problem
P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax , and we evaluate the algorithm performance via computational experiments.
We also provide a simple and fast 2-approximation algorithm for the case that all jobs have the
same processing time, (P

∣∣∣s j, p j = p, p− batch, Ki
∣∣∣Cmax ), improving upon and generalizing the results

in [54–57]. The approximation ratio of the 2-approximation algorithm in this paper is equal to the
presented algorithm in [26], but is now simpler to understand and easier to implement.

3. Mathematic Formulation of the Problem

In this section, we present the problem under consideration as a mixed integer linear programming
(MILP) model. First, the problem parameters and decision variables are given, and then the model is
provided. Table 2 shows the problem indices.
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Table 2. Indices.

Indices Description

i index of machine, i = {1, 2, . . . , m}
j index of job, j = {1, 2, . . . , n}
l index of batch, l = {1, 2, . . . , n}

Table 3 shows the problem decision variables.

Table 3. Decision variables.

Decision Variables Description

x jil 1, if job J j is assigned to the lth batch processed on machine Mi; 0, otherwise.
yil the processing time of lthbatch processed on machine Mi.

Cmax makespan.

The research problem can be denoted as P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . The mathematical formulation of
the research problem P

∣∣∣s j, p− batch, Ki
∣∣∣Cmax is shown as follows:

MinimizeCmax, (1)

which is subject to
m∑

i=1

n∑
l=1

x jil = 1, j = 1, 2, . . . , n; (2)

n∑
j=1

s jx jil ≤ Ki, i = 1, 2, . . . , m; l = 1, 2, . . . , n; (3)

yil ≥ p jx jil, j = 1, 2, . . . , n; i = 1, 2, . . . , m; l = 1, 2, . . . , n; (4)

Cmax ≥

n∑
l=1

yil, i = 1, 2, . . . , m; (5)

x jil ∈ {0, 1}, j = 1, 2, . . . , n; i = 1, 2, . . . , m; l = 1, 2, . . . , n. (6)

The Objective Function (1) shows that our aim is to find a schedule to minimize the makespan
Cmax. Constraint (2) is to make sure that each job is assigned exactly to one machine. Constraint (3)
guarantees that all batches are feasible; in other words, the total size of all jobs assigned to the batch
does not exceed the capacity of machine where the batch is scheduled. Constraint (4) indicates that
the processing time of a batch is not less than the processing time of the jobs in the batch. Constraint
(5) guarantees that the makespan of the schedule is not less than maximum load of all the machines.
In Constraint (6), the 0–1 variable x jil indicates whether the jth job is assigned into the lth batch on
machine Mi (x jil = 1) or not (x jil = 0).

4. 5-Approximation Algorithm for P
∣∣∣sj, p− batch, Ki

∣∣∣Cmax

We denote the optimal makespan of the problem P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax as OPT. The main focus
of the research is to develop a fast scheduling model to get a minimized makespan as close to OPT
as possible.

To solve the problem P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax , we used the MBLPT (modified longest processing
time batch) rule [35], a modification of the BLPT (longest processing time batch) rule. For a given jobs
set Ji that can be assigned to machine Mi, we apply the MBLPT rule, which sorts jobs to get J ′i . We
build a batch Bi,1 on machine Mi, and then the rule repeatedly pops the first job from J ′i and assigns it
to Bi,1 until the sum of all the jobs assigned to Bi,1 just exceeds the capacity of Mi. Batch Bi,1 is called
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the one-job-overfull batch. Once the one-job-overfull batch exists, a new batch should be built on the
same machine, unless the machine runs out of maximum completion time (maximum completion time
is in the initialization parameters of the algorithm). We repeat the above job assignment procedure
until the job list J ′i is empty.

Let Bi =
{
Bi,g : g = 1, 2, . . . , hi

}
denote the set of batches generated using the MBLPT rule to J ′i

and machine Mi, and hi is the total number of batches scheduled on machine Mi. Let p(Bi,g) and ps(Bi,g)

denote the longest processing time (the processing time of batch Bi,g is equal to the longest processing
time of jobs on it) and the shortest processing time of the jobs in batch Bi,g, respectively, such that
p(Bi,1) ≥ p(Bi,2) ≥ · · · ≥ p(Bi,hi). The batches Bi,1, Bi,2, . . . , Bi,hi−1 are one-job-overfull batches, while Bi,hi

can be one-job-overfull or not. We have ps(Bi,g) ≥ p(Bi,g+1) (g = 1, 2, . . . , hi − 1). The Inequality (7)
below (refer to [27]) is easy to prove.

hi−1∑
g=1

(p(Bi,g) − ps(Bi,g)) + p(Bi,hi) ≤ p(Bi,1). (7)

By the Inequality (7), we have

Lemma 1.
hi∑

g=1
p(Bi,g) ≤

hi−1∑
g=1

ps(Bi,g) + p(Bi,1).

