

Appl. Sci. 2020, 10, 460; doi:10.3390/app10020460 www.mdpi.com/journal/applsci

Article

A Novel Fast Parallel Batch Scheduling Algorithm
for Solving the Independent Job Problem
Bin Zhang 1,2, Dawei Wu 3, Yingjie Song 2,*, Kewei Liu 1 and Juxia Xiong 4

1 School of Computer Science and Technology, Shandong Technology and Business University,
Yantai 264005, China; zhangb@sdtbu.edu.cn (B.Z.); liukewei0110@163.com (K.L.)

2 Shandong Co-Innovation Center of Future Intelligent Computing,
Shandong Technology and Business University, Yantai 264005, China

3 School of Traffic, Northeast Forestry University, Harbin 150040, China; wdw2017211666@nefu.edu.cn
4 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,

Guangxi University for Nationalities, Nanning 530006, China; xiongjuxia1107@163.com
* Correspondence: songjy@sdtbu.edu.cn; Tel.: +86-0535-690-3541

Received: 17 December 2019; Accepted: 06 January 2020; Published: 8 January 2020

Abstract: With the rapid economic development, manufacturing enterprises are increasingly using
an efficient workshop production scheduling system in an attempt to enhance their competitive
position. The classical workshop production scheduling problem is far from the actual production
situation, so it is difficult to apply it to production practice. In recent years, the research on machine
scheduling has become a hot topic in the fields of manufacturing systems. This paper considers the
batch processing machine (BPM) scheduling problem for scheduling independent jobs with
arbitrary sizes. A novel fast parallel batch scheduling algorithm is put forward to minimize the
makespan in this paper. Each of the machines with different capacities can only handle jobs with
sizes less than the capacity of the machine. Multiple jobs can be processed as a batch simultaneously
on one machine only if their total size does not exceed the machine capacity. The processing time of
a batch is determined by the longest of all the jobs processed in the batch. A novel and fast 4.5-
approximation algorithm is developed for the above scheduling problem. For the special case of all
the jobs having the same processing times, a simple and fast 2-approximation algorithm is achieved.
The experimental results show that fast algorithms further improve the competitive ratio.
Compared to the optimal solutions generated by CPLEX, fast algorithms are capable of generating
a feasible solution within a very short time. Fast algorithms have less computational costs.

Keywords: independent job sizes; fast scheduling algorithm; machine capacities; makespan;
parallel batch machines

1. Introduction

How to reduce the production cycle and improve the utilization rate of resources is an important
problem under the constraints of workshop production, such as delivery time, technical requirements
and resource status, etc. Most enterprises adopt workshop scheduling technology to solve this
problem. An effective scheduling optimization method can take advantage of many production
resources in the workshop. The research and application of a workshop scheduling optimization
method has become one of the basic contents of advanced manufacturing technology [1–3].

Batch processing machines (BPMs) are widely applied in many enterprises, for example, steel
casting, chemical and mineral processing, and so on [4–6]. BPMs scheduling problem is a hot topic in
workshop scheduling problem. In the traditional scheduling problem, each machine can only
process, at most, one job at a time [7]. However, BPMs can process a number of jobs simultaneously

Appl. Sci. 2020, 10, 460 2 of 19

as a batch and all jobs in a batch have the same processing time [8]. The processing time of one batch
is equal to the maximum processing time of all the jobs processed by the batch [9].

In this paper, we analyze the parallel batch processing machine scheduling problem where the
jobs have arbitrary size and the machines have different capacities. We give a set of n jobs

1 2{ , , ..., }nJ J J= and a set of m parallel batch machines 1 2{ , , , }mM M M= , and we let all the

jobs be released simultaneously (release time of job is 0). Let jp and js denote the processing time

and the size of job jJ ∈ (1, 2, ,j n=), respectively, where 0jp ≥ and 0js > . Machine iM
(1, 2, ,i m=) has a finite capacity iK . Without loss of generality, we assume 1 2 mK K K≤ ≤ ≤ and
j ms K≤ for each job jJ in order to ensure job jJ can be processed by at least one machine.

However, there might be j is K> for some jJ and iM . Machine iM (1, 2, ,i m=) can handle
multiple jobs at the same time, but the total size of these jobs cannot exceed iK . The longest
processing time of all jobs in a batch determines the processing time of a batch. The purpose of this
problem is to allot each job to a batch and to schedule the batch on the machine to minimize the

maximum completion time of the schedule, max max j jC C= , where jC represents the completion
time of job j in the schedule [10,11]. Using the notations proposed in [12,13], this problem can be

denoted as max| , , |j iP s p batch K C− .
The notations used in this paper are summarized in Table 1.

Table 1. Notations.

Notation Description
 set of jobs, 1 2{ , , ..., }nJ J J=

jJ jth job

jp processing time of job jJ

js size of job jJ

 set of machines, 1 2{ , , ..., }mM M M=

iM ith machine

iK capacities of iM

,i gB g th batch scheduled on ith machine

UB upper bound of makespan
LB lower bound of makespan

maxC makespan

Before we move on, let us introduce some useful notations and terminologies. Let
1{ | }i j i j iJ K s K−= ∈ < ≤ , and 1, 2, , , 1, 2,...,i m j n= = ; when 1i = , 0K was used, but it was

meaningless, so we set 0 0K = . It is possible that i φ= for some i . We have 1
m
i i== . Let =ja i

denote the index of a machine with the minimum capacity that can process the job j jJ ∈ , and then

jJ can be assigned to each machine in 1{ , , , }
j jj a a mM M M+= where 1 ja m≤ ≤ .

1, , ,
j ja a mM M M+ are called the golden machines for job jJ , j is the golden machines set, jJ is

called the golden job for jM ∈ , and all of the jobs that can be processed by iM are called the
golden jobs set for iM . In a scheduling process, the running time of the machine is equal to the total
processing time of batches scheduled on this machine.

The structure of the paper is as follows. Section 2 reviews the previous research in related areas.
Section 3 gives the definition of the research problem. In Section 4, a novel fast 4.5-approximation

algorithm is proposed for problem max| , , |j iP s p batch K C− . In Section 5, a fast 2-approximation

algorithm is proposed for problem max| , , , |j j iP s p p p batch K C= − . Section 6 designs several

Appl. Sci. 2020, 10, 460 3 of 19

computational experiments to show the effectiveness of fast algorithms. Finally, conclusions are
given in Section 7.

2. Literature Review

Since the 1980s, scholars have studied the job scheduling problem of parallel batch machines
extensively [1]. In this section, we review the results of research dealing with different job sizes and
minimization of the maximum completion time [14–20].

In the one-machine case of problem max| , , |j iP s p batch K C− , we denote max1| , , |js p batch B C− .

