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Abstract: With the rapid economic development, manufacturing enterprises are increasingly using 
an efficient workshop production scheduling system in an attempt to enhance their competitive 
position. The classical workshop production scheduling problem is far from the actual production 
situation, so it is difficult to apply it to production practice. In recent years, the research on machine 
scheduling has become a hot topic in the fields of manufacturing systems. This paper considers the 
batch processing machine (BPM) scheduling problem for scheduling independent jobs with 
arbitrary sizes. A novel fast parallel batch scheduling algorithm is put forward to minimize the 
makespan in this paper. Each of the machines with different capacities can only handle jobs with 
sizes less than the capacity of the machine. Multiple jobs can be processed as a batch simultaneously 
on one machine only if their total size does not exceed the machine capacity. The processing time of 
a batch is determined by the longest of all the jobs processed in the batch. A novel and fast 4.5-
approximation algorithm is developed for the above scheduling problem. For the special case of all 
the jobs having the same processing times, a simple and fast 2-approximation algorithm is achieved. 
The experimental results show that fast algorithms further improve the competitive ratio. 
Compared to the optimal solutions generated by CPLEX, fast algorithms are capable of generating 
a feasible solution within a very short time. Fast algorithms have less computational costs. 

Keywords: independent job sizes; fast scheduling algorithm; machine capacities; makespan;  
parallel batch machines 

 

1. Introduction 

How to reduce the production cycle and improve the utilization rate of resources is an important 
problem under the constraints of workshop production, such as delivery time, technical requirements 
and resource status, etc. Most enterprises adopt workshop scheduling technology to solve this 
problem. An effective scheduling optimization method can take advantage of many production 
resources in the workshop. The research and application of a workshop scheduling optimization 
method has become one of the basic contents of advanced manufacturing technology [1–3]. 

Batch processing machines (BPMs) are widely applied in many enterprises, for example, steel 
casting, chemical and mineral processing, and so on [4–6]. BPMs scheduling problem is a hot topic in 
workshop scheduling problem. In the traditional scheduling problem, each machine can only 
process, at most, one job at a time [7]. However, BPMs can process a number of jobs simultaneously 
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as a batch and all jobs in a batch have the same processing time [8]. The processing time of one batch 
is equal to the maximum processing time of all the jobs processed by the batch [9]. 

In this paper, we analyze the parallel batch processing machine scheduling problem where the 
jobs have arbitrary size and the machines have different capacities. We give a set of n  jobs 

1 2{ , , ..., }nJ J J=  and a set of m  parallel batch machines 1 2{ , , , }mM M M=  , and we let all the 

jobs be released simultaneously (release time of job is 0). Let jp  and js  denote the processing time 

and the size of job jJ ∈  ( 1, 2, ,j n=  ), respectively, where 0jp ≥  and 0js > . Machine iM   
( 1, 2, ,i m=  ) has a finite capacity iK . Without loss of generality, we assume 1 2 mK K K≤ ≤ ≤  and 
j ms K≤  for each job jJ  in order to ensure job jJ  can be processed by at least one machine. 

However, there might be j is K>  for some jJ  and iM . Machine iM  ( 1, 2, ,i m=  ) can handle 
multiple jobs at the same time, but the total size of these jobs cannot exceed iK . The longest 
processing time of all jobs in a batch determines the processing time of a batch. The purpose of this 
problem is to allot each job to a batch and to schedule the batch on the machine to minimize the 

maximum completion time of the schedule, max max j jC C= , where jC  represents the completion 
time of job j  in the schedule [10,11]. Using the notations proposed in [12,13], this problem can be 

denoted as max| , , |j iP s p batch K C− .  
The notations used in this paper are summarized in Table 1. 

Table 1. Notations. 

Notation Description 
  set of jobs, 1 2{ , , ..., }nJ J J=  

jJ  jth job 

jp  processing time of job jJ  

js  size of job jJ  

 set of machines, 1 2{ , , ..., }mM M M=  

iM  ith machine 

iK  capacities of iM  

,i gB  g th batch scheduled on ith machine 

UB  upper bound of makespan 
LB  lower bound of makespan 

maxC  makespan 

Before we move on, let us introduce some useful notations and terminologies. Let
1{ | }i j i j iJ K s K−= ∈ < ≤  , and 1, 2, , , 1, 2,...,i m j n= = ; when 1i = , 0K  was used, but it was 

meaningless, so we set 0 0K = . It is possible that i φ=  for some i . We have 1
m
i i==  . Let =ja i  

denote the index of a machine with the minimum capacity that can process the job j jJ ∈ , and then 

jJ  can be assigned to each machine in 1{ , , , }
j jj a a mM M M+=   where 1 ja m≤ ≤ . 