We now propose the 4.5-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . Similar frameworks
have been used in [58–62]. In [58], Ou et al. developed a 4/3 approximation algorithm to solve classical
scheduling problems with minimized maximum completion time on parallel machines with processing
set constraints. In [59], Li proposed a 9/4-approximation algorithm for P

∣∣∣s j = 1, p− batch, Ki
∣∣∣Cmax (the

special case of P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax where all s j = 1). The algorithm to be described extends the
previous research by involving non-identical job sizes.

We first run the 5-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax . The algorithm generates a
feasible schedule with a maximum completion time of UB ≤ 5OPT in O(n log m + n2) time. Let the
minimum completion time LB = UB/5. We have LB ≤ OPT ≤ UB. We use the binary search method to
find the makespan of a feasible solution in the range of the [LB, UB] interval. Firstly, set T =

⌈
LB+UB

2

⌉
,

and then classify both the jobs and batches into long, short, and median. A job J j is long if p j > T/2,
median if T/4 < p j ≤ T/2, or short if p j ≤ T/4. Similarly, a batch Bi,g is long if p(Bi,g) > T/2, median
if T/4 < p(Bi,g) ≤ T/2, or short if p(Bi,g) ≤ T/4. Certainly, long batches may contain median and
short jobs, and median batches may contain short jobs. After classification, we use the following
SCMF-LPTJF (smallest capacity machine first processed and longest processing time job first processed)
procedure to search for a schedule with a makespan at most 9T/4, which permits one-job-overfull
batches. If our above operation fails, we will continue searching for the upper half of the interval and
set LB = T; otherwise, we will continue searching for the lower half of the interval, record OPT = T,
and set UB = T. The binary search method is then repeated in the new range of the [LB, UB] interval
until LB ≥ UB.

Lemma 2. If OPT ≤ T, then the SCMF-LPTJF algorithm will generates an optimal schedule for
P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax with one-job-overfull batches whose makespan is at most 9T/4.

Proof. Let Σ be an optimal schedule whose makespan is OPT. Let H be the set of long jobs and median
jobs. �
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Algorithm 1. SCMF-LPTJF (smallest capacity machine first processed and longest processing time job first processed)

Input: J = ∪m
i=1Ji, T

Output:Cmax—best found solution, RT—running time
1: Q0 = φ, AssignedJS = φ // denote the jobs have been assigned to batch as AssignedJS
2: for i = 1 to m do
3: Sort Ji according to the rule that processing time of jobs is not increased, denote J ′i
4: end for
5: for i = 1 to m do
6: Qi = Qi−1 ∪J

′

i −AssignedJS
7: Apply the MBLPT rule to Qi and Mi, get Bi =

{
Bi,g : g = 1, 2, . . . , hi

}
8: Sort Bi according to the rule that processing time of batches is not increased, denote B′i
9: Denote long batches set, median batches set, and short batched set as LongBS, MedianBS, and ShortBS
10: LongBS = φ, MedianBS = φ, ShortBS = φ

11: for batch b in B′i do // classify batches into long, median and short.
12: if p(b) > T/2 then
13: append b to LongBS
14: else if T/4 < p(b) ≤ T/2 then
15: append b to MedianBS
16: else
17: append b to ShortBS
18: end if
19: end for
20: if LongBS , φ then
21: LongBSmax = max(LongBS) // the longest processing time batch in LongBS

22:
schedule LongBSmax on Mi; remove LongBSmax from B′i ; remove jobs assigned to LongBSmax from Qi and

add these jobs to AssignedJS
23: RT = LongBSmax.p // LongBSmax.p is the processing time of batch LongBSmax

24: end if
25: for batch b in MedianBS do
26: if RT + b.p ≤ 9T/4 then
27: schedule b on Mi; remove b from B′i ; remove jobs assigned to b from Qi and add these jobs to AssignedJS
28: RT = RT + b.p// the processing time of batch b
29: end if
30: end for
31: for batch b in ShortBS do
32: if RT + b.p ≤ 9T/4 then
33: schedule b on Mi; remove b from B′i ; remove jobs assigned to b from Qi and add these jobs to AssignedJS
34: RT = RT + b.p// the processing time of batch b
35: end if
36: end for
37: Update Cmax// append the batches scheduled on Mi to Cmax