Uzsoy [21] proved that max1| , , |js p batch B C− is a strong NP-hard (non-deterministic polynomial)
problem, and presented four heuristics. Zhang et al. [22] also proposed a 1.75-approximation
algorithm for max1| , , |js p batch B C− . Dupont and Flipo presented a branch and bound method for

max1| , , |js p batch B C− . Dosa et al. [23] presented a 1.7-approximation algorithm for

max1| , , |js p batch B C− . Li et al. [24] presented a (2)ε+ -approximation algorithm for

max1| , , , |j jr s p batch B C− (the more general case where jobs have different release times), where ε is
a number greater than 0 and is arbitrarily small.

The special case of max| , , |j iP s p batch K C− is where all iK B= (B n<) is represented as

max| , , |jP s p batch B C− . Chang et al. [25] studied max| , , |jP s p batch B C− and provided an algorithm
that is based on the simulated annealing approach.

Dosa et al. [23] demonstrated that although the processing time for all jobs is the same (unless P
= NP), max| , , |jP s p batch B C− cannot be approximated to a ratio less than 2. Dosa et al. presented a

(2)ε+ -approximation algorithm. Cheng et al. [26] presented a 8/3-approximation algorithm for

max| , , |jP s p batch B C− with running time (log)O n n . Chung et al. [27] developed a mixed integer

programming model and some heuristic algorithms for max| , , , |j jP r s p batch B C− (the problem
where jobs have different release times). A 2-approximation algorithm for

max| , , , , |j j jP r s p p p batch B C= − (the special case of max| , , , |j jP r s p batch B C− where all jobs have the
same processing times) was given by Ozturk et al. [28]. Li [29] obtained a (2)ε+ -approximation
algorithm for max| , , , |j jP r s p batch B C− .

More recently, several research groups have focused on the scheduling problems on parallel
batch machines with different capacities and applications in many fields [30–41]. The special case of

max| , , |j iP s p batch K C− , where all 1js K≤ (i.e., all jobs can be assigned to any machine), is denoted

as 1 max| , , |j iP s K p batch K C≤ − . Costa et al. [30] studied 1 max| , , |j iP s K p batch K C≤ − and developed
a genetic algorithm for it. Wang and Chou [31] proposed a metaheuristic for

1 max| , , , |j j iP r s K p batch K C≤ − (the problem where jobs have different release times). Damodaran et
al. [32] proposed a PSO method for max| , , |j iP s p batch K C− . Jia et al. [33] presented a heuristic and a

metaheuristic for max| , , |j iP s p batch K C− . Wang and Leung [34] analyzed the problem

max| , 1, , |j j iP s p p batch K C= − where each job has its own unit processing time. They designed a 2-
approximation algorithm for the problem. They also obtained an algorithm with asymptotic
approximation ratio 3/2. Li [35] proposed a fast 5-approximation algorithm and a (2)ε+ -
approximation algorithm for max| , , |j iP s p batch K C− , but the presented (2)ε+ -approximation
algorithm has high time complexity when ε is small. Jia et al. [36] presented several heuristics for

max| , , , |j j iP r s p batch K C− (the problem where jobs have different release times) and evaluated the
validity of the heuristics by computational experiments. Other methods have also been proposed in
the literature [42–53].

In this paper, a novel fast 4.5-approximation algorithm was developed for problem
max| , , |j iP s p batch K C− , and we evaluate the algorithm performance via computational experiments.

We also provide a simple and fast 2-approximation algorithm for the case that all jobs have the same

Appl. Sci. 2020, 10, 460 4 of 19

processing time, (max| , , , |j j iP s p p p batch K C= −), improving upon and generalizing the results in
[54–57]. The approximation ratio of the 2-approximation algorithm in this paper is equal to the
presented algorithm in [26], but is now simpler to understand and easier to implement.

3. Mathematic Formulation of the Problem

In this section, we present the problem under consideration as a mixed integer linear
programming (MILP) model. First, the problem parameters and decision variables are given, and
then the model is provided. Table 2 shows the problem indices.

Table 2. Indices.

Indices Description
i index of machine, {1, 2,..., }i m=
j index of job, {1, 2,..., }j n=

l index of batch, {1, 2,..., }l n=

Table 3 shows the problem decision variables.

Table 3. Decision variables.

Decision Variables Description

jilx 1, if job jJ is assigned to the thl batch processed on machine iM ; 0, otherwise.

ily the processing time of thl batch processed on machine iM .

maxC makespan.

The research problem can be denoted as max| , , |j iP s p batch K C− . The mathematical formulation

of the research problem max| , , |j iP s p batch K C− is shown as follows:

max Minimize C , (1)

which is subject to

1 1
1, 1, 2, , ;

m n

jil
i l

x j n
= =

= = … (2)

1
, 1, 2, , ; 1, 2, , ;

n

j jil i
j
s x K i m l n

=

≤ = … = … (3)

, 1,2, , ; 1,2, , ; 1,2, , ; il j jily p x j n i m l n≥ = … = … = … (4)

max
1

, 1, 2, , ;
n

il
l

C y i m
=

≥ = … (5)

{0,1}, 1,2, , ; 1,2, , ; 1,2, , .jilx j n i m l n∈ = … = … = … (6)

The Objective Function (1) shows that our aim is to find a schedule to minimize the makespan
maxC . Constraint (2) is to make sure that each job is assigned exactly to one machine. Constraint (3)

guarantees that all batches are feasible; in other words, the total size of all jobs assigned to the batch
does not exceed the capacity of machine where the batch is scheduled. Constraint (4) indicates that
the processing time of a batch is not less than the processing time of the jobs in the batch. Constraint
(5) guarantees that the makespan of the schedule is not less than maximum load of all the machines.
In Constraint (6), the 0–1 variable jilx indicates whether the j th job is assigned into the l th batch
on machine iM (1)jilx = or not (0)jilx = .

Appl. Sci. 2020, 10, 460 5 of 19

4. 5-Approximation Algorithm for | , | maxP s p batch K Cj i−，

We denote the optimal makespan of the problem | , | maxP s p batch K Cj i−， as OPT . The main

focus of the research is to develop a fast scheduling model to get a minimized makespan as close to
OPT as possible.

To solve the problem | , | maxP s p batch K Cj i−， , we used the MBLPT (modified longest processing

time batch) rule [35], a modification of the BLPT (longest processing time batch) rule. For a given jobs
set i that can be assigned to machine iM , we apply the MBLPT rule, which sorts jobs to get '

i .