1, , ,
j ja a mM M M+   are called the golden machines for job jJ , j  is the golden machines set, jJ  is 

called the golden job for jM ∈ , and all of the jobs that can be processed by iM  are called the 
golden jobs set for iM . In a scheduling process, the running time of the machine is equal to the total 
processing time of batches scheduled on this machine. 

The structure of the paper is as follows. Section 2 reviews the previous research in related areas. 
Section 3 gives the definition of the research problem. In Section 4, a novel fast 4.5-approximation 

algorithm is proposed for problem max| , , |j iP s p batch K C− . In Section 5, a fast 2-approximation 

algorithm is proposed for problem max| , , , |j j iP s p p p batch K C= − . Section 6 designs several 
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computational experiments to show the effectiveness of fast algorithms. Finally, conclusions are 
given in Section 7. 

2. Literature Review 

Since the 1980s, scholars have studied the job scheduling problem of parallel batch machines 
extensively [1]. In this section, we review the results of research dealing with different job sizes and 
minimization of the maximum completion time [14–20].  

In the one-machine case of problem max| , , |j iP s p batch K C− , we denote max1| , , |js p batch B C− . 

Uzsoy [21] proved that max1| , , |js p batch B C−  is a strong NP-hard (non-deterministic polynomial) 
problem, and presented four heuristics. Zhang et al. [22] also proposed a 1.75-approximation 
algorithm for max1| , , |js p batch B C− . Dupont and Flipo presented a branch and bound method for 

max1| , , |js p batch B C− . Dosa et al. [23] presented a 1.7-approximation algorithm for 

max1| , , |js p batch B C− . Li et al. [24] presented a (2 )ε+ -approximation algorithm for 

max1| , , , |j jr s p batch B C−  (the more general case where jobs have different release times), where ε  is 
a number greater than 0 and is arbitrarily small. 

The special case of max| , , |j iP s p batch K C−  is where all iK B=  ( B n< ) is represented as 

max| , , |jP s p batch B C− . Chang et al. [25] studied max| , , |jP s p batch B C−  and provided an algorithm 
that is based on the simulated annealing approach.  

Dosa et al. [23] demonstrated that although the processing time for all jobs is the same (unless P 
= NP), max| , , |jP s p batch B C−  cannot be approximated to a ratio less than 2. Dosa et al. presented a 

(2 )ε+ -approximation algorithm. Cheng et al. [26] presented a 8/3-approximation algorithm for 

max| , , |jP s p batch B C−  with running time ( log )O n n . Chung et al. [27] developed a mixed integer 

programming model and some heuristic algorithms for max| , , , |j jP r s p batch B C−  (the problem 
where jobs have different release times). A 2-approximation algorithm for 

max| , , , , |j j jP r s p p p batch B C= −  (the special case of max| , , , |j jP r s p batch B C−  where all jobs have the 
same processing times) was given by Ozturk et al. [28]. Li [29] obtained a (2 )ε+ -approximation 
algorithm for max| , , , |j jP r s p batch B C− . 

More recently, several research groups have focused on the scheduling problems on parallel 
batch machines with different capacities and applications in many fields [30–41]. The special case of 

max| , , |j iP s p batch K C− , where all 1js K≤  (i.e., all jobs can be assigned to any machine), is denoted 

as 1 max| , , |j iP s K p batch K C≤ − . Costa et al. [30] studied 1 max| , , |j iP s K p batch K C≤ −  and developed 
a genetic algorithm for it. Wang and Chou [31] proposed a metaheuristic for 

1 max| , , , |j j iP r s K p batch K C≤ −  (the problem where jobs have different release times). Damodaran et 
al. [32] proposed a PSO method for max| , , |j iP s p batch K C− . Jia et al. [33] presented a heuristic and a 

metaheuristic for max| , , |j iP s p batch K C− . Wang and Leung [34] analyzed the problem 

max| , 1, , |j j iP s p p batch K C= −  where each job has its own unit processing time. They designed a 2-
approximation algorithm for the problem. They also obtained an algorithm with asymptotic 
approximation ratio 3/2. Li [35] proposed a fast 5-approximation algorithm and a (2 )ε+ -
approximation algorithm for max| , , |j iP s p batch K C− , but the presented (2 )ε+ -approximation 
algorithm has high time complexity when ε  is small. Jia et al. [36] presented several heuristics for 

max| , , , |j j iP r s p batch K C−  (the problem where jobs have different release times) and evaluated the 
validity of the heuristics by computational experiments. Other methods have also been proposed in 
the literature [42–53]. 

In this paper, a novel fast 4.5-approximation algorithm was developed for problem
max| , , |j iP s p batch K C− , and we evaluate the algorithm performance via computational experiments. 

