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Abstract: This paper proposes a synthetic approach to design and implement a two-degree of
freedom tuned mass damper (2DOFs TMD), aimed at damping bending and torsional modes of
bridge decks (it can also be applied to other types of bridges like cable-stayed bridges to realize the
energy dissipation). For verifying the effectiveness of the concept model, we cast the parameter
optimization of the 2DOFs TMDs conceptual model as a control problem with decentralized static
output feedback for minimizing the response of the bridge deck. For designing the expected modes
of the 2DOFs TMDs, the graphical approach was introduced to arrange flexible beams properly
according to the exact constraints. Based on the optimized frequency ratios, the dimensions of 2DOF
TMDs are determined by the compliance matrix method. Finally, the mitigation effect was illustrated
and verified by an experimental test on the suspension bridge mock-up. The results showed that the
2DOFs TMD is an effective structural response mitigation device used to mitigate the response of
suspension bridges. It was also observed that based on the proposed synthetic approach, 2DOFs
TMD parameters can be effectively designed to realize the target modes control.
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1. Introduction

With the tendency to use longer spans, the damping of modern suspension bridges is seriously
reduced. Complex vibration problems follow, such as wind-induced vibration, human-induced
vibration, cable-structure interactions and flutter instabilities [1–4]. It is admitted that the oversensitivity
to dynamic excitation of suspension bridges is associated with the very low structural damping in the
global bridge modes [5,6]. Therefore, the dissipation of the vibration energy generated by the dynamic
loadings is a central issue in their design. At present, the use of damping systems such as tuned mass
damper (TMD) [7], viscous dampers [8,9], or active tendon control [10] is a classical way to alleviate the
vibrations in structures. This study aims at the design of multi-degree of freedom TMD for vibration
damping of a suspension bridge deck.

Considering their simplicity and effectiveness, tuned mass dampers have been widely used in
bridges such as the London Millenium bridge, for damping both lateral and vertical vibrations of the
deck. Since Frahm et al. proposed the fundamental theory, TMDs have seen numerous applications
in civil engineering [11–13]. Thus, Ben Mekki and Bourquin [14,15] proposed a new semi-active
electromagnetic TMD of pendulum type to damp the torsional mode of an evolving bridge mock-up.
Their studies showed that the tuned pendulum damper (TPD) is very effective in vibration damping,
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qualitatively and quantitatively confirming the theoretical predictions. However, the TMDs can only
control single mode and easy detune, which limits their further development. For the robustness of
vibration control and targeting several vibration modes, the multiple tuned mass dampers (MTMDs)
has been proposed, and its performance is more effective as compared to the single TMD. The superior
effectiveness of the MTMDs is able to control almost any type of vibration in civil structures [16].
The MTMDs is used to damp suspension bridges for several purposes. In some studies, the MTMDs
are used to the suppression of buffeting, flutter or increasing the critical flutter wind speed [17,18].
Other studies consider MTMDs for alleviating pedestrian- and jogger-induced vibration [19–22] or
traffic-induced vibration [23–26].

Generally, the weight of a TMD is limited to 1–3% of the structure weight. Hence, as the number
of targeted modes increases, a large number of TMDs will increase the burden on the primary system
and limit the damping performance (called weight penalty). To avoid such a penalty, in our previous
study [27], we proposed to design a two-degree of freedom TMD, where the original mass of TMD is
redistributed in such a way that the TMD has a bending mode and a torsional mode. In this design
the resonance frequencies and the modal damping of the two modes can be tuned independently.
In addition, Zuo and Nayfeh have proposed a multiple degrees of freedom TMD (MDOFs TMD),
and experimentally demonstrated that the MDOFs TMD can damp six modes of the primary structure.
They also showed that a MDOFs TMD can be used to attain better vibration suppression for single
mode vibration of a primary structure [28]. Jang et al. described a novel method for selecting the
parameters of a 2DOFs TMD with translational and rotational degrees of freedom [29]. Ma and
Yang et al. presented a design of a multi-DOFs TMD to alleviate the dominant mode of the work
piece/fixture assembly in milling [30–32].

As the DOF increases, by only selecting the appropriate DOFs and tuned frequencies, the TMDs
can reach the best vibration control of the primary structure. Therefore, designing a TMD with expected
DOFs and natural frequencies becomes an urgent problem. Unfortunately, due to its complicated
structure and easily detuning, the further study on the implementation of MDOFs TMD is rare.