We build a batch ,1iB on machine iM , and then the rule repeatedly pops the first job from '
i and

assigns it to ,1iB until the sum of all the jobs assigned to ,1iB just exceeds the capacity of iM . Batch

,1iB is called the one-job-overfull batch. Once the one-job-overfull batch exists, a new batch should
be built on the same machine, unless the machine runs out of maximum completion time (maximum
completion time is in the initialization parameters of the algorithm). We repeat the above job
assignment procedure until the job list '

i is empty.
Let ,{ : 1,2, , }i i g iB g h= = denote the set of batches generated using the MBLPT rule to i′

and machine iM , and ih is the total number of batches scheduled on machine iM . Let ,()i gp B and

,()s i gp B denote the longest processing time (the processing time of batch ,i gB is equal to the longest

processing time of jobs on it) and the shortest processing time of the jobs in batch ,i gB , respectively,
such that ,1 ,2 ,() () ()

ii i i hp B p B p B≥ ≥ ≥ . The batches ,1 ,2 , 1, , ,
ii i i hB B B − are one-job-overfull batches,

while , ii h
B can be one-job-overfull or not. We have , , 1() ()s i g i gp B p B +≥ (1, 2, , 1ig h= −). The

Inequality (7) below (refer to [27]) is easy to prove.
1

, , , ,1
1
(() ()) () ().

i

i

h

i g s i g i h i
g

p B p B p B p B
−

=

− + ≤ (7)

By the Inequality (7), we have

Lemma 1.
1

, , ,1
1 1

() () ().
i ih h

i g s i g i
g g
p B p B p B

−

= =

≤ +

We now propose the 4.5-approximation algorithm for max| , , |j iP s p batch K C− . Similar
frameworks have been used in [58–62]. In [58], Ou et al. developed a 4/3 approximation algorithm to
solve classical scheduling problems with minimized maximum completion time on parallel machines
with processing set constraints. In [59], Li proposed a 9/4-approximation algorithm for

max| 1, , |j iP s p batch K C= − (the special case of max| , , |j iP s p batch K C− where all 1js =). The
algorithm to be described extends the previous research by involving non-identical job sizes.

We first run the 5-approximation algorithm for max| , , |j iP s p batch K C− . The algorithm

generates a feasible schedule with a maximum completion time of 5UB OPT≤ in 2(log)O n m n+
time. Let the minimum completion time / 5LB UB= . We have LB OPT UB≤ ≤ . We use the binary
search method to find the makespan of a feasible solution in the range of the [,]LB UB interval.

Firstly, set
2

LB UBT + =
, and then classify both the jobs and batches into long, short, and median.

A job jJ is long if / 2jp T> , median if / 4 / 2jT p T< ≤ , or short if / 4jp T≤ . Similarly, a batch

,i gB is long if ,() / 2i gp B T> , median if ,/ 4 () / 2i gT p B T< ≤ , or short if ,() / 4i gp B T≤ . Certainly, long
batches may contain median and short jobs, and median batches may contain short jobs. After
classification, we use the following SCMF-LPTJF (smallest capacity machine first processed and
longest processing time job first processed) procedure to search for a schedule with a makespan at
most 9 / 4T , which permits one-job-overfull batches. If our above operation fails, we will continue

Appl. Sci. 2020, 10, 460 6 of 19

searching for the upper half of the interval and set LB T= ; otherwise, we will continue searching for
the lower half of the interval, record OPT T= , and set UB T= . The binary search method is then
repeated in the new range of the [,]LB UB interval until LB UB≥ .

Algorithm 1. SCMF-LPTJF (smallest capacity machine first processed and longest processing time

job first processed)
Input: 1

m
i i== , T

Output: maxC —best found solution, RT —running time

1: 0Q φ= , AssignedJS φ= // denote the jobs have been assigned to batch as AssignedJS
2: for 1 i to m= do
3: Sort i according to the rule that processing time of jobs is not increased, denote '

i
4: end for
5: for 1 i to m= do
6: '

-1=i i iQ Q AssignedJS∪ −
7: Apply the MBLPT rule to iQ and iM , get ,{ : 1,2, , }i i g iB g h= =
8: Sort i according to the rule that processing time of batches is not increased, denote '

i
9: Denote long batches set, median batches set, and short batched set as LongBS ,

MedianBS , and ShortBS
10: LongBS φ= , MedianBS φ= , ShortBS φ=
11: for batch b in '

i do // classify batches into long, median and short.
12: if () / 2p b T> then

13: append b to LongBS
14: else if / 4 () / 2T p b T< ≤ then
15: append b to MedianBS

16: else

17: append b to ShortBS

18: end if

19: end for

20: if LongBS φ≠ then

21: max ()mLongBS Loax ngBS= // the longest processing time batch in LongBS

22: schedule maxLongBS on iM ; remove maxLongBS from '
i ; remove jobs assigned to

maxLongBS from iQ and add these jobs to AssignedJS
23: max= .RT LongBS p // max .LongBS p is the processing time of batch maxLongBS

24: end if

25: for batch b in MedianBS do

26: if . 9 / 4RT b p T+ ≤ then

27: schedule b on iM ; remove b from '
i ; remove jobs assigned to b from iQ

and add these jobs to AssignedJS
28: = + .RT RT b p // the processing time of batch b

29: end if

30: end for

31: for batch b in ShortBS do

Appl. Sci. 2020, 10, 460 7 of 19

32: if . 9 / 4RT b p T+ ≤ then

33: schedule b on iM ; remove b from '
i ; remove jobs assigned to b from iQ

and add these jobs to AssignedJS
34: = + .RT RT b p // the processing time of batch b

35: end if

36: end for
37: Update maxC // append the batches scheduled on iM to maxC
38: end for
39: return maxC , RT

Lemma 2. If OPT T≤ , then the SCMF-LPTJF algorithm will generates an optimal schedule for
max| , , |j iP s p batch K C− with one-job-overfull batches whose makespan is at most 9 / 4T .

Proof. Let Σ be an optimal schedule whose makespan is OPT . Let H be the set of long jobs and
median jobs. □

In Σ , each machine can process up to three median batches or one long batch and one median
batch. On the other hand, the SCMF-LPTJF program will allocate a long batch on the machine as
much as possible. After it assigns a long batch on a machine, this machine still has enough time (at
least 5 / 4T time) to handle at least two median batches. Note that the SCMF-LPTJF procedure forms
batches greedily. (It overfills each batch with the longest currently unassigned jobs.) Therefore, the
SCMF-LPTJF procedure allocates more processing times for long jobs and median jobs on the
machines with smaller capacities than Σ does. Equivalently, we claim that m

l
l i

jj H
p

=

∈ ∩ is the

lower limit of the overall processing time in a long working state, and the median job arranged on
machines 1, , ,i i mM M M+ in Σ , 1, 2, ,i m= . Hence, if OPT T≤ , then all long and median jobs
will be allocated by SCMF-LPTJF.

Therefore, if there is OPT T≤ , but there is still a job j when executing to the end of the SCMF-
LPTJF process, then job j must be a short job. When job j is assigned, all of machines

1, , ,
j ja a mM M M+ have a load greater than 2T . Let max ji a< be the largest index such that machine

maxiM has a load less than or equal to 2T . If all of the machines have load greater than 2T , then set

max 0i = . Therefore, all of machines
max max1 2, , ,i i mM M M+ + have load greater than 2T . There is room

on the machine
maxiM for scheduling any short job. Hence, by the rule of the SCMF-LPTJF procedure,

no short job from
max

1

i

i
i=
 can be assigned to machines

max max1 2, , ,i i mM M M+ + .