We also provide a simple and fast 2-approximation algorithm for the case that all jobs have the same 
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processing time, ( max| , , , |j j iP s p p p batch K C= − ), improving upon and generalizing the results in 
[54–57]. The approximation ratio of the 2-approximation algorithm in this paper is equal to the 
presented algorithm in [26], but is now simpler to understand and easier to implement.  

3. Mathematic Formulation of the Problem 

In this section, we present the problem under consideration as a mixed integer linear 
programming (MILP) model. First, the problem parameters and decision variables are given, and 
then the model is provided. Table 2 shows the problem indices. 

Table 2. Indices. 

Indices Description 
i  index of machine, {1, 2,..., }i m=  
j  index of job, {1, 2,..., }j n=  

l  index of batch, {1, 2,..., }l n=  

Table 3 shows the problem decision variables. 

Table 3. Decision variables. 

Decision Variables Description 

jilx  1, if job jJ  is assigned to the thl  batch processed on machine iM ; 0, otherwise. 

ily  the processing time of thl batch processed on machine iM . 

maxC  makespan. 

The research problem can be denoted as max| , , |j iP s p batch K C− . The mathematical formulation 

of the research problem max| , , |j iP s p batch K C−  is shown as follows: 

max  Minimize C , (1) 

which is subject to 

1 1
1,      1, 2, , ;  

m n

jil
i l

x j n
= =

= = …  (2) 

1
,   1, 2, , ;   1, 2, , ;   

n

j jil i
j
s x K i m l n

=

≤ = … = …  (3) 

,   1,2, , ;  1,2, , ;   1,2, , ;   il j jily p x j n i m l n≥ = … = … = …  (4) 

max
1

,   1, 2, , ;   
n

il
l

C y i m
=

≥ = …  (5) 

{0,1},    1,2, , ;  1,2, , ;   1,2, , .jilx j n i m l n∈ = … = … = …  (6) 

The Objective Function (1) shows that our aim is to find a schedule to minimize the makespan 
maxC . Constraint (2) is to make sure that each job is assigned exactly to one machine. Constraint (3) 

guarantees that all batches are feasible; in other words, the total size of all jobs assigned to the batch 
does not exceed the capacity of machine where the batch is scheduled. Constraint (4) indicates that 
the processing time of a batch is not less than the processing time of the jobs in the batch. Constraint 
(5) guarantees that the makespan of the schedule is not less than maximum load of all the machines. 
In Constraint (6), the 0–1 variable jilx  indicates whether the j th job is assigned into the l th  batch 
on machine iM ( 1)jilx =  or not ( 0)jilx = .  
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4. 5-Approximation Algorithm for | , | maxP s p batch K Cj i−，  

We denote the optimal makespan of the problem | , | maxP s p batch K Cj i−，  as OPT . The main 

focus of the research is to develop a fast scheduling model to get a minimized makespan as close to 
OPT  as possible.  

To solve the problem | , | maxP s p batch K Cj i−， , we used the MBLPT (modified longest processing 

time batch) rule [35], a modification of the BLPT (longest processing time batch) rule. For a given jobs 
set i  that can be assigned to machine iM , we apply the MBLPT rule, which sorts jobs to get '

i . 

We build a batch ,1iB  on machine iM , and then the rule repeatedly pops the first job from '
i  and 

assigns it to ,1iB  until the sum of all the jobs assigned to ,1iB  just exceeds the capacity of iM . Batch 

,1iB  is called the one-job-overfull batch. Once the one-job-overfull batch exists, a new batch should 
be built on the same machine, unless the machine runs out of maximum completion time (maximum 
completion time is in the initialization parameters of the algorithm). We repeat the above job 
assignment procedure until the job list '

i  is empty. 
Let ,{ : 1,2, , }i i g iB g h= =   denote the set of batches generated using the MBLPT rule to i′  

and machine iM , and ih  is the total number of batches scheduled on machine iM . Let ,( )i gp B  and 

,( )s i gp B denote the longest processing time (the processing time of batch ,i gB  is equal to the longest 

processing time of jobs on it) and the shortest processing time of the jobs in batch ,i gB , respectively, 
such that ,1 ,2 ,( ) ( ) ( )

ii i i hp B p B p B≥ ≥ ≥ . The batches ,1 ,2 , 1, , ,
ii i i hB B B − are one-job-overfull batches, 

while , ii h
B  can be one-job-overfull or not. We have , , 1( ) ( )s i g i gp B p B +≥  ( 1, 2, , 1ig h= − ). The 

Inequality (7) below (refer to [27]) is easy to prove. 
1

, , , ,1
1
( ( ) ( )) ( ) ( ).