In this paper, we propose a synthetic approach based on both the graphical approach and
parameterized compliance for the concrete design of the TMDs with the expected DOFs and we verify
their feasibility and performance by numerically and experimentally way on a laboratory suspension
bridge mock-up. The paper is organized as follows: Section 2 describes the vibration characteristics
of the bridge mock-up and builds a concept model of bridge with two 2DOFs TMDs. Based on the
equations of motion, the decentralized control technique is directly used to optimize the stiffness and
damping coefficients of the springs and dampers to obtain the optimum frequency ratios in Section 3.
Section 4 presents the detailed design process of the 2DOFs TMDs based on the graphical approach and
compliance analysis. Section 5 mainly focuses on evaluating the damping performance and verifying
the proposed design method. Finally, findings and conclusions of the study are summarized at the end.

2. Formulation of the Bridge–TMD System

Our goal is to use two 2DOFs TMDs to control the first four vibration modes of the suspension
bridge simultaneously. The 2DOFs TMD is decoupled in the physical coordinates, their mode shapes
follow the physical coordinate of the mock-up, and the corresponding resonance frequencies can
be tuned independently to match the desired design. The suspension bridge mock-up and its finite
element modelling are detailed described in our previous studies [27,33,34]. Here, this paper only lists
the vibration characteristics of the bridge mock-up, as shown in Table 1.

Since the tuning TMDs becomes increasingly complex, we cast the parameter optimization of
the 2DOFs TMDs as a control problem with decentralized static output feedback for minimizing the
response of the bridge system. This method has been used successfully for a single mode vibration
control of a MDOFs TMD by Zuo and Nayfeh [28]. The concept model of the 2DOFs TMDs is to take
the springs as local feedback elements of relative displacements and the dampers as local feedback
elements of relative velocities, as shown in Figure 1.
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Table 1. The numerical and experimental natural frequencies and mode shapes of the bridge mock-up.

Mode Numerical
[Hz]

Experimental
[Hz]

Experimental
Damping

Numerical
Mode Shape

Experimental
Mode Shape

1st B 4.5 4.4 0.14%
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via dashpots and springs. Therefore, the control force vector [u1, u2, …, u6] in this case are given by: 

( ) ( )B X B XT T
1 1 1 2 1 1 1 1 2 1 1u k x d c x dq q= - - + - -  , (1) 

( ) ( )B X B XT T
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3 3 1 2 3 1 2u k x c x= - + -  , (3) 
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In this way, the role of the springs and dampers can be replaced by a control force vector, where
the control gain is composed of the spring stiffness and damping coefficients (ki and ci for i = 1, 2, . . . ,
6). The mass matrix Mn×n, stiffness matrix Kn×n and viscous damping matrix Cn×n is extracted from
the numerical model of the suspension bridge mock up, respectively. The 2DOFs TMD has two planar
degrees of freedom, translation x1 (x2) and rotation θ1 (θ2). Its mass is md1 (md2) and the rotational
inertia about its center of mass is Id = mdρ

2, where ρ is the radius of gyration.
The 2DOFs TMD is connected to the primary system at distances d1 (d2) from its center of mass

via dashpots and springs. Therefore, the control force vector [u1, u2, . . . , u6] in this case are given by:

u1 = k1
(
x1 −BT

2 X− θ1d1
)
+ c1

( .
x1 −BT

2

.
X−

.
θ1d1

)
, (1)

u2 = k2
(
x1 −BT

2 X + θ1d1
)
+ c2

( .
x1 −BT

2

.
X +

.
θ1d1

)
, (2)

u3 = k3
(
x1 −BT

2 X
)
+ c3

( .
x1 −BT

2

.
X
)
, (3)

u4 = k4
(
x2 −BT

3 X− θ2d2
)
+ c4

( .
x2 −BT

3

.
X−

.
θ2d2

)
, (4)

u5 = k5
(
x2 −BT

3 X + θ2d2
)
+ c5

( .
x2 −BT

3

.
X +

.
θ2d2

)
, (5)
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u2 = k2
(
x1 −BT

2 X + θ1d1
)
+ c2

( .
x1 −BT

2

.
X +

.
θ1d1

)
, (6)

where X is the vector of global coordinates of the finite element model, B2 and B3 are the input vector
of this two TMDs, respectively.