By Lemma 1, for max max1, 2, ,i i i m= + + , we have
1

, , ,1
1 1

() () () .
i ih h

s i g i g i
g g
p B p B p B T

−

= =

≥ − >
(8)

It follows that

, max
1 1max

1
.hm i

i g
i i g

m
j j ij B i i
p s K T

= + =

∈ = +
⋅ > ⋅ (9)

In Σ , all the short jobs in ,
1 1max

hm i

i g
i i g

B
= + =
 have to be processed on machines

max max1 2, , ,i i mM M M+ + . In

addition, we have also proved that the overall processing time
+1max

m

l
l i

jj H
p

=

∈ ∩
 of the planned long

and median jobs on machines
max max1 2, , ,i i mM M M+ + in Σ as a lower bound. Therefore, the above

inequality shows that Σ cannot make all of the jobs done in the T OPT≥ time, which is a
contradiction.

Appl. Sci. 2020, 10, 460 8 of 19

The algorithm performs a binary search within the range [,]LB UB . Finally, we will get a
schedule with one-job-overfull batches (Figure 1a) whose makespan is at most 9 / 4OPT . We can turn
it into a viable scheduling solution (Figure 1b), where the maximum completion time is 9 / 2OPT , as
follows: for each one-job-overfull batch, move the last packed job into a new batch and calculate the

new batch on the same machine. Since the iterative number could be 1
(log())n

jj
O p

= , then the

following theorems are obtained.

Theorem 1. There is a 4.5-approximation algorithm for max| , , |j iP s p batch K C− that runs in
2(log)sumO n mn p+ time, where 1

n
sum jj
p p

=
= .

(a)

(b)

Figure 1. Illustration of the 4.5-approximation algorithm. (a) The 4.5-approximation algorithm with
one-job-overfull batches. (b) The 4.5-approximation algorithm with a feasible schedule.

In order to achieve a strongly polynomial time algorithm, we use a technique described to
modify the above algorithm slightly. Therefore, the following theorems are obtained.

Theorem 2. There is a (4.5)ε+ -approximation algorithm for max| , , |j iP s p batch K C− that runs in
2(log(1/))O n mn ε+ time, where 0ε > can be made arbitrarily small.

5. A 2-Approximation Algorithm for max| , , , |j j iP s p p p batch K C= −

In this section, we study max| , , , |j j iP s p p p batch K C= − , i.e., the problem of minimizing the
makespan with equal processing times (jp p=), arbitrary job sizes (may exceed the processing
power of certain batches), and non-identical machine capacities.

The 2-approximation algorithm is called LIM (largest index machine first consider). It groups
the jobs in 1 1, , ,m m− (this ordering is crucial), respectively, into batches greedily. During the
run of the algorithm, iLoad represents the load on machine iM , i.e., the overall processing time of

Appl. Sci. 2020, 10, 460 9 of 19

the batches on iM , 1, 2, ,i m= . The algorithm dynamically maintains a variable x , which
represents the currently largest index such that x mLoad Load< . If there is no such index, then we can
set x m= . We can assign the next generated batch to machine xM .

Algorithm 2. LIM (largest index machine first consider)
Input: 1

m
i i==

Output: maxC —best found solution, RT —running time
1: AssignedJS φ= //the jobs have been assigned to any batch
2: for 1 i to m= do
3: 0iLoad = // the load on machine iM , equals to the overall processing time of the batches

on iM ,
4: end for
5: x=m
6: for 1i m to= do
7: if x m== and 0mload > then
8: x i=
9: end if
10: create new batch b , =i i AssignedJS−
11: for job j in i do
12: if . xb size K≤ then
13: assign job j to batch b
14: . . .b size b size j size= +
15: remove job from i and add it to AssignedJS
16: else
17: schedule b to xM
18: = .x xLoad Load b p+
19: initiate b
20: end if
21: end for
22: if b is not empty and . xb size K≤ then
23: while . xb size K≤ and 1 2 1|| || ||i i AssignedJS− − − is not empty do
24: get first job j from 1 2 1|| || ||i i AssignedJS− − −
25: assign job j to b
26: . . .b size b size j size= +
27: remove job j from 1 2 1|| || ||i i− − and add it to AssignedJS
28: end while
29: schedule b to xM
30: = .x xLoad Load b p+
31: end if
32: if x mLoad Load≥ then
33: if x i> then
34: x x i= −
35: else if x i== then
36: x m=
37: end if
38: end if
39: end for
40: for 1 i to m= do
41: for batch b in iM do

Appl. Sci. 2020, 10, 460 10 of 19

42: if . ib size K≥ then
43: create new batch 'b
44: pop the last job from b and assign it to 'b
45: schedule 'b to iM
46: ' .i iLoad Load b p= +
47: end if
48: end for
49: Update maxC // append the batches scheduled on iM to maxC
50: end for
51: return maxC , () , 1,2,3iRT max Load i m= = … .

Theorem 3. Algorithm LIM is a 2-approximation algorithm for max| , , , |j j iP s p p p batch K C= − .

Proof. Let 1Σ be the schedule with makespan 1SOL generated by LIM after Step 2. In 1Σ , all
batches can be processed at the same time as they are assigned to a machine. During the running of
the algorithm, the load on any machine is always less than or equal to the load on mM . Therefore,

mM finishes last in 1Σ . Let lastB be the last batch assigned to mM . Let 1{ , , , }l l mM M M+ be the
processing set of lastB , which can be defined as the largest size processing set of the job in lastB . In

1Σ , let ()lastS B denote the start time of lastB . We have: 1 ()lastSOL S B p= + . □

Since we assigned lastB to mM , at that moment x m= must hold. Hence, machines

1, , ,l l mM M M+ are busy in the time interval (0, ())lastS B . All the batches allocated to machines

1, , ,l l mM M M+ before ()lastS B are one-job-overfull batches. All jobs in these batches, together with
the largest size job in lastB , must be processed on machines 1, , ,l l mM M M+ in any feasible schedule.
Hence, we get ()lastOPT S B p≥ + . So we can draw the conclusion that 1SOL OPT≤ .

For a feasible schedule with makespan SOL generated by LIM, we have 12 2SOL SOL OPT≤ ≤ .

6. Computational Experiments

6.1. Experimental Environment

For the performance evaluation of the 4.5-approximation and 2-approximation algorithms, all
the instances are generated by a random algorithm, as in the papers [63–68]. In the process of the
instances generation, five factors affecting the solution of the problem are determined: the number of
jobs, the number of machines, the variation in job sizes, the variation in job processing time, and the
variation in machine capacities [69–75].