i

i

h

i g s i g i h i
g

p B p B p B p B
−

=

− + ≤  (7) 

By the Inequality (7), we have 

Lemma 1. 
1

, , ,1
1 1

( ) ( ) ( ).
i ih h

i g s i g i
g g
p B p B p B

−

= =

≤ +   

We now propose the 4.5-approximation algorithm for max| , , |j iP s p batch K C− . Similar 
frameworks have been used in [58–62]. In [58], Ou et al. developed a 4/3 approximation algorithm to 
solve classical scheduling problems with minimized maximum completion time on parallel machines 
with processing set constraints. In [59], Li proposed a 9/4-approximation algorithm for

max| 1, , |j iP s p batch K C= −  (the special case of max| , , |j iP s p batch K C−  where all 1js = ). The 
algorithm to be described extends the previous research by involving non-identical job sizes. 

We first run the 5-approximation algorithm for max| , , |j iP s p batch K C− . The algorithm 

generates a feasible schedule with a maximum completion time of 5UB OPT≤  in 2( log )O n m n+  
time. Let the minimum completion time / 5LB UB= . We have LB OPT UB≤ ≤ . We use the binary 
search method to find the makespan of a feasible solution in the range of the [ , ]LB UB  interval. 

Firstly, set 
2

LB UBT + =   
, and then classify both the jobs and batches into long, short, and median. 

A job jJ  is long if / 2jp T> , median if / 4 / 2jT p T< ≤ , or short if / 4jp T≤ . Similarly, a batch 

,i gB  is long if ,( ) / 2i gp B T> , median if ,/ 4 ( ) / 2i gT p B T< ≤ , or short if ,( ) / 4i gp B T≤ . Certainly, long 
batches may contain median and short jobs, and median batches may contain short jobs. After 
classification, we use the following SCMF-LPTJF (smallest capacity machine first processed and 
longest processing time job first processed) procedure to search for a schedule with a makespan at 
most 9 / 4T , which permits one-job-overfull batches. If our above operation fails, we will continue 
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searching for the upper half of the interval and set LB T= ; otherwise, we will continue searching for 
the lower half of the interval, record OPT T= , and set UB T= . The binary search method is then 
repeated in the new range of the [ , ]LB UB  interval until LB UB≥ . 

Algorithm 1. SCMF-LPTJF (smallest capacity machine first processed and longest processing time 

job first processed) 
Input: 1

m
i i==  , T  

Output: maxC —best found solution, RT —running time 

1: 0Q φ= , AssignedJS φ=  // denote the jobs have been assigned to batch as AssignedJS  
2: for 1  i to m=  do 
3: Sort i  according to the rule that processing time of jobs is not increased, denote '

i  
4: end for 
5: for 1  i to m=  do 
6: '

-1=i i iQ Q AssignedJS∪ −  
7: Apply the MBLPT rule to iQ  and iM , get ,{ : 1,2, , }i i g iB g h= =   
8: Sort i  according to the rule that processing time of batches is not increased, denote '

i  
9: Denote long batches set, median batches set, and short batched set as LongBS , 

MedianBS , and ShortBS  
10: LongBS φ= , MedianBS φ= , ShortBS φ=  
11: for batch b  in '

i  do // classify batches into long, median and short. 
12: if ( ) / 2p b T>  then 

13: append b  to LongBS  
14: else if / 4 ( ) / 2T p b T< ≤  then 
15: append b  to MedianBS  

16: else 

17: append b  to ShortBS  

18: end if 

19: end for 

20: if LongBS φ≠  then 

21: max ( )mLongBS Loax ngBS=  // the longest processing time batch in LongBS  

22: schedule maxLongBS  on iM ; remove maxLongBS  from '
i ; remove jobs assigned to 

maxLongBS  from iQ  and add these jobs to AssignedJS  
23: max= .RT LongBS p  // max .LongBS p  is the processing time of batch maxLongBS  

24: end if 

25: for batch b  in MedianBS  do 

26: if . 9 / 4RT b p T+ ≤  then 

27: schedule b  on iM ; remove b  from '
i ; remove jobs assigned to b  from iQ  

and add these jobs to AssignedJS  
28: = + .RT RT b p // the processing time of batch b  

29: end if 

30: end for 

31: for batch b  in ShortBS  do 
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32: if . 9 / 4RT b p T+ ≤  then 

33: schedule b  on iM ; remove b  from '
i ; remove jobs assigned to b  from iQ  

and add these jobs to AssignedJS  
34: = + .RT RT b p // the processing time of batch b  

35: end if 

36: end for 
37: Update maxC // append the batches scheduled on iM  to maxC  
38: end for 
39: return maxC , RT  

Lemma 2. If OPT T≤ , then the SCMF-LPTJF algorithm will generates an optimal schedule for 
max| , , |j iP s p batch K C−  with one-job-overfull batches whose makespan is at most 9 / 4T . 