The equations can govern the vibration of the coupled system can be decomposed into:

md1
..
x1 = −u1 − u2 − u3, (7)

md2
..
x2 = −u4 − u5 − u6, (8)

Id1
..
θ1 = u1d1 − u2d1, (9)

Id2
..
θ2 = u4d2 − u5d2, (10)

The governing equations can then be written as

M
..
X + C

.
X + KX = B1 fd + B2(u1 + u2 + u3) + B3(u4 + u5 + u6), (11)

where fd is the external disturbances, B1 is the input vector of the external disturbances. We can express
Equations (7)–(11) in matrix form as:


M 0 0 0 0
0 md1 0 0 0
0 0 md2 0 0
0 0 0 Id1 0
0 0 0 0 Id2





..
X
..
x1
..
x2..
θ1..
θ2


+


C 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





.
X
.
x1
.
x2.
θ1.
θ2


+


K 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




X
x1

x2

θ1

θ2



=


B1

0
0
0
0


fd +


B2 B2 B2 B3 B3 B3

−1 −1 −1 0 0 0
0 0 0 −1 −1 −1
d1 −d1 0 0 0 0
0 0 0 d2 −d2 0





u1

u2

u3

u4

u5

u6



, (12)

or
Mp

..
p + Cp

.
p + Kpp = B f fd + Buu, (13)

where p = [X, x1, x2, θ1, θ2]T and u = [u1, u2, . . . , u6] and T denote the complex conjugate matrix
transpose. The matrices Mp, Cp, Kp, Bf, and Bu can be obtained from Equation (12) directly.

Defining the state variables of the system as:

x =

[
p
.
p

]
, (14)

The governing equations are written in first-order form as:

.
x = Ax + B11w + B12u, (15)

where w = fd and:

A =

[
0 I

−M−1
p Kp

]
, B11 =

[
0

M−1
p B f

]
, B12 =

[
0

M−1
p Bu

]
, (16)
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The cost output can be taken as the absolute or relative displacement, velocity, or acceleration of
the primary system, which can be expressed in the form:

z = C1x + D11w + D12u, (17)

For the displacement response of the primary system, the cost output can be written as:

z = X = C1x, (18)

where:
C1 =

[
In×n On×4 On×n On×4

]
, (19)

To complete the state-space description, we rewrite the control force given by Equations (1)–(6) as
a static feedback gain F multiplied by the “measurement output” y:

u = Fy =


k1 c1

k2 c2

· · · · · ·

k6 c6

y, (20)

where y is given by:

y = [x1 −BT
2 X− θ1d1,

.
x1 −BT

2

.
X−

.
θ1d1, x1 −BT

2 X + θ1d1,
.
x1 −BT

2

.
X +

.
θ1d1,

x1 −BT
2 X,

.
x1 −BT

2

.
X, x2 −BT

3 X− θ2d2,
.
x2 −BT

3

.
X−

.
θ2d2, x2 −BT

3 X + θ2d2,
.
x2 −BT

3

.
X +

.
θ2d2, x2 −BT

3 X,
.
x2 −BT

3

.
X]T = C2x + D21w + D22u

, (21)

where C2 can be obtained from the definition of the state given by Equation (14) and the matrices D21

= 0 and D22 = 0. Equations (15), (17), and (21) cast the design of the two 2DOFs TMDs system as a
decentralized control problem in the block diagram of Figure 2.
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3. Numerical Optimization and Simulation

According to above equations, the decentralized control techniques can be directly used to
optimize the damping and stiffness coefficients of the dampers and springs to achieve performance
(measured by z) under the disturbance w. The minimax numerical method [28] is utilized to minimize
the response magnitude of the primary system.

3.1. Optimization Criteria

Traditionally, based on the Den Hartog method, the optimized frequency ratio and TMD damping
ratio are aimed to minimize the structural response by the minimization of the structural dynamic
magnification function. This classic procedure consists of two separate steps: tuning of the frequency
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of the damper, and selection of the optimal level of the TMD damping ratio. This classic procedure has
been used in our previous research [27]. The goal of this study is to design the parameters (ki and ci for
i = 1, 2, . . . , 6) in order to determine the optimum frequency ratio νj (j = 1, . . . , 4) and the optimum
TMD damping ratio ξj for minimizing the response of the bridge system.

Due to the fact that the maximum amplitude of the bridge system should be controlled in a
reasonable range, herein the damping performance of TMDs is evaluated by the H∞ criterion. H is the
selected FRF value of the bridge system under the excitation fd. The value range of Hj is constrained by
the value range of ωj (ωj ε [0.7ωsj,1.3ωsj]). The goal of the optimization is to minimize the maximum
value of each value range of Hj. χ = [k1, c2, . . . , k6, c6]T is selected as the design parameter vector of the
TMDs. The optimization problem can be written as:

Find : χ = [k1, c1, k2, c2, k3, c3, k4, c4, k5, c5, k6, c6]
T

Minimize :
4∑

j=1
W j

(
max

∣∣∣∣H j
(
χ,ω j

)∣∣∣∣)
Subject to : I =

{
j
∣∣∣∣0.7ωs j ≤ ω j ≤ 1.3ωs j, ω j =

∣∣∣eig(A + B12FC2)
∣∣∣}

(22)

where j (j = 1, . . . , 4) is the mode number considered and ωsj is the j-th natural frequency of the primary
system. ωj is the evaluation of the eigenvalues, which corresponding to the modal frequencies of the
entire system inside the specified frequency band. Wj = 0.25, which is the weight coefficient. For each
TMD, 2% of the total mass of the structure.