The experiment is divided into two parts: (1) the 4.5-approximation algorithm is compared with
the CPLEX result. (2) The 2-approximation algorithm is compared to CPLEX. The 4.5-approximation
algorithm and 2-approximation algorithm were coded in C# and the CPLEX was programed by OPL
(Optimization Programming Language), compiled, and run with the IBM ILOG CPLEX Optimization
Studio 12.5.1.0 (Education Version). All the algorithms were run on the same machine (Win10, Intel
(R) i7-4790, 16 GB).

First, we set the number of machines to two or four, and the capacity of each machine is
represented by a uniform integer [10,40]. Then, random problem instances with number of jobs
equals to 10, 20, 50, 100, 200, and 300 are generated, and each job processing time jP is generated by
random sampling from a uniform distribution [1,10]. The factor settings of the experiment are
summarized in Table 4.

Appl. Sci. 2020, 10, 460 11 of 19

Table 4. Factors setting of the experiment.

Factors Levels
Number of jobs (n) 10, 20, 50, 100, 200, 300
Number of machines (m) 2, 4
Size of jobs (s) [1,10], [11, max()]iK
Processing time of jobs (P) [1,10]
Capacity of machines (K) [10,40]

We combine the parameters and randomly generate 50 instances for each combination (a test
suite). Each test suite is denoted by a code. For instance, a test suite with 50 jobs and two machines is
denoted by J3M1S1P1K1.

6.2. Comparison of 4.5-Approximation Algorithm and CPLEX

Here, a CPLEX algorithm is used to solve the MILP model given in Section 3, and we compare
the CPLEX algorithm with the results of the 4.5-approximation algorithm. CPLEX always gives the
optimal solution, but it cannot give the optimal solution for all instances even after operating several
hours. Therefore, we set an upper execution time 1800s for CPLEX, and the best-known solution was
compared. The job size and machine capacity distribution as shown in Figure 2.

Figure 2. Job size and machine capacity distribution.

Regarding the 4.5-approximation algorithm, LB and UB are initialized as follows:
max()jLB P=

1

n
jj

UB P
=

= .
(10)

Figure 3 shows the result of test suite J1M1S1P1K1.

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Jo
b

siz
e/

 M
ac

hi
ne

 ca
pa

cit
y

Test-suite No.

Job Size and Machine Capacity Distribution Job Size

Appl. Sci. 2020, 10, 460 12 of 19

(a)

(b)

(c)

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ak

es
pa

n

Test-suite No.

Makespan
CPLEX
C'max
Cmax

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ak

es
pa

n

Test-suite No.

Makespan
C'max
T
9T/4

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ak

es
pa

n

Test-suite No.

Makespan
Cmax
T
4.5T

Appl. Sci. 2020, 10, 460 13 of 19

(d)

Figure 3. Results of J1M1S1P1K1. (a) Comparison makespan of CPLEX and the 4.5-approximation
algorithm with one-job-overfull batches and the 4.5-approximation algorithm with a feasible schedule.
(b) Comparison makespan of the 4.5-approximation algorithm with one-job-overfull batches and
9 / 4T . (c) Comparison makespan of the 4.5-approximation algorithm with a feasible schedule and
4.5T. (d) Comparison running time of CPLEX and the 4.5-approximation algorithm with one-job-
overfull batches and the 4.5-approximation algorithm with a feasible schedule.

max'C is the makespan of the 4.5-approximation algorithm with one-job-overfull batches and

maxC is the makespan of 4.5-approximation algorithm with a feasible schedule. Figure 3a shows the
makespan of the 4.5-approximation algorithm with one-job-overfull batches and the algorithm with
a feasible schedule. Figure 3b,c shows that the 4.5-approximation algorithm substantiates the
feasibility of this research method:

max' 9 / 4C T≤

max 4.5C T≤ .

Figure 3d shows that the run time of the 4.5-approximation algorithm is clearly better than
CPLEX. Table 5 shows the results of all test suites. Though CPLEX is the best solver for linear
programming problems, it cannot give an optimal solution for a long time, so we terminated CPLEX
after running for 1800 s and used the best integer for comparison.

The results illustrate that the 4.5 approximation algorithm is more effective than CPLEX in any
scale test-suite. For the small-scale test-suite (10 jobs and two machines), the best solution obtained
by the 4.5-approximation algorithm is closest to the CPLEX best solution. For the medium-scale and
large-scale test-suites, the average result of the 4.5-approximation algorithm is no bigger than 4.5T .

6.3. Comparison of 2-Approximation Algorithm (LIM) and CPLEX

For the problem max| , , , |j iP s p p p batch K C= − , minimizing the makespan with equal running
times, arbitrary job sizes (which may exceed the processing power of certain batches), and different
machine capacities should be the solution. The running time of jobs was set to a default value of 8.
Then, the LB and UB are denoted as

8LB =
*8UB n= .

Table 6 show the experimental results given by the CPLEX and the LIM algorithm for all the test
suites. Column SQL-AVG (the average value of SQL) reports the average makespan obtained using
the LIM algorithm. Compared with the CPLEX makespan, the LIM algorithm can obtain the efficient
solution in only little running time (Column Run Times).

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ru
n

tim
e(

s)

Test-suite No.

Algorithm Run Time CPLEX
4.5 One-Job-Overfull
4.5 Feasible Schedule

Appl. Sci. 2020, 10, 460 14 of 19

Table 5. Simulation results of CPLEX and the 4.5-approximation algorithm with one-job-overfull batches and a feasible schedule.

Test Suite
CPLEX max'C maxC

T 9 / 4T 4.5T
Makespan GAP

(%)
Run

Time (s) Best AVG Worst Run
Time(s) Best AVG Worst Run

Time (s)
J1M1S1P1K1 9 0 0.02 9 14.92 21 0.02 10 23.23 34 0.02 9.49 21.35 42.71
J1M2S1P1K1 8 0 0.09 9 13.02 22 0.02 9 19.06 36 0.02 9.63 21.66 43.32
J2M1S1P1K1 19 42.11 2.10 17 21.62 27 0.01 30 35.76 51 0.01 10.26 23.10 46.19
J2M2S1P1K1 10 40.00 2.26 15 19.44 22 0.01 24 32.04 48 0.01 10.09 22.7 45.4
J3M1S1P1K1 52 79.87 466.47 35 47.39 68 0.13 61 86.61 136 0.13 21.86 49.19 98.37
J3M2S1P1K1 47 80.85 25.39 21 28.84 40 0.02 37 53.53 106 0.02 13.57 30.53 61.07
J4M1S1P1K1 59 90.68 1800 76 94.57 129 0.04 150 175.8 255 0.04 42.73 96.14 192.29
J4M2S1P1K1 29 86.21 1800 40 52.75 108 0.04 76 99.20 180 0.04 24.22 54.50 108.99
J5M1S1P1K1 197 97.46 1800 151 185.53 255 0.08 250 352.33 496 0.08 83.29 187.40 374.81
J5M2S1P1K1 - - 1800 78 105.49 186 0.08 146 203.96 365 0.08 47.55 106.99 213.98
J6M1S1P1K1 161 97.2 1800 213 283.43 387 0.12 377 535.71 739 0.12 126.65 284.96 569.93
J6M2S1P1K1 - - 1800 104 143.73 283 0.12 190 275.35 560 0.13 64.65 145.46 290.93

1 Note: (1) Column 2 is the minimum makespan of 50 instances for each test suite. ‘-’ represents that CPLEX could not find a feasible solution in 1800 s. (2) Each test suite
contains 50 instances. Columns 5, 6, and 7 report the best, average, and worst max'C , respectively. Columns 9, 10, and 11 report the best, average, and worst maxC ,
respectively. (3) Columns 13, 14, and 15 report the average T , 9 / 4T , and 4.5T of 50 instances, respectively.