Proof. Let Σ  be an optimal schedule whose makespan is OPT . Let H  be the set of long jobs and 
median jobs. □ 

In Σ , each machine can process up to three median batches or one long batch and one median 
batch. On the other hand, the SCMF-LPTJF program will allocate a long batch on the machine as 
much as possible. After it assigns a long batch on a machine, this machine still has enough time (at 
least 5 / 4T  time) to handle at least two median batches. Note that the SCMF-LPTJF procedure forms 
batches greedily. (It overfills each batch with the longest currently unassigned jobs.) Therefore, the 
SCMF-LPTJF procedure allocates more processing times for long jobs and median jobs on the 
machines with smaller capacities than Σ  does. Equivalently, we claim that m

l
l i

jj H
p

=

∈ ∩   is the 

lower limit of the overall processing time in a long working state, and the median job arranged on 
machines 1, , ,i i mM M M+   in Σ , 1, 2, ,i m=  . Hence, if OPT T≤ , then all long and median jobs 
will be allocated by SCMF-LPTJF. 

Therefore, if there is OPT T≤ , but there is still a job j  when executing to the end of the SCMF-
LPTJF process, then job j  must be a short job. When job j  is assigned, all of machines 

1, , ,
j ja a mM M M+   have a load greater than 2T . Let max ji a<  be the largest index such that machine 

maxiM has a load less than or equal to 2T . If all of the machines have load greater than 2T , then set 

max 0i = . Therefore, all of machines 
max max1 2, , ,i i mM M M+ +   have load greater than 2T . There is room 

on the machine 
maxiM  for scheduling any short job. Hence, by the rule of the SCMF-LPTJF procedure, 

no short job from 
max

1

i

i
i=
  can be assigned to machines 

max max1 2, , ,i i mM M M+ +  .  

By Lemma 1, for max max1, 2, ,i i i m= + +  , we have  
1

, , ,1
1 1

( ) ( ) ( ) .
i ih h

s i g i g i
g g
p B p B p B T

−

= =

≥ − >   
(8) 

It follows that 

, max
1 1max

1
.hm i

i g
i i g

m
j j ij B i i
p s K T

= + =

∈ = +
⋅ > ⋅    (9) 

In Σ , all the short jobs in ,
1 1max

hm i

i g
i i g

B
= + =
   have to be processed on machines 

max max1 2, , ,i i mM M M+ +  . In 

addition, we have also proved that the overall processing time 
+1max

m

l
l i

jj H
p

=

∈ ∩  
 of the planned long 

and median jobs on machines 
max max1 2, , ,i i mM M M+ +   in Σ  as a lower bound. Therefore, the above 

inequality shows that Σ  cannot make all of the jobs done in the T OPT≥  time, which is a 
contradiction. 
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The algorithm performs a binary search within the range [ , ]LB UB . Finally, we will get a 
schedule with one-job-overfull batches (Figure 1a) whose makespan is at most 9 / 4OPT . We can turn 
it into a viable scheduling solution (Figure 1b), where the maximum completion time is 9 / 2OPT , as 
follows: for each one-job-overfull batch, move the last packed job into a new batch and calculate the 

new batch on the same machine. Since the iterative number could be 1
(log( ))n

jj
O p

= , then the 

following theorems are obtained. 

Theorem 1. There is a 4.5-approximation algorithm for max| , , |j iP s p batch K C−  that runs in 
2( log )sumO n mn p+  time, where 1

n
sum jj
p p

=
= . 

 
(a) 

 
(b) 

Figure 1. Illustration of the 4.5-approximation algorithm. (a) The 4.5-approximation algorithm with 
one-job-overfull batches. (b) The 4.5-approximation algorithm with a feasible schedule. 

In order to achieve a strongly polynomial time algorithm, we use a technique described to 
modify the above algorithm slightly. Therefore, the following theorems are obtained. 

Theorem 2. There is a (4.5 )ε+ -approximation algorithm for max| , , |j iP s p batch K C−  that runs in 
2( log(1/ ))O n mn ε+  time, where 0ε >  can be made arbitrarily small. 

5. A 2-Approximation Algorithm for max| , , , |j j iP s p p p batch K C= −  

In this section, we study max| , , , |j j iP s p p p batch K C= − , i.e., the problem of minimizing the 
makespan with equal processing times ( jp p= ), arbitrary job sizes (may exceed the processing 
power of certain batches), and non-identical machine capacities.  