38: end for
39: return Cmax, RT

In Σ, each machine can process up to three median batches or one long batch and one median
batch. On the other hand, the SCMF-LPTJF program will allocate a long batch on the machine as
much as possible. After it assigns a long batch on a machine, this machine still has enough time
(at least 5T/4 time) to handle at least two median batches. Note that the SCMF-LPTJF procedure
forms batches greedily. (It overfills each batch with the longest currently unassigned jobs.) Therefore,
the SCMF-LPTJF procedure allocates more processing times for long jobs and median jobs on the
machines with smaller capacities than Σ does. Equivalently, we claim that

∑
j∈H∩

m
∪

l=i
Bl

p j is the lower

limit of the overall processing time in a long working state, and the median job arranged on machines
Mi, Mi+1, . . . , Mm in Σ, i = 1, 2, . . . , m. Hence, if OPT ≤ T, then all long and median jobs will be
allocated by SCMF-LPTJF.

Therefore, if there is OPT ≤ T, but there is still a job j when executing to the end of the SCMF-LPTJF
process, then job j must be a short job. When job j is assigned, all of machines Ma j , Ma j+1, . . . , Mm have
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a load greater than 2T. Let imax < a j be the largest index such that machine Mimax has a load less than
or equal to 2T. If all of the machines have load greater than 2T, then set imax = 0. Therefore, all of
machines Mimax+1, Mimax+2, . . . , Mm have load greater than 2T. There is room on the machine Mimax for

scheduling any short job. Hence, by the rule of the SCMF-LPTJF procedure, no short job from
imax
∪

i=1
Ji

can be assigned to machines Mimax+1, Mimax+2, . . . , Mm.
By Lemma 1, for i = imax + 1, imax + 2, . . . , m, we have

hi−1∑
g=1

ps(Bi,g) ≥

hi∑
g=1

p(Bi,g) − p(Bi,1) > T. (8)

It follows that ∑
j∈

m
∪

i=imax+1

hi
∪

g=1
Bi,g

p j·s j >
m∑

i=imax+1

Ki · T. (9)

In Σ, all the short jobs in
m
∪

i=imax+1

hi
∪

g=1
Bi,g have to be processed on machines Mimax+1, Mimax+2, . . . , Mm.

In addition, we have also proved that the overall processing time
∑

j∈H∩
m
∪

l=imax+1
Bl

p j of the planned long

and median jobs on machines Mimax+1, Mimax+2, . . . , Mm in Σ as a lower bound. Therefore, the above
inequality shows that Σ cannot make all of the jobs done in the T ≥ OPT time, which is a contradiction.

The algorithm performs a binary search within the range [LB, UB]. Finally, we will get a schedule
with one-job-overfull batches (Figure 1a) whose makespan is at most 9OPT/4. We can turn it into a
viable scheduling solution (Figure 1b), where the maximum completion time is 9OPT/2, as follows: for
each one-job-overfull batch, move the last packed job into a new batch and calculate the new batch on
the same machine. Since the iterative number could be O(log(

∑n
j=1 p j)), then the following theorems

are obtained.
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Theorem 1. There is a 4.5-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax that runs in O(n2 +

mn log psum) time, where psum =
∑n

j=1 p j.

In order to achieve a strongly polynomial time algorithm, we use a technique described to modify
the above algorithm slightly. Therefore, the following theorems are obtained.

Theorem 2. There is a (4.5 + ε)-approximation algorithm for P
∣∣∣s j, p− batch, Ki

∣∣∣Cmax that runs in O(n2 +

mn log(1/ε)) time, where ε > 0 can be made arbitrarily small.

5. A 2-Approximation Algorithm for P
∣∣∣∣sj, pj = p, p− batch, Ki

∣∣∣∣Cmax

In this section, we study P
∣∣∣s j, p j = p, p− batch, Ki

∣∣∣Cmax , i.e., the problem of minimizing the
makespan with equal processing times (p j = p), arbitrary job sizes (may exceed the processing power
of certain batches), and non-identical machine capacities.