Appl. Sci. 2020, 10, 460 15 of 19

Table 6. Simulation results of CPLEX and the 2-approximation algorithm with one-job-overfull batches and a feasible schedule.

Test Suite
CPLEX SOL 1 SOL

Makespan GAP
(%) Run Time (s) Best AVG Worst Run Time (s) Best AVG Worst Run Time (s)

J1M1S1P1K1 24 0 0.25 16 18.82 24 0 24 31.84 48 0
J1M2S1P1K1 24 66.67 0.20 8 9.10 16 0 16 17.10 34 0
J2M1S1P1K1 40 13.93 3.11 24 38.27 56 0 44 66.20 88 0
J2M2S1P1K1 24 33.33 2.13 16 23.22 40 0 32 42.04 72 0
J3M1S1P1K1 80 87.06 1800 64 89.41 120 0 112 159.53 224 0
J3M2S1P1K1 64 87.5 38.34 40 61.96 96 0 72 109.96 160 0
J4M1S1P1K1 200 96 306.73 136 186.67 232 0 240 337.73 432 0
J4M2S1P1K1 144 95.83 1800 80 121.25 192 0 136 219.61 344 0
J5M1S1P1K1 412 98.59 1800 264 374.12 456 0 480 679.06 848 0
J5M2S1P1K1 - - 1800 160 245.49 336 0 296 453.02 656 0
J6M1S1P1K1 - - 1800 424 569.10 744 0 744 1031.37 1360 0
J6M2S1P1K1 - - 1800 232 343.22 512 0 416 633.57 944 0

1 Note: When run time is labeled as 0, it was less than 10−2.

Appl. Sci. 2020, 10, 460 16 of 19

Appl. Sci. 2020, 10, 460; doi:10.3390/app10020460 www.mdpi.com/journal/applsci

7. Conclusions and Future Works

The paper analyzed the parallel batch scheduling problem of minimizing the makespan, where
arbitrary sizes of scheduling jobs are allowed and machines have different capacities. Each machine
can only deal with jobs whose sizes do not exceed that machine’s capacity. We developed an efficient
4.5-approximation algorithm for this problem. The experimental results show that the algorithms can
obtain a reasonable solution in a finite time. A 2-approximation algorithm is achieved under the
particular circumstances of equivalent processing times. Computational experiments show that the
fast algorithm can help to improve the efficiency of resource consumption and give researchers more
choices to balance the quality of the solution and the running time in the parallel batch scheduling
problem.

Several important related directions for this problem are worth researching in the future. First
of all, how do we improve the fast algorithm to get closer to the optimal solution in shortest time? In
addition, jobs with release times are more common BPM problems in the manufacturing industry.
How to develop a fast scheduling algorithm for this problem is an import direction. Finally, BPM
problems with different service levels can be considered as well.

Author Contributions: Methodology—Y.S. and B.Z., Data analysis—B.Z. and D.W., Writing—Original Draft
Y.S., D.W. and K.L., Writing—Edit and Review, B.Z., Y.S., D.W., K.L. and J.X., Visualization—J.X., Funding
acquisition—B.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the CERNET Innovation Project (NGII20190605), High Education Science
and Technology Planning Program of Shandong Provincial Education Department under Grant (J18KA340,
J18KA385), National Natural Science Foundation of China (61976125, 61772319, 61976124, 61771087, 51605068),
A Project of Shandong Province Higher Educational Science and Technology Program (No.J16LN51), the
Graduate science and technology innovation fund of Shandong Technology and Business University (2018yc038),
Yantai Key Research and Development Program (2019XDHZ081).

Acknowledgments: We thank the anonymous referees for their constructive comments, which helped to
improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Marnix, K.; Van den Akker, M.; Han, H. Identifying and exploiting commonalities for the job-shop
scheduling problem. Comput. Oper. Res. 2011, 38, 1556–1561.

2. Xue, Y.; Xue, B.; Zhang, M. Self-adaptive particle swarm optimization for large-scale feature selection in
classification. ACM Trans. Knowl. Discov. Data 2019, 13, 50.

3. Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient scheduling in manufacturing companies: A review
and research framework. Eur. J. Oper. Res. 2015, 248, 744–757.

4. Deng, W.; Xu, J.; Zhao, H.M. An improved ant colony optimization algorithm based on hybrid strategies
for scheduling problem. IEEE Access 2019, 7, 20281–20292.

5. Liao, C.J.; Liao, L.M. Improved MILP models for two-machine flowshop with batch processing machines.
Math. Comput. Model. 2008, 48, 1254–1264.

6. Chang, P.Y. Heuristics to minimize makespan of parallel batch processing machines. Int. J. Adv. Manuf.
Technol. 2008, 37, 1005–1013.

7. Drozdowski, M. Classic scheduling theory. In Scheduling for Parallel Processing; Springer: London, UK, 2009;
pp. 55–86.

8. Deng, W.; Zhao, H.; Yang, X.; Xiong, J.; Sun, M.; Li, B. Study on an improved adaptive PSO algorithm for
solving multi-objective gate assignment. Appl. Soft Comput. 2017, 59, 288–302.

9. Guo, S.K.; Liu, Y.Q.; Chen, R.; Sun, X.; Wang, X. Improved SMOTE algorithm to deal with imbalanced
activity classes in smart homes. Neural Process. Lett. 2019, 50, 1503–1526.

10. Li, X.; Xie, Z.; Wu, J.; Li, T. Image encryption based on dynamic filtering and bit cuboid operations
Complexity 2019, 2019, 7485621.

11. Deng, W.; Zhao, H.M.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in
solving complex optimization problems. Soft Comput. 2017, 21, 4387–4398.

Appl. Sci. 2020, 10, 460 17 of 19

12. Kim, S.; Kim, J.K. A method to construct task scheduling algorithms for heterogeneous multi-core systems.
IEEE Access 2019, 7, doi:10.1109/ACCESS.2019.2944238.

13. Leung, Y.T.; Li, C.L. Scheduling with processing set restrictions: A survey. Int. J. Prod. Econ. 2008, 116, 251–
262.

14. Su, J.; Sheng, Z.; Leung, V.C.M.; Chen, Y. Energy efficient tag identification algorithms for RFID: Survey,
motivation and new design. IEEE Wirel. Commun. 2019, 67, 118–124.