The 2-approximation algorithm is called LIM (largest index machine first consider). It groups 
the jobs in 1 1, , ,m m−     (this ordering is crucial), respectively, into batches greedily. During the 
run of the algorithm, iLoad  represents the load on machine iM , i.e., the overall processing time of 
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the batches on iM , 1, 2, ,i m=  . The algorithm dynamically maintains a variable x , which 
represents the currently largest index such that x mLoad Load< . If there is no such index, then we can 
set x m= . We can assign the next generated batch to machine xM . 

Algorithm 2. LIM (largest index machine first consider) 
Input: 1

m
i i==    

Output: maxC —best found solution, RT —running time 
1: AssignedJS φ= //the jobs have been assigned to any batch 
2:  for  1  i to m=  do 
3: 0iLoad = // the load on machine iM , equals to the overall processing time of the batches 

on iM , 
4: end for 
5: x=m 
6: for   1i m to=  do 
7: if x m==  and 0mload > then 
8: x i=   
9: end if 
10: create new batch b , =i i AssignedJS−   
11: for job j  in i  do 
12: if . xb size K≤  then 
13: assign job j  to batch b   
14: .   .   .b size b size j size= +  
15: remove job from i  and add it to AssignedJS  
16: else 
17: schedule b  to xM  
18: = .x xLoad Load b p+  
19: initiate b  
20: end if 
21: end for 
22: if b  is not empty and . xb size K≤  then 
23: while . xb size K≤  and 1 2 1|| || ||i i AssignedJS− − −    is not empty do 
24: get first job j  from 1 2 1|| || ||i i AssignedJS− − −    
25: assign job j  to b  
26: .   .   .b size b size j size= +  
27: remove job j  from 1 2 1|| || ||i i− −     and add it to AssignedJS  
28: end while 
29: schedule b  to xM   
30: = .x xLoad Load b p+  
31: end if 
32: if x mLoad Load≥  then 
33: if x i>  then 
34: x x i= −   
35: else if x i==  then 
36: x m=   
37: end if 
38: end if 
39: end for 
40: for  1  i to m=  do 
41: for batch b  in iM do 
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42: if . ib size K≥  then  
43: create new batch 'b   
44: pop the last job from b and assign it to 'b  
45: schedule 'b  to iM  
46: '    .i iLoad Load b p= +   
47: end if 
48: end for 
49: Update maxC // append the batches scheduled on iM  to maxC  
50: end for 
51: return maxC , ( )  ,  1,2,3iRT max Load i m= = …  . 

Theorem 3. Algorithm LIM is a 2-approximation algorithm for max| , , , |j j iP s p p p batch K C= − . 

Proof. Let 1Σ  be the schedule with makespan 1SOL  generated by LIM after Step 2. In 1Σ , all 
batches can be processed at the same time as they are assigned to a machine. During the running of 
the algorithm, the load on any machine is always less than or equal to the load on mM . Therefore, 

mM  finishes last in 1Σ . Let lastB  be the last batch assigned to mM . Let 1{ , , , }l l mM M M+   be the 
processing set of lastB , which can be defined as the largest size processing set of the job in lastB . In

1Σ , let ( )lastS B  denote the start time of lastB . We have: 1 ( )lastSOL S B p= + . □ 

Since we assigned lastB  to mM , at that moment x m=  must hold. Hence, machines 

1, , ,l l mM M M+   are busy in the time interval (0, ( ))lastS B . All the batches allocated to machines 

1, , ,l l mM M M+   before ( )lastS B  are one-job-overfull batches. All jobs in these batches, together with 
the largest size job in lastB , must be processed on machines 1, , ,l l mM M M+   in any feasible schedule. 
Hence, we get ( )lastOPT S B p≥ + . So we can draw the conclusion that 1SOL OPT≤ .  

For a feasible schedule with makespan SOL  generated by LIM, we have 12 2SOL SOL OPT≤ ≤ . 

6. Computational Experiments 

6.1. Experimental Environment 

For the performance evaluation of the 4.5-approximation and 2-approximation algorithms, all 
the instances are generated by a random algorithm, as in the papers [63–68]. In the process of the 
instances generation, five factors affecting the solution of the problem are determined: the number of 
jobs, the number of machines, the variation in job sizes, the variation in job processing time, and the 
variation in machine capacities [69–75]. 

The experiment is divided into two parts: (1) the 4.5-approximation algorithm is compared with 
the CPLEX result. (2) The 2-approximation algorithm is compared to CPLEX. The 4.5-approximation 
algorithm and 2-approximation algorithm were coded in C# and the CPLEX was programed by OPL 
(Optimization Programming Language), compiled, and run with the IBM ILOG CPLEX Optimization 
Studio 12.5.1.0 (Education Version). All the algorithms were run on the same machine (Win10, Intel 
(R) i7-4790, 16 GB). 