The 2-approximation algorithm is called LIM (largest index machine first consider). It groups
the jobs in Jm,Jm−1, . . . ,J1 (this ordering is crucial), respectively, into batches greedily. During the
run of the algorithm, Loadi represents the load on machine Mi, i.e., the overall processing time of the
batches on Mi, i = 1, 2, . . . , m. The algorithm dynamically maintains a variable x, which represents the
currently largest index such that Loadx < Loadm. If there is no such index, then we can set x = m. We
can assign the next generated batch to machine Mx.

Algorithm 2. LIM (largest index machine first consider)

Input: J = ∪m
i=1Ji

Output: Cmax—best found solution, RT—running time
1: AssignedJS = φ//the jobs have been assigned to any batch
2: for i = 1 to m do
3: Loadi = 0// the load on machine Mi, equals to the overall processing time of the batches on Mi,
4: end for
5: x=m
6: for i = m to 1 do
7: if x == m and loadm > 0 then
8: x = i
9: end if
10: create new batch b, Ji = Ji −AssignedJS
11: for job j in Ji do
12: if b.size ≤ Kx then
13: assign job j to batch b
14: b.size = b.size + j.size
15: remove job from Ji and add it to AssignedJS
16: else
17: schedule b to Mx

18: Loadx = Loadx + b.p
19: initiate b
20: end if
21: end for
22: if b is not empty and b.size ≤ Kx then
23: while b.size ≤ Kx and Ji−1

∣∣∣∣∣∣Ji−2
∣∣∣∣∣∣· · ·∣∣∣∣∣∣J1 −AssignedJS is not empty do

24: get first job j from Ji−1
∣∣∣∣∣∣Ji−2

∣∣∣∣∣∣· · ·∣∣∣∣∣∣J1 −AssignedJS
25: assign job j to b
26: b.size = b.size + j.size
27: remove job j from Ji−1||Ji−2||· · ·||J1 and add it to AssignedJS
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28: end while
29: schedule b to Mx

30: Loadx = Loadx + b.p
31: end if
32: if Loadx ≥ Loadm then
33: if x > i then
34: x = x− i
35: else if x == i then
36: x = m
37: end if
38: end if
39: end for
40: for i = 1 to m do
41: for batch b in Mi do
42: if b.size ≥ Ki then
43: create new batch b′

44: pop the last job from b and assign it to b′

45: schedule b′ to Mi
46: Loadi = Loadi + b′.p
47: end if
48: end for
49: Update Cmax// append the batches scheduled on Mi to Cmax

50: end for
51: return Cmax,RT = max(Loadi), i = 1, 2, 3 . . .m.

Theorem 3. Algorithm LIM is a 2-approximation algorithm for P
∣∣∣s j, p j = p, p− batch, Ki

∣∣∣Cmax .

Proof. Let Σ1 be the schedule with makespan SOL1 generated by LIM after Step 2. In Σ1, all batches can
be processed at the same time as they are assigned to a machine. During the running of the algorithm,
the load on any machine is always less than or equal to the load on Mm. Therefore, Mm finishes last
in Σ1. Let Blast be the last batch assigned to Mm. Let

{
Ml, Ml+1, . . . , Mm

}
be the processing set of Blast,

which can be defined as the largest size processing set of the job in Blast. In Σ1, let S(Blast) denote the
start time of Blast. We have: SOL1 = S(Blast) + p. �

Since we assigned Blast to Mm, at that moment x = m must hold. Hence, machines Ml, Ml+1, . . . , Mm

are busy in the time interval (0, S(Blast)). All the batches allocated to machines Ml, Ml+1, . . . , Mm before
S(Blast) are one-job-overfull batches. All jobs in these batches, together with the largest size job
in Blast, must be processed on machines Ml, Ml+1, . . . , Mm in any feasible schedule. Hence, we get
OPT ≥ S(Blast) + p. So we can draw the conclusion that SOL1 ≤ OPT.

For a feasible schedule with makespan SOL generated by LIM, we have SOL ≤ 2SOL1 ≤ 2OPT.

6. Computational Experiments

6.1. Experimental Environment

For the performance evaluation of the 4.5-approximation and 2-approximation algorithms, all the
instances are generated by a random algorithm, as in the papers [63–68]. In the process of the instances
generation, five factors affecting the solution of the problem are determined: the number of jobs, the
number of machines, the variation in job sizes, the variation in job processing time, and the variation
in machine capacities [69–75].