15. Luo, J.; Chen, H.; Heidari, A.A.; Xu, Y.; Zhang, Q.; Li, C. Multi-strategy boosted mutative whale-inspired
optimization approaches. Appl. Math. Model. 2019, 73, 109–123.

16. Fu, H.; Wang, M.; Li, P.; Jiang, S.; Hu, W.; Guo, X.; Cao, M. Tracing knowledge development trajectories of
the internet of things domain: A main path analysis. IEEE Trans. Ind. Inform. 2019, 15,
doi:10.1109/TII.2019.2929414.

17. Su, J.; Sheng, Z.; Liu, A.X.; Han, Y.; Chen, Y. A group-based binary splitting algorithm for UHF RFID anti-
collision systems. IEEE Trans. Commun. 2019, doi:10.1109/TCOMM.2019.2952126.

18. Liu, Y.; Yi, X.; Chen, R.; Hai, Z.; Gu, J. Feature extraction based on information gain and sequential pattern
for English question classification. IET Softw. 2018, 12, 520–526.

19. Yu, H.; Zhao, N.; Wang, P.; Chen, H.; Li, C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model.
2020, 77, 1201–1215.

20. Li, H.; Gao, G.; Chen, R.; Ge, X.; Guo, S.; Hao, L.Y. The influence ranking for testers in bug tracking systems.
International. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 93–113.

21. Uzsoy. R. Scheduling a single batch processing machine with non-identical job sizes. Int. J. Prod. Res. 1994,
32, 1615–1635.

22. Zhang, G.; Cai, X.; Lee, C.Y.; Wong, C. Minimizing makespan on a single batch processing machine with
nonidentical job sizes. Naval Res. Logist. 2001, 48, 226–240.

23. Dosa, G.; Tan, Z.; Tuza, Z.; Yan, Y.; Lányi, C.S. Lányi. Improved bounds for batch scheduling with
nonidentical job sizes. Naval Res. Logist. 2014, 61, 351–358.

24. Li, S.; Li, G.; Wang, X.; Liu, Q. Minimizing makespan on a single batching machine with release times and
non-identical job sizes. Oper. Res. Lett. 2005, 33, 157–164.

25. Chang, P.Y.; Damodaran, P.; Melouk, S. Minimizing makespan on parallel batch processing machines. Int.
J. Prod. Res. 2004, 42, 4211–4220.

26. Cheng, B.; Yang, S.; Hu, X.; Chen, B. Minimizing makespan and total completion time for parallel batch
processing machines with non-identical job sizes. Appl. Math. Model. 2012, 36, 3161–3167.

27. Chung, S.; Tai, Y.; Pearn, W. Minimisingmakespan on parallel batch processing machines with non-
identical ready time and arbitrary job sizes. Int. J. Prod. Res. 2009, 47, 5109–5128.

28. Ozturk, O.; Espinouse, M.L.; Mascolo, M.D.; Gouin, A. Makespanminimisation on parallel batch processing
machines with non-identical job sizes and release dates. Int. J. Prod. Res. 2012, 50, 1–14.

29. Li, S. Makespan minimization on parallel batch processing machines with release times and job sizes. J.
Softw. 2012, 7, 1203–1210.

30. Costa, A.; Cappadonna, F.A.; Fichera, S. A novel genetic algorithm for the hybrid flow shop scheduling
with parallel batching and eligibility constraints. Int. J. Adv. Manuf. Technol. 2014, 75, 833–847.

31. Wang, H.M.; Chou, F.D. Solving the parallel batch-processing machines with different release times, job
sizes, and capacity limits by metaheuristics. Expert Syst. Appl. 2010, 37, 1510–1521.

32. Damodaran, P.; Diyadawagamage, D.A.; Ghrayeb, O.; Vélez-Gallego, M.C. A particle swarm optimization
algorithm for minimizing makespan of nonidentical parallel batch processing machines. Int. J. Adv. Manuf.
Technol. 2012, 58, 1131–1140.

33. Jia, Z.H.; Li, K.; Leung. J.Y.T. Effective heuristic for makespan minimization in parallel batch machines with
non-identical capacities. Int. J. Prod. Econ. 2015, 169, 1–10.

34. Wang, J.Q.; Leung, J.Y.T. Scheduling jobs with equal-processing-time on parallel machines with non-
identical capacities to minimize makespan. Int. J. Prod. Econ. 2014, 156, 325–331.

35. Li, S. Approximation algorithms for scheduling jobs with release times and arbitrary sizes on batch
machines with non-identical capacities. Eur. J. Oper. Res. 2017, 263, 815–826.

36. He, Z.; Shao, H.D.; Zhang, X.Y.; Cheng, J.S.; Yang, Y. Improved deep transfer auto-encoder for fault
diagnosis of gearbox under variable working conditions with small training samples. IEEE Access 2019, 7,
115368–115377.

37. Zhao, H.M.; Liu, H.D.; Xu, J.J.; Deng, W. Performance prediction using high-order differential
mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Trans. Instrum.
Meas. 2019, doi:10.1109/TIM.2019.2948414.

38. Deng, X.; Feng, H.; Li, G.; Shi, B. A PTAS for semiconductor burn-in scheduling. J. Comb. Optim. 2005, 9, 5–
17.

Appl. Sci. 2020, 10, 460 18 of 19

39. Liu, R.; Wang, H.; Yu. X.M. Shared-nearest-neighbor-based clustering by fast search and find of density
peaks. Inf. Sci. 2018, 450, 200–226.

40. Hu, B.; Wang, H.; Yu, X.; Yuan, W.; He, T. Sparse network embedding for community detection and sign
prediction in signed social networks. J. Ambient Intell. Humaniz. Comput. 2019, 10, 175–186.

41. Zhao, H.M.; Zheng, J.J.; Xu, J.J.; Deng, W. Fault diagnosis method based on principal component analysis
and broad learning system. IEEE Access 2019, 7, 99263–99272.

42. Xu, Y.; Chen, H.; Heidari, A.A.; Luo, J.; Zhang, Q.; Zhao, X.; Li, C. An efficient chaotic mutative moth-flame-
inspired optimizer for global optimization tasks. Expert Syst. Appl. 2019, 129, 135–155.

43. Su, J.; Sheng, Z.; Xie, L.; Li, G.; Liu, A.X. Fast splitting based tag identification algorithm for anti-collision
in UHF RFID system. IEEE Trans. Commun. 2019, 67, 2527–2538.

44. Liu, W.; Li, H.; Zhu, H.; Xu, P. Properties of a steel slag-permeable asphalt mixture and the reaction of the
steel slag-asphalt interface. Materials 2019, 12, 3603.

45. Zhou, J.; Du, Z.; Yang, Yang, Z.; Xu, Z. Dynamic parameters optimization of straddle-type monorail
vehicles based multiobjective collaborative optimization algorithm. Veh. Syst. Dyn. 2019, 41, 1–21.