First, we set the number of machines to two or four, and the capacity of each machine is 
represented by a uniform integer [10,40]. Then, random problem instances with number of jobs 
equals to 10, 20, 50, 100, 200, and 300 are generated, and each job processing time jP  is generated by 
random sampling from a uniform distribution [1,10]. The factor settings of the experiment are 
summarized in Table 4. 
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Table 4. Factors setting of the experiment. 

Factors Levels 
Number of jobs (n) 10, 20, 50, 100, 200, 300 
Number of machines (m) 2, 4 
Size of jobs (s) [1,10], [11, max( )]iK  
Processing time of jobs (P) [1,10] 
Capacity of machines (K) [10,40] 

We combine the parameters and randomly generate 50 instances for each combination (a test 
suite). Each test suite is denoted by a code. For instance, a test suite with 50 jobs and two machines is 
denoted by J3M1S1P1K1. 

6.2. Comparison of 4.5-Approximation Algorithm and CPLEX  

Here, a CPLEX algorithm is used to solve the MILP model given in Section 3, and we compare 
the CPLEX algorithm with the results of the 4.5-approximation algorithm. CPLEX always gives the 
optimal solution, but it cannot give the optimal solution for all instances even after operating several 
hours. Therefore, we set an upper execution time 1800s for CPLEX, and the best-known solution was 
compared. The job size and machine capacity distribution as shown in Figure 2. 

  
Figure 2. Job size and machine capacity distribution. 

Regarding the 4.5-approximation algorithm, LB  and UB are initialized as follows: 
max( )jLB P=  

1

n
jj

UB P
=

= . 
(10) 

Figure 3 shows the result of test suite J1M1S1P1K1. 
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Figure 3. Results of J1M1S1P1K1. (a) Comparison makespan of CPLEX and the 4.5-approximation 
algorithm with one-job-overfull batches and the 4.5-approximation algorithm with a feasible schedule. 
(b) Comparison makespan of the 4.5-approximation algorithm with one-job-overfull batches and 
9 / 4T . (c) Comparison makespan of the 4.5-approximation algorithm with a feasible schedule and 
4.5T. (d) Comparison running time of CPLEX and the 4.5-approximation algorithm with one-job-
overfull batches and the 4.5-approximation algorithm with a feasible schedule. 

max'C  is the makespan of the 4.5-approximation algorithm with one-job-overfull batches and 

maxC is the makespan of 4.5-approximation algorithm with a feasible schedule. Figure 3a shows the 
makespan of the 4.5-approximation algorithm with one-job-overfull batches and the algorithm with 
a feasible schedule. Figure 3b,c shows that the 4.5-approximation algorithm substantiates the 
feasibility of this research method: 

max' 9 / 4C T≤  

max 4.5C T≤ .  

Figure 3d shows that the run time of the 4.5-approximation algorithm is clearly better than 
CPLEX. Table 5 shows the results of all test suites. Though CPLEX is the best solver for linear 
programming problems, it cannot give an optimal solution for a long time, so we terminated CPLEX 
after running for 1800 s and used the best integer for comparison. 

The results illustrate that the 4.5 approximation algorithm is more effective than CPLEX in any 
scale test-suite. For the small-scale test-suite (10 jobs and two machines), the best solution obtained 
by the 4.5-approximation algorithm is closest to the CPLEX best solution. For the medium-scale and 
large-scale test-suites, the average result of the 4.5-approximation algorithm is no bigger than 4.5T . 

6.3. Comparison of 2-Approximation Algorithm (LIM) and CPLEX  

For the problem max| , , , |j iP s p p p batch K C= − , minimizing the makespan with equal running 
times, arbitrary job sizes (which may exceed the processing power of certain batches), and different 
machine capacities should be the solution. The running time of jobs was set to a default value of 8. 
Then, the LB  and UB  are denoted as 

8LB =  
*8UB n= .  

Table 6 show the experimental results given by the CPLEX and the LIM algorithm for all the test 
suites. Column SQL-AVG (the average value of SQL) reports the average makespan obtained using 
the LIM algorithm. Compared with the CPLEX makespan, the LIM algorithm can obtain the efficient 
solution in only little running time (Column Run Times). 
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Table 5. Simulation results of CPLEX and the 4.5-approximation algorithm with one-job-overfull batches and a feasible schedule. 

