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Featured Application: The application implemented for the proposed pseudo-random number
generator is a one-time pad stream cipher that is able to encrypt an 8 K PNG RGB color image in 2 s.

Abstract: This article presents a configurable, high-throughput pseudo-random number generator
template targeting cryptographic applications. The template is parameterized using a chaotic map
that generates data, an entropy builder that is used to periodically change the parameters of the map
and a parameter change interval, which is the number of iterations after which the entropy builder
will change the generator’s parameters. The system is implemented in C++ and evaluated using the
TestU01 and NIST RNG statistical tests. The same implementation is used for a stream cipher that
can encrypt and decrypt PNG images. A Monte-Carlo analysis of the seed space was performed.
Results show that for certain combinations of maps and entropy builders, more than 90% of initial
states (seeds) tested pass all statistical randomness tests. Also, the throughput is large enough so that
a 8 K color image can be encrypted in 2 s on a modern laptop CPU (exact specifications are given
in the paper). The conclusion is that chaotic maps can be successfully used as a building block for
cryptographic random number generators.

Keywords: chaos-based pRNGs; randomness tests; telecommunications; information systems; digital
signal processing; image signal processing

1. Introduction

As bandwidth in state-of-the-art communication channels is increasing at a high rate, cryptographic
solutions need to keep up with the large amount of information that should be encrypted. One of the key
requirements for stream cryptosystems is the underlying pseudo-random number generator. In recent
years, chaotic systems have been considered as generating good and fast pseudo-random sequences [1–11].
The generated numbers are equiprobable, non-correlated. Good pseudo-random number generators
(pRNGs) have a large period of repetition. They have properties such as reproducibility and consistency
(independence from the seed), portability, efficiency, coverage of the entire output space. The sequences
generated utilizing different seeds must be disjoint, consecutive numbers not revealing any pattern for any
length of the sequence. Every permutation of a number generated by a good pRNG is equally likely [12].
The theory behind a good pRNG and some practical aspects concerning its design can be consulted in [13].
An analysis of statistical testing methods of pRNGs is given in [14].
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Generally, cryptographically secure pseudo-random sequences are obtained from
cryptosystems—stream ciphers or block ciphers in counter mode—which, as opposed to regular pRNGs,
are slower [15]. In this paper we attempt to design and build a chaos based pseudo random number
generator template, configurable with a map function and entropy builder so that depending on the
application, it can focus on randomness quality, throughput, or a balance between the two.

A chaos based pseudo-random number generator was proposed in [16]. The underlying system
was the three dimensional generalized Hénon map (2). Given its simple shift-register form, yet complex
behavior, many studies were done [17–25] to investigate its dynamics.

xk+1 = a− y2
k − bzk

yk+1 = xk (1)

zk+1 = yk

where a ∈ (0, 2), b ∈ [−0.3, 0.3], x, y, z ∈ (−2, 2), k is the iteration number and (x0, y0, z0) the initial states.
The definition intervals for parameters a and b were established by computing bifurcation diagrams [26]
and Lyapunov exponents [27] for a ∈ (−2, 2) and b ∈ (−1, 1). A Monte Carlo analysis [28] with
initial conditions x0, y0, z0 chosen randomly from an uniform distribution in [−2,2] was performed.
The conclusion was that a ∈ (0, 2) and b ∈ [−0.3, 0.3] are the ranges ensuring x, y, z ∈ (−2, 2).

For the pRNG in [16] the least significant nibble of each state of system (2) was discarded and the
next bytes xor-ized, as shown in Figure 1. A sequence obtained was tested for randomness with the
NIST [14] battery test.

Figure 1. Logic for generating random bytes from the states’ double precision floating point strings.

As the system of equations generating the pseudo-random sequences is chaotic—aperiodic and
highly sensitive to initial states—it displays a fractal structure [29], depending upon its bifurcation
parameters, (a; b). This implies that not all pairs of parameters engender a pseudo-random behavior
for the generated bits and also that there is no continuous interval that contain only chaotic parameter
values [30]. Different evolutions are depicted in Figure 2 for the same initial conditions:

(x0, y0, z0) = (0.814723686393179, 0.905791937075619, 0.126986816293506)

and different pairs (a; b) given in Table 1. The top left and the bottom left state spaces show periodic
attracting orbits, while the right part of the figure demonstrates (hyper)chaotic attractors.
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Figure 2. Phase portraits of the generalized three-dimensional Hénon map for different (a; b) pairs.