The experiment is divided into two parts: (1) the 4.5-approximation algorithm is compared with
the CPLEX result. (2) The 2-approximation algorithm is compared to CPLEX. The 4.5-approximation
algorithm and 2-approximation algorithm were coded in C# and the CPLEX was programed by OPL
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(Optimization Programming Language), compiled, and run with the IBM ILOG CPLEX Optimization
Studio 12.5.1.0 (Education Version). All the algorithms were run on the same machine (Win10, Intel (R)
i7-4790, 16 GB).

First, we set the number of machines to two or four, and the capacity of each machine is represented
by a uniform integer [10,40]. Then, random problem instances with number of jobs equals to 10, 20, 50,
100, 200, and 300 are generated, and each job processing time P j is generated by random sampling
from a uniform distribution [1,10]. The factor settings of the experiment are summarized in Table 4.

Table 4. Factors setting of the experiment.

Factors Levels

Number of jobs (n) 10, 20, 50, 100, 200, 300
Number of machines (m) 2, 4
Size of jobs (s) [1,10], [11, max(Ki)]
Processing time of jobs (P) [1,10]
Capacity of machines (K) [10,40]

We combine the parameters and randomly generate 50 instances for each combination (a test
suite). Each test suite is denoted by a code. For instance, a test suite with 50 jobs and two machines is
denoted by J3M1S1P1K1.

6.2. Comparison of 4.5-Approximation Algorithm and CPLEX

Here, a CPLEX algorithm is used to solve the MILP model given in Section 3, and we compare
the CPLEX algorithm with the results of the 4.5-approximation algorithm. CPLEX always gives the
optimal solution, but it cannot give the optimal solution for all instances even after operating several
hours. Therefore, we set an upper execution time 1800s for CPLEX, and the best-known solution was
compared. The job size and machine capacity distribution as shown in Figure 2.
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Regarding the 4.5-approximation algorithm, LB and UB are initialized as follows:

LB = max(P j)

UB =
∑n

j=1 P j.
(10)

Figure 3 shows the result of test suite J1M1S1P1K1.
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C′max is the makespan of the 4.5-approximation algorithm with one-job-overfull batches and
Cmax is the makespan of 4.5-approximation algorithm with a feasible schedule. Figure 3a shows the
makespan of the 4.5-approximation algorithm with one-job-overfull batches and the algorithm with a
feasible schedule. Figure 3b,c shows that the 4.5-approximation algorithm substantiates the feasibility
of this research method:

C′max ≤ 9T/4
Cmax ≤ 4.5T.

Figure 3d shows that the run time of the 4.5-approximation algorithm is clearly better than CPLEX.
Table 5 shows the results of all test suites. Though CPLEX is the best solver for linear programming
problems, it cannot give an optimal solution for a long time, so we terminated CPLEX after running for
1800 s and used the best integer for comparison.

The results illustrate that the 4.5 approximation algorithm is more effective than CPLEX in any
scale test-suite. For the small-scale test-suite (10 jobs and two machines), the best solution obtained
by the 4.5-approximation algorithm is closest to the CPLEX best solution. For the medium-scale and
large-scale test-suites, the average result of the 4.5-approximation algorithm is no bigger than 4.5T.

6.3. Comparison of 2-Approximation Algorithm (LIM) and CPLEX

For the problem P
∣∣∣s j, p = p, p− batch, Ki

∣∣∣Cmax , minimizing the makespan with equal running
times, arbitrary job sizes (which may exceed the processing power of certain batches), and different
machine capacities should be the solution. The running time of jobs was set to a default value of 8.
Then, the LB and UB are denoted as

LB = 8
UB = n ∗ 8.

Table 6 show the experimental results given by the CPLEX and the LIM algorithm for all the test
suites. Column SQL-AVG (the average value of SQL) reports the average makespan obtained using
the LIM algorithm. Compared with the CPLEX makespan, the LIM algorithm can obtain the efficient
solution in only little running time (Column Run Times).
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Table 5. Simulation results of CPLEX and the 4.5-approximation algorithm with one-job-overfull batches and a feasible schedule.