Test Suite 
CPLEX max'C  maxC  

T  9 / 4T  4.5T  
Makespan GAP 

(%) 
Run  

Time (s) Best AVG Worst Run  
Time(s) Best AVG Worst Run  

Time (s) 
J1M1S1P1K1 9 0 0.02 9 14.92 21 0.02 10 23.23 34 0.02 9.49 21.35 42.71 
J1M2S1P1K1 8 0 0.09 9 13.02 22 0.02 9 19.06 36 0.02 9.63 21.66 43.32 
J2M1S1P1K1 19 42.11 2.10 17 21.62 27 0.01 30 35.76 51 0.01 10.26 23.10 46.19 
J2M2S1P1K1 10 40.00 2.26 15 19.44 22 0.01 24 32.04 48 0.01 10.09 22.7 45.4 
J3M1S1P1K1 52 79.87 466.47 35 47.39 68 0.13 61 86.61 136 0.13 21.86 49.19 98.37 
J3M2S1P1K1 47 80.85 25.39 21 28.84 40 0.02 37 53.53 106 0.02 13.57 30.53 61.07 
J4M1S1P1K1 59 90.68 1800 76 94.57 129 0.04 150 175.8 255 0.04 42.73 96.14 192.29 
J4M2S1P1K1 29 86.21 1800 40 52.75 108 0.04 76 99.20 180 0.04 24.22 54.50 108.99 
J5M1S1P1K1 197 97.46 1800 151 185.53 255 0.08 250 352.33 496 0.08 83.29 187.40 374.81 
J5M2S1P1K1 - - 1800 78 105.49 186 0.08 146 203.96 365 0.08 47.55 106.99 213.98 
J6M1S1P1K1 161 97.2 1800 213 283.43 387 0.12 377 535.71 739 0.12 126.65 284.96 569.93 
J6M2S1P1K1 - - 1800 104 143.73 283 0.12 190 275.35 560 0.13 64.65 145.46 290.93 

1 Note: (1) Column 2 is the minimum makespan of 50 instances for each test suite. ‘-’ represents that CPLEX could not find a feasible solution in 1800 s. (2) Each test suite 
contains 50 instances. Columns 5, 6, and 7 report the best, average, and worst max'C , respectively. Columns 9, 10, and 11 report the best, average, and worst maxC , 
respectively. (3) Columns 13, 14, and 15 report the average T , 9 / 4T , and 4.5T of 50 instances, respectively. 
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Table 6. Simulation results of CPLEX and the 2-approximation algorithm with one-job-overfull batches and a feasible schedule. 

Test Suite 
CPLEX SOL 1 SOL 

Makespan GAP 
(%) Run Time (s) Best AVG Worst Run Time (s) Best AVG Worst Run Time (s) 

J1M1S1P1K1 24 0 0.25 16 18.82 24 0 24 31.84 48 0 
J1M2S1P1K1 24 66.67 0.20 8 9.10 16 0 16 17.10 34 0 
J2M1S1P1K1 40 13.93 3.11 24 38.27 56 0 44 66.20 88 0 
J2M2S1P1K1 24 33.33 2.13 16 23.22 40 0 32 42.04 72 0 
J3M1S1P1K1 80 87.06 1800 64 89.41 120 0 112 159.53 224 0 
J3M2S1P1K1 64 87.5 38.34 40 61.96 96 0 72 109.96 160 0 
J4M1S1P1K1 200 96 306.73 136 186.67 232 0 240 337.73 432 0 
J4M2S1P1K1 144 95.83 1800 80 121.25 192 0 136 219.61 344 0 
J5M1S1P1K1 412 98.59 1800 264 374.12 456 0 480 679.06 848 0 
J5M2S1P1K1 - - 1800 160 245.49 336 0 296 453.02 656 0 
J6M1S1P1K1 - - 1800 424 569.10 744 0 744 1031.37 1360 0 
J6M2S1P1K1 - - 1800 232 343.22 512 0 416 633.57 944 0 

1 Note: When run time is labeled as 0, it was less than 10−2. 
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7. Conclusions and Future Works 

The paper analyzed the parallel batch scheduling problem of minimizing the makespan, where 
arbitrary sizes of scheduling jobs are allowed and machines have different capacities. Each machine 
can only deal with jobs whose sizes do not exceed that machine’s capacity. We developed an efficient 
4.5-approximation algorithm for this problem. The experimental results show that the algorithms can 
obtain a reasonable solution in a finite time. A 2-approximation algorithm is achieved under the 
particular circumstances of equivalent processing times. Computational experiments show that the 
fast algorithm can help to improve the efficiency of resource consumption and give researchers more 
choices to balance the quality of the solution and the running time in the parallel batch scheduling 
problem.  

Several important related directions for this problem are worth researching in the future. First 
of all, how do we improve the fast algorithm to get closer to the optimal solution in shortest time? In 
addition, jobs with release times are more common BPM problems in the manufacturing industry. 
How to develop a fast scheduling algorithm for this problem is an import direction. Finally, BPM 
problems with different service levels can be considered as well. 
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