3.2. Numerical Optimization Results

Two TMD devices are used to damp the mode pairs (1B,2T) and (2B,1T); one TMD is placed
at the quarter length of the deck (TMD1), the second is located at the center of the deck (TMD2).
A detailed description is shown in Section 4.2. A disturbance force fd is applied at one fixed point of
the deck edge and the displacement z is measured at another fixed point, as shown in a small graph of
Figure 3. According to Equation (22), the frequency response functions of the primary system with two
2DOFs TMDs are optimized, and the optimum frequency ratios and TMD damping ratios are obtained,
as listed in Table 2.
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Table 2. Optimum parameters of 2DOFs TMDs.

TMD
Optimum Frequency Ratios Optimum Damping Ratios

ν1 ν2 ξopt1 (%) ξopt2 (%)

TMD1 0.9422 1.029 13.5 10.7
TMD2 0.9594 1.020 17.6 9.8

Figure 3 shows the frequency responses of the deck z/fd, when: (i) without any TMD; (ii) the four
classical TMDs are targeting to damp the two mode pairs (2B,1T) and (1B,2T), which is achieved by
Den Hartog criterion; and (iii) the two 2DOFs TMDs are targeting to damp the two mode pairs (2B,1T)
and (1B,2T), which is optimized by that introduced in the present paper. The results indicate that the
2DOFs TMD concept model is effective to suppress both the bending modes and torsional modes of
the bridge system at the same time. But, if using the classical configuration of the TMD, we need four
TMDs, each of them is tuned on a single mode at the same time: two translation TMDs, with a lumped
mass identical to that used in the 2DOFs TMD, and two other TMDs with moment of inertia identical
to that of the 2DOFs TMD too. Hence, comparing with the classical configuration of TMD, the two
2DOFs TMDs can reduce the weight penalty.

Figure 4 shows the FRF for different sensor locations, with the same TMD design as in Figure 3.
This figure demonstrates the robustness with respect to the FRF used in the TMD design. Figure 5 plots
the frequency response curve of the bridge equipped with TMD1, for different values of the TMD1
damping ratio ξ. Here, the TMD1 damping ratio ξ is selected as 10% ξopt, 25% ξopt, 50% ξopt and ξopt,
respectively, and the ξopt is the optimum damping ratio of TMD1, which is listed in Table 2. From this
figure, we see that the dynamic responses of the bridge deck always tend to decrease on increasing the
damping ratio of TMD1. Furthermore, the frequency ratio is insensitive to the TMD damping ratio,
but if the action is not perfectly resonant, the performance of TMD may decay seriously even though
the value of the TMD damping ratio is very high [35]. For TMD structure design, unlike the damping
ratio ξj which is difficult to quantify, the frequency ratio νj is important parameter which can be used
to guide the following TMD structural parameters design.
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4. Structural Design of 2DOFs TMD

Due to the lack of an effective theoretical guidance, deterministic structure design of multi-DOFs
TMDs is still a challenge in the field of TMD design. The main problems are: (1) kinematic constraints
design of the multi-DOFs, it ensures that the TMDs have the expected DOFs; and (2) parametric
modeling of the multi-DOFs, that contributes to design the TMD and ensure it has the expected natural
frequencies. To solve the above problems, this study presents a synthetic approach based on both the
graphical approach [36] and parameterized compliance for the concrete design of the TMD with the
expected DOFs.

4.1. Graphical Approach

The screw theory as the theoretical foundation of graphical approach have been widely applied to
design and analysis the compliant mechanisms [37,38]. For object behavior design, adding constraints
is the most important step to reach the specific motion. Thus, finding the relationship between the
constraints and movements is indispensable in TMD design. Currently, the screw theory is the most
popular way to describe this relationship. In the screw theory, a unit screw $ is defined by a straight
line with an associated pitch and is represented as a pair of three-dimensional vectors:

$ =

[
s

s0 + hs

]
=

[
s

r× s + hs

]
, (23)
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where s0 = r × s defines the moment of the screw axis about the origin of a coordinate system, s is a
unit vector parallel the screw axis, r is the position vector of any point on the screw axis with respect to
the origin of a coordinate system, and h is the pitch of the screw. If h is equal to zero, the screw reduces
to a line quantity (Figure 6a):

$t =

[
s
s0

]
=

[
s

r× s

]
, (24)

If h is infinite, the screw reduces to:

$w =

[
0
s

]
, (25)

In addition, an infinite-pitch screw can be considered as a line located at infinity, as shown in
Figure 6b.