Test Suite
CPLEX C

′

max Cmax T 9T/4 4.5T
Makespan GAP (%) Run Time (s) Best AVG Worst Run Time (s) Best AVG Worst Run Time (s)

J1M1S1P1K1 9 0 0.02 9 14.92 21 0.02 10 23.23 34 0.02 9.49 21.35 42.71
J1M2S1P1K1 8 0 0.09 9 13.02 22 0.02 9 19.06 36 0.02 9.63 21.66 43.32
J2M1S1P1K1 19 42.11 2.10 17 21.62 27 0.01 30 35.76 51 0.01 10.26 23.10 46.19
J2M2S1P1K1 10 40.00 2.26 15 19.44 22 0.01 24 32.04 48 0.01 10.09 22.7 45.4
J3M1S1P1K1 52 79.87 466.47 35 47.39 68 0.13 61 86.61 136 0.13 21.86 49.19 98.37
J3M2S1P1K1 47 80.85 25.39 21 28.84 40 0.02 37 53.53 106 0.02 13.57 30.53 61.07
J4M1S1P1K1 59 90.68 1800 76 94.57 129 0.04 150 175.8 255 0.04 42.73 96.14 192.29
J4M2S1P1K1 29 86.21 1800 40 52.75 108 0.04 76 99.20 180 0.04 24.22 54.50 108.99
J5M1S1P1K1 197 97.46 1800 151 185.53 255 0.08 250 352.33 496 0.08 83.29 187.40 374.81
J5M2S1P1K1 - - 1800 78 105.49 186 0.08 146 203.96 365 0.08 47.55 106.99 213.98
J6M1S1P1K1 161 97.2 1800 213 283.43 387 0.12 377 535.71 739 0.12 126.65 284.96 569.93
J6M2S1P1K1 - - 1800 104 143.73 283 0.12 190 275.35 560 0.13 64.65 145.46 290.93

1 Note: (1) Column 2 is the minimum makespan of 50 instances for each test suite. ‘-’ represents that CPLEX could not find a feasible solution in 1800 s. (2) Each test suite contains 50
instances. Columns 5, 6, and 7 report the best, average, and worst C′max, respectively. Columns 9, 10, and 11 report the best, average, and worst Cmax, respectively. (3) Columns 13, 14, and
15 report the average T, 9T/4, and 4.5T of 50 instances, respectively.

Table 6. Simulation results of CPLEX and the 2-approximation algorithm with one-job-overfull batches and a feasible schedule.

Test Suite
CPLEX SOL 1 SOL

Makespan GAP (%) Run Time (s) Best AVG Worst Run Time (s) Best AVG Worst Run Time (s)

J1M1S1P1K1 24 0 0.25 16 18.82 24 0 24 31.84 48 0
J1M2S1P1K1 24 66.67 0.20 8 9.10 16 0 16 17.10 34 0
J2M1S1P1K1 40 13.93 3.11 24 38.27 56 0 44 66.20 88 0
J2M2S1P1K1 24 33.33 2.13 16 23.22 40 0 32 42.04 72 0
J3M1S1P1K1 80 87.06 1800 64 89.41 120 0 112 159.53 224 0
J3M2S1P1K1 64 87.5 38.34 40 61.96 96 0 72 109.96 160 0
J4M1S1P1K1 200 96 306.73 136 186.67 232 0 240 337.73 432 0
J4M2S1P1K1 144 95.83 1800 80 121.25 192 0 136 219.61 344 0
J5M1S1P1K1 412 98.59 1800 264 374.12 456 0 480 679.06 848 0
J5M2S1P1K1 - - 1800 160 245.49 336 0 296 453.02 656 0
J6M1S1P1K1 - - 1800 424 569.10 744 0 744 1031.37 1360 0
J6M2S1P1K1 - - 1800 232 343.22 512 0 416 633.57 944 0

1 Note: When run time is labeled as 0, it was less than 10−2.
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7. Conclusions and Future Works

The paper analyzed the parallel batch scheduling problem of minimizing the makespan, where
arbitrary sizes of scheduling jobs are allowed and machines have different capacities. Each machine
can only deal with jobs whose sizes do not exceed that machine’s capacity. We developed an efficient
4.5-approximation algorithm for this problem. The experimental results show that the algorithms
can obtain a reasonable solution in a finite time. A 2-approximation algorithm is achieved under the
particular circumstances of equivalent processing times. Computational experiments show that the fast
algorithm can help to improve the efficiency of resource consumption and give researchers more choices
to balance the quality of the solution and the running time in the parallel batch scheduling problem.

Several important related directions for this problem are worth researching in the future. First
of all, how do we improve the fast algorithm to get closer to the optimal solution in shortest time?
In addition, jobs with release times are more common BPM problems in the manufacturing industry.
How to develop a fast scheduling algorithm for this problem is an import direction. Finally, BPM
problems with different service levels can be considered as well.
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