46. Li, T.; Shi, J.; Li, X.; Wu, J.; Pan, F. Image encryption based on pixel-level diffusion with dynamic filtering
and dna-level permutation with 3D Latin cubes. Entropy 2019, 21, 319.

47. Wang, Z.; Pu, J.; Cao, L.; Tan, J. A parallel biological optimization algorithm to solve the unbalanced
assignment problem based on DNA molecular computing. Int. J. Mol. Sci. 2015, 16, 25338–25352.

48. Kang, L.; Zhao, L.; Yao, S.; Duan, C. A new architecture of super-hydrophilic beta-SiAlON/graphene oxide
ceramic membrane for enhanced anti-fouling and separation of water/oil emulsion. Ceram. Int. 2019, 45,
16717–16721.

49. Liu, Y.; Mu, Y.; Chen, K.; Li, Y.; Guo, J. Daily activity feature selection in smart homes based on pearson
correlation coefficient. Neural Process. Lett. 2020, doi:10.1007/s11063-019-10185-8.

50. Liu, G.; Liu, D.; Liu, J.; Gao, Y.; Wang, Y. Asymmetric temperature distribution during steady stage of flash
sintering dense zirconia. J. Eur. Ceram. Soc. 2018, 38, 2893–2896.

51. Ren, Z.; Skjetne, R.; Jiang, Z.; Gao, Z.; Verma, A.S. Integrated GNSS/IMU hub motion estimator for offshore
wind turbine blade installation. Mech. Syst. Signal Process. 2019, 123, 222–243.

52. Chen, H.; Jiao, S.; Heidari, A.A.; Wang, M.; Chen, X.; Zhao, X. An opposition-based sine cosine approach
with local search for parameter estimation of photovoltaic models. Energy Convers. Manag. 2019, 195, 927–
942.

53. Liu, D.; Cao, Y.; Liu, J.; Gao, Y.; Wang, Y. Effect of oxygen partial pressure on temperature for onset of flash
sintering 3YSZ. J. Eur. Ceram. Soc. 2018, 38, 817–820.

54. Wang, H.; Song, Y.Q.; Wang, L.T.; Hu, X.H. Memory model for web ad effect based on multi-modal
features. J. Assoc. Inf. Sci. Technol. 2019, 4, 1–14.

55. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation
strategy for global optimization. Inf. Sci. 2019, 492, 181–203.

56. Chen, R.; Guo, S.K.; Wang, X.Z.; Zhang, T.L. Fusion of multi-RSMOTE with fuzzy integral to classify bug
reports with an imbalanced distribution. IEEE Trans. Fuzzy Syst. 2019, 27, doi:10.1109/TFUZZ.
2019.2899809.

57. Heidari, A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm
and applications. Future Gener. Comput. Syst. 2019, 97, 849–872.

58. Ou, J.; Leung, J.Y.T.; Li, C.L. Scheduling parallel machines with inclusive processing set restrictions. Naval
Res. Logist. 2008, 55, 328–338.

59. Li, S. Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to
minimize makespan. Eur. J. Oper. Res. 2017, 260, 12–20.

60. Fu, H.; Manogaran, G.; Wu, K.; Cao, M.; Jiang, S.; Yang, A. Intelligent decision-making of online shopping
behavior based on internet of things. Int. J. Inf. Manag. 2019, 50, doi:10.1016/j.ijinfomgt.2019.03.010.

61. Li, T.; Hu, Z.; Jia, Y.; Wu, J.; Zhou, Y. Forecasting crude oil prices using ensemble empirical mode
decomposition and sparse Bayesian learning. Energies 2018, 11, 1882.

62. Wang, Z.; Ren, X.; Ji, Z.; Huang, W.; Wu, T. A novel bio-heuristic computing algorithm to solve the
capacitated vehicle routing problem based on Adleman–Lipton model. Biosystems 2019, 184, 103997.

63. Ham, A.; Fowler, J.W.; Cakici, E. Constraint programming approach for scheduling jobs with release times,
non-identical sizes, and incompatible families on parallel batching machines. IEEE Trans. Semicond. Manuf.
2017, 30, 500–507.

64. Sun, F.R.; Yao, Y.D.; Li, G.Z.; Liu, W. Simulation of real gas mixture transport through aqueous nanopores
during the depressurization process considering stress sensitivity. J. Pet. Sci. Eng. 2019, 178, 829–837.

65. Deng, W.; Xu, J.; Song, Y.; Zhao, H. An effective improved co-evolution ant colony optimization algorithm
with multi-strategies and its application. Int. J. Bio-Inspired Comput. 2019.

Appl. Sci. 2020, 10, 460 19 of 19

66. Wang, Z.; Ji, Z.; Wang, X.; Wu, T.; Huang, W. A new parallel DNA algorithm to solve the task scheduling
problem based on inspired computational model. BioSystems 2017, 162, 59–65.

67. Wu, J.; Shi, J.; Li, T. A novel image encryption approach based on a hyperchaotic system, pixel-level filtering
with variable kernels, and DNA-level diffusion. Entropy 2020, 22, 5.

68. Peng, Y.; Lu, B.L. Discriminative extreme learning machine with supervised sparsity preserving for image
classification. Neurocomputing 2017, 261, 242–252.

69. Xu, J.; Chen, R.; Deng, W.; Zhao, H. An infection graph model for reasoning of multiple faults in software.
IEEE Access 2019, 7, 77116–77133.

70. Zhou, J.; Du, Z.; Yang, Z.; Xu, Z. Dynamics study of straddle-type monorail vehicle with single-axle bogies
based full-scale rigid-flexible coupling dynamic model. IEEE Access 2019, 7, 2169–3536.

71. Shao, H.; Cheng, J.; Jiang, H.; Yang, Y.; Wu, Z. Enhanced deep gated recurrent unit and complex wavelet
packet energy moment entropy for early fault prognosis of bearing. Knowl. Based Syst. 2019,
doi:10.1016/j.knosys.2019.105022.

72. Li, T.; Yang, M.; Wu, J.; Jing, X. A novel image encryption algorithm based on a fractional-order
hyperchaotic system and DNA computing. Complexity 2017, 2017, 9010251.

73. Zhao, H.; Zheng, J.; Deng, W.; Song, Y. Semi-supervised broad learning system based on manifold
regularization and broad network. IEEE Trans. Circuits Syst. I Regul. Pap. 2019,
doi:10.1109/TCSI.2019.2959886,2019.

74. Li, T.; Zhou, Y.; Li, X.; Wu, J.; He, T. Forecasting daily crude oil prices using improved CEEMDAN and
ridge regression-based predictors. Energies 2019, 12, 3603.

75. Liu, Y.Q.; Wang, X.X.; Zhai, Z.G.; Chen, R.; Zhang, B.; Jiang, Y. Timely daily activity recognition from
headmost sensor events. ISA Trans. 2019, 94, 379–390.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