For a better understanding and applicability, the two special cases of unit screw ($t, $w) are
visualized by geometric patterns in Figure 7. The unit screw of zero pitch ($t) stands for a pure rotation
in freedom space (rotational freedom line) or a unit pure force in static along the line in constraint space
(constraint force line). A unit screw of infinite pitch represents a pure translation in freedom space
(translational freedom line) or a pure couple in constraint space (constraint couple line). It is worth
noting that the rotational freedom line represents the axis of rotational movement, and the constraint
couple line stands for the axis of couple imposed on a rigid body.
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Based on Maxwell’s principles of constraints, the freedoms and constraints in a mechanical system
can be defined as:

N = 6− n, (26)

where N is the number of DOFs, n is the number of non-redundant constraints. When a rigid body
(e.g., TMD) is constrained by several mechanical connections providing n constraints, while N DOFs of
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the body will remains. In this regard, based on the reciprocal screw theory, n non-redundant constraints
form a wrench $1 in constraint space, and the remained DOFs constitute a twist $2 in freedom space [39].
Based on the definition, the reciprocity of these two screw systems is expressed as:

$T
1 ∆$2 = s1 · (r2 × s2 + h2s2) + s2 · (r1 × s1 + h1s1)

= (h1 + h2)(s1 · s2) + (r2 − r1) · (s2 × s1)

= (h1 + h2) cosα12 − a12 sinα12

= 0

(27)

where ∆ =

(
0 I
I 0

)
, a12 is the normal distance of the two screw axes and α12 is the twist angle between

the two screws. h1 and h2 denote the pitch of $1 and $2, respectively.
Thus, according to Equation (27), the relationship between the freedom lines and the constraint

lines can be written as a brief form in Table 3.

Table 3. Geometric relationship between the freedom and constraint lines.

Geometric Condition

Freedom Space ($2)

Rotational Freedom
Line

(h2 = 0)

Translational Freedom
Line

(h2 =∞)

Constraint space ($1)

Constraint force line
(h1 = 0)

Coplanar (intersecting or
parallel) a12 sinα12 = 0

Perpendicular
α12 = 90◦

Constraint couple line
(h1 =∞)

Perpendicular
α12 = 90◦ Arbitrary

The 2DOFs TMD with the expected DOFs and mode shapes can be designed by the above
geometric relationship.

4.2. Conceptual Design of the TMDs

By studying the characteristics of human-induced vibration, it is found that the first four modes of
suspension bridge are easy to be stimulated to produce resonance phenomenon, which is the primary
target of vibration reduction. The targeted mode shapes are shown in Figure 8.

The optimal location of a TMD is at the maximum modal displacement. Hence, the center of the
deck (point A) is the optimal location for the second bending and the first torsional modes of the deck
(2B,1T), while for the first bending and the second torsional modes (1B,2T), it is at the quarter length of
the deck (point B). The motion of the TMDs only along the vibration direction of the two pairs can
reach the best vibration control. Two TMDs have the same geometric relationship as shown in Figure 9.
Therefore, the dimension of the freedom space N is two, and the dimension of the constraint space is
four, according to Equation (26).

The translational freedom line and rotational freedom lines are orthogonal in Figure 9a. For the
constraint space, the four constraint force lines intersect with the rotational freedom line and are
orthogonal with the translational freedom line. Here the constraint couple lines can be ignored
due to the fact that four constraint force lines have already formed the expected constraints. Thus,
the corresponding constraint space can be divided into two pairs, each pair contains two parallel
constraint force lines, and these two pairs are orthogonal (Figure 9b). Then constraint force lines are
implemented by flexure elements, each of them can provide single DOF constraint along its axial
direction (Figure 9c). Therefore, the exact constraints are formed on the TMDs and the expected DOFs
are defined.
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4.3. Parametric Design of 2DOFs TMDs

The conceptual model of TMDs only have two expected DOFs, but in actual design, due to the
material and geometric properties, the TMD may have more DOFs than expected. The corresponding
redundant modes of TMD may affect the performance of TMD, even lead to TMD failure. This is a key
problem that has been perplexing TMD design. In general, the redundant modes which are far from
the targeted modes can be ignored, and the empirical design has always been the major tool to achieve
this goal. However, as the number of DOF increases, the empirical method gradually fails to realize
the complex design of TMDs. Furthermore, the empirical design may cause the increase in time and
cost. Therefore, the theoretical guidance has become particularly important in the multi-DOFs TMD
design. In this section, we introduce a parameterized compliance approach for parametric design of
the 2DOFs TMD.

Figure 10 shows the configuration of the TMD. It can be seen that the TMD is formed by eight
slender beams in parallel distributed on mass block, which is transformed from physical models
(Figure 9c). Each slender beam is considered as cantilever beam (Figure 10a) with length L, width w,
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and thickness t. Then, according to the Bernoulli-Euler model, the compliance matrix Ccp (p = 1, . . . , n)
for each slender beam at location coordinate system Oxyz is given as follows:

Ccp =
Lp

EIy
diag

{
α 1 1

χγ

L2
p

12
L2

p
12α

L2
p

12β

}
, (28)

where:

α =
( t

w

)2
, βp =

(
t

Lp

)2

,χ =
G
E

=
1

2(1 + ν)
,γ =

J
Iy

, (29)

and

Ix =
w3t
12

, Iy =
wt3

12
, J = Ix + Iy, (30)

where G, E is the shear and Young’s modulus, respectively. γ is the ratio of torsion constant over
moment of inertia, ν is the Poisson’s ratio.
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Further, to simplify the following non-dimensionalization, we choose t = w, and according to
Equations (29) and (30), γ = 2. Due to the different length of slender beam (L1, L2 and s = L1/L2),
the compliance matrix of two type slender beams can be written as:

CcA =
L2

EIy
diag

[
s s s

2χ
s3L2

2
12

s3L2
2

12
sL2

2
12 β2

]
, (31)

CcB =
L2

EIy
diag

[
1 1 1

2χ
L2

2
12

L2
2

12
L2

2
12β2

]
, (32)

In order to combine the local compliance matrix Ccp of the eight slender beams, they should be
transformed from the local to global coordinate system. The origin O’ of the global coordinate system
O’XYZ is defined in the centroid of the mass block (Figure 10b). For the parallel flexure mechanism,
the global compliance matrix can be given as:

Cs =

 m∑
p=1

(
AdpCcpAdT

p

)−1

−1

, (33)

where m is the number of slender beams; Adp is the adjoint transformation matrix from the pth element
to the global system:

Adp =

[
Rx,y,z(θ) 0

TRx,y,z(θ) Rx,y,z(θ)

]
, (34)
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where T is the translation matrix. Rx,y,z(θ) = Rx(θ)Ry(θ)Rz(θ), which is the multiplication of rotation
matrices. Rx(θ), Ry(θ), and Rz(θ) stand for the rotation matrices by an angle θ about the x, y, and z
axis, respectively. They are given in Equation (35):

Rx(θ) =


1 0 0
0 cosθ − sinθ
0 sinθ cosθ

, Ry(θ) =


cosθ 0 sinθ

0 1 0
− sinθ 0 cosθ

, Rz(θ) =


cosθ − sinθ 0
sinθ cosθ 0

0 0 1

,
(35)

For the vector (∆x, ∆y, ∆z)T between two position, the translation matrix can be expressed as

T =


0 −∆z ∆y

∆z 0 −∆x
−∆y ∆x 0

, (36)

Based on Equations (33)–(36), the global compliance matrix of TMD is computed by:

Cs =
L2

EIy



c11

c22

c33

c44

c55

c66


, (37)

The principal diagonal elements of Cs are selected as follows:

c11 =
L2

2β2s3

16

(
1

β2L2
2s3+β2L2

2s2+3β2L2d1s+3β2L2d1s3+3β2d2
1+3β2d2

2s3+3d2
4s2

)
c22 =

L2
2s3

16

(
1

0.5χL2
2s3+L2

2s2+3L2d1s+3d2
1+3d2

3s3

)
c33 =

L2
2β2s3

16

(
1

β2L2
2s3+0.5χβ2L2

2s2+3β2L2d2s3+3β2d2
2s3+3d2

3s3+3β2d2
4

)
c44 =

L2
2s3

48

(
1

s3+1

)
c55 =

L2
2β2s3

48

(
1

s3+β2

)
c66 =

L2
2β2s
16

(
1

β2s+1

)
, (38)

where c11, c22, and c33 are the rotational compliance/stiffness about the x, y and z axis while c44, c55,
and c66 are the translational compliance/stiffness along the x, y and z axis, respectively. In the end,
the natural frequencies of 2DOFs TMDs can be approximate calculated by Equations (39)–(41).

The bending mode:

ω1 =
1

2π

√
k44

md
=

1
2π

√
1

md

(
L2c44

EIy

)−1

, (39)

The torsional mode:

ω2 =
1

2π

√
k22

IY
=

1
2π

√
1
IY

(
L2c22

EIy

)−1

, (40)

and:
IY =

1
3

md
(
d2

1 + d2
5

)
, (41)

where d5 is the height of mass block (Figure 10c).

4.4. Results and Discussion

According to the optimum frequency ratios νi (Table 2) and the target modes of bridge, the expected
modes of TMDs are obtained and listed in Table 4.
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Table 4. Expected modes of 2DOFs TMDs.

TMD
1st Mode 2nd Mode

Bending Torsion

TMD1 4.15 Hz 10.5 Hz
TMD2 6.14 Hz 9.59 Hz

In general, the size of TMD should be smaller and not occupy the space of bridge as much as
possible. Thus, considering the processing conditions and the size of deck, we choose t = w = 1mm.
The mass block is iron and md = 0.18 kg. The material of slender beams is Acrylonitrile Butadiene
Styrene (ABS), and the elastic modulus E = 2 GPa, χ = 0.37, the Poisson’s ratio ν is 0.394. In addition,
in order to simplify calculation and TMD design, let d4 = d2.

The calculation results of 2DOFs TMDs are summarized in Table 5. It is noticed that the three-order
natural frequencyω3 are about 7 times greater thanω2, andω4 is much larger thanω1 andω2. Therefore,
the undesired DOFs can be neglected, and the expected 2DOFs TMDs are obtained. According to the
dimension parameters, FE model of 2DOFs TMDs are built as shown in Figure 11. The mode shapes of
two expected TMDs are shown in Figures 12 and 13, respectively.

Table 5. Calculation results of 2DOFs TMDs.

TMD
Dimension Parameter (m) Natural Frequency (Hz)

L1 L2 d1 d2 d3 d4 ω1 ω2 ω3 ω4

TMD1 0.045 0.059 0.015 0.0106 0.0075 0.0106 4.16 10.54 74.07 119.7
TMD2 0.0362 0.042 0.0105 0.0105 0.008 0.0105 6.14 9.55 77.7 109.8
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5. Experimental Verification

5.1. Experimental Setup

The laboratory mock-up of the suspension bridge (in Figure 14) is used to investigate the
performance of the 2DOFs TMDs. An impact hammer is used to excite the structure. Prior to vibration
measurements, the data acquisition system is established, which involves a single-axial accelerometer,
positioned to measure vertical accelerations. The position of the accelerometer is illustrated in Figure 14.
The output data are obtained by successive hammering all positions on the deck (Figure 15). The
modal parameters of the bridge are estimated by hammering method. The natural frequencies and
mode shapes of the mock-up are shown in Table 1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 21 
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5.2. Hammer Tests of TMDs

The structure of 2DOFs TMDs with adjustable natural frequencies is presented in Figure 16. Each
TMD consists a mass block, two pedestals, and eight flexible beams with adjusters. For each flexible
beam, one side is fixed on the pedestal by bolts and the other side is connected to the mass block.
Though changing the positions of the adjuster, the effective length of the flexible beam can be adjusted,
then tunable stiffness of the TMD is realized. The adjuster not only improves the tuning ability of TMD,
but also compensates for the errors. The errors include the machining error and the calculation error
which is caused by ignoring the prestress of flexible beams (Equations (39) and (40)). Thus, the adjuster
is an indispensable part of the TMDs.
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Based on Equations (39) and (40), the natural frequencies of 2DOFs TMDs are determined by the
dimensions of the flexible beams. In order to improve the tuning ability at runtime, the TMDs are
designed with tunable L1 and L2 which is the effective length of the flexible beams (Figure 16).

In hammer tests, the TMDs are excited by an INV9311impact hammer, and the acceleration
responses are recorded by a PSV-500-1D scanning laser vibrometer. The experimental results are
shown in Figure 17. The figure shows the experimental acceleration responses of the designed 2DOFs
TMDs: (a) when L1 = 48.5 mm, L2 = 55.5 mm, the first three order frequency of TMD1 is 4.37 Hz,
10.08 Hz, and 65.81 Hz; (b) when L1 = 37.5 mm, L2 = 40 mm, the first three order frequency of TMD2
is 6.21 Hz, 9.47 Hz, and 72.19 Hz. Comparing with the first two order frequency, the third order
frequency of TMDs is a relatively large value, which is far beyond the bandwidth (0–15 Hz) we are
considering. Therefore, the 2DOFs TMDs meet the design requirements and verify the validity of the
theoretical model.
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5.3. Vibration Suppression of Bridge with TMDs

The designed 2DOFs TMDs are mounted on point A and point B, which has discussed in
Section 4.2. Figure 18 shows a close view of the TMD1 (shown in Figure 12); except the different
dimension parameters, the two TMDs have the same configuration and can be tuned in the same way.
For damping the target modes, the optimum FRF of these two TMDs exhibits two distinct modes at
4.37 Hz, 10.08 Hz, and 6.21 Hz, 9.47 Hz, respectively, as shown in Figure 17.
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Figure 18. Experimental implementation of the 2DOFs TMDs. The damping is tuned by changing
the magnets.

By referring the previous design [27], the damping is introduced by using eddy current damping,
where two symmetric powerful magnets are attached on the pedestal below the mass block of the
TMD in Figure 19. The damping value can be tuned by manually adjusting the size and number of
the magnets. In Figure 19, the replaceable magnets are used to set the translational damping and the
rotational damping at the same time. If necessary, another two symmetric magnets which are attached
on the pedestal (the position at the red dashed circles in Figure 19) can provide additional damping for
the bending mode.
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The experimental results are shown in Figures 20 and 21. The Figure 20 shows the acceleration
responses of the deck: (i) without TMD, (ii) when the structure is equipped with two 2DOFs. The
result shows that the 2DOFs TMD is very effective in vibration damping of the bridge. In order to
quantitatively confirm the performance of TMDs, Figure 21 shows the FRFs of the deck: (i) without
TMD, (ii) when the structure is equipped with two 2DOFs TMDs, targeting the mode pairs (2B,1T) and
(1B,2T), respectively. One sees that TMD1 can attain 13.8 dB amplitude reduction of the first bending
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mode (1B) and 8.8 dB amplitude reduction of the second torsional mode (2T); Meanwhile, a 10.7 dB
amplitude reduction of the second bending mode (2B) is observed after using TMD2, and 10 dB
amplitude reduction of the first torsional mode (1T).
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The experimental results indicate that the 2DOFs TMDs which designed under the kinematic
constraint theory guidance can target the bending and the torsion modes at the same time. Comparing
with the classical TMD, the 2DOFs TMD not only achieves vibration reduction, but also avoids
increasing the load of the bridge. It is worth mentioning that the final frequency ratios are different from
the optimized frequency ratios (Table 4). The optimized frequency ratios are the result of theoretical
model calculation. However, the error between the theoretical model and the real structure, as well as
the machining and calculation errors, may result in the change of the final frequency ratios. But the
role of the optimized frequency ratios in the TMD structural parameter design cannot be neglected.

6. Conclusions

This study proposed a synthetic approach to design and implement 2DOFs TMDs for damping
the bending and torsional modes of suspension bridges. For verifying the effectiveness of the concept
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model, we cast the parameter optimization of the 2DOFs TMDs conceptual model as a control problem
with decentralized static output feedback for minimizing the response of the bridge deck. The optimized
frequency ratios play a significant role in the TMD structural parameter design. For designing the
expected modes of the 2DOFs TMDs, the graphical approach is introduced to arrange flexible beams
properly according to the exact constraints. Based on the optimized frequency ratios, the dimensions
of TMDs are determined by the compliance matrix method. The proposed design has been simulated
and implemented successfully on a suspension bridge mock-up. Based on the presented results and
interpretations, the main findings are summarized as follows:

• The synthetic approach based on both the graphical approach and parameterized compliance is
an effective way to design the TMD with the expected DOFs (i.e., 1, 2, . . . , 6). It is also an effective
complement to the empirical design for the multi-DOFs TMD. Comparing with the empirical
design, this synthetic approach can design the expected multi-DOFs TMD without much design
experience, which can save time and cost. The disadvantage of this method is that the influence of
prestress is not taken into account in the theoretical model. Thus, the adjuster is an indispensable
part of TMDs.

• This study verifies the feasibility of the two 2DOFs TMDs in vibration reduction of suspension
bridges by numerically and experimentally; comparing with the classical configuration of the TMD,
the two 2DOFs TMDs can reduce the weight penalty. The experiment demonstrates the ability of
the TMDs for suppressing several vibration modes under laboratory conditions. However, their
implementation in a full-scale bridge still needs further research.
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