Table 1. The parameter values for the system evolutions displayed in Figure 2.

Position a b

top left 1.066073952077004 −0.122171054133312
bottom left 1.822849696327467 −0.210260146847663
top right 1.422086796614167 −0.292608160780357

bottom right 1.566451149781642 0.210678068488918

The Lyapunov exponents [27] are the commonly used metric to indicate periodic or (hyper)chaotic
behavior. For the investigated system, the generalized Hénon map (2), the number of exponents is
three, corresponding to the dimension of the state space. The algorithm computing the Lyapunov
spectrum in [27] sorts the exponents from the largest to the lowest. When the system generates rapidly
divergent trajectories, the largest exponent, λ1, is positive, indicating random-like (chaotic) behavior.
A positive value for the second Lyapunov exponent also is the mark of a hyperchaotic evolution,
random-like dynamics in two directions of the space. The last exponent has to be negative to maintain
the bounded space. Figure 3 shows the three Lyapunov exponents for a fixed value of the parameter b
and varying a. Initial conditions, although irrelevant for this metric, (x0, y0, z0), are the same as above.
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Figure 3. Lapunov exponents for b = 0.1 and varying a in [0;2) using different computation steps. λ1

in blue, λ2 in red, λ3 in black.

In [24] the authors also attempted an FPGA implementation for the generator, comparing
the results with a highly optimized FPGA implementation of a cellular automaton pRNG in [31].
The conclusion was that due to the recursive nature of the chaotic functions and the fact that the
computation must be done in double precision floating point, the performance of the design will be
limited, hardware-specific optimizations like pipelining and speculative execution being unfeasible.
This makes the design FPGA-resistant which in certain types of applications, like blockchain, may
even be an advantage.

As already stated, the values for λ1 should be positive. When setting b = 0.1, the only interval
for a where the pseudo-random behavior is enabled by the 3D generalized Hénon map is [1.3; 1.8).
The two coefficients are highlighted in Figure 4. Different values for the step used to compute their
values (top left: 10−2, top right: 10−3, bottom left: 10−4, bottom right: 10−5) reveal more and more
undesired values for the pair (a, 0.1)—as the step is smaller. Those pairs are the ones for which λ1 < 0.
The fact that there are no continuous intervals of values for either a or b for which the map is chaotic or
hyper-chaotic makes it difficult to choose or to validate values for the parameters and the initial states
such that the generator does not enter a periodic loop. Since these five values represent the seed of the
generator, it is crucial that their choice is appropriate. In [32] the solutions presented were either to
define a system that will transform an invalid seed into a correct one during the system’s initialization,
or to periodically alter the system’s trajectory during runtime, in order to avoid stable orbits.

The first research direction, towards seed validation, concluded with [23] and [33], where it was
shown that Lyapunov exponents could be a solution for determining if a tuple of initial states and
parameter values are suitable for randomness generation. However, there are still a large number
of operations required for computing the exponents, which introduces an unwanted latency to the
system’s initialization. Also, while there is an obvious correlation between the chaotic behavior of the
map and randomness quality of the generated sequence, some inconsistencies were observed: although
the Lyapunov exponents were positive, the sequence failed to pass the NIST tests and vice-versa.

In the end, the focus turned towards the second approach, where a perturbation is introduced
periodically in the evolution of the system to circumvent stable orbits, the initial research being
published in [32]. The new research in this paper adds the following elements over the previous one:
details the simulation step for the bifurcation diagrams and Lyapunov exponents to reveal the stable
orbit issue more clearly in Section 1, introduces a new chaotic map template and new entropy builders
and develops the architecture of a configurable generator design for a wide range of applications in
Section 2, tests the design with an additional battery (TestU01), performs a throughput analysis and
compares the results with three different types of generators in Section 3, and finally, integrates the
system in a working application—a one-time pad stream cryptosystem for ultra high definition images
in Section 4. The code for the application is available on https://gitlab.dcae.pub.ro/research/chaos/

https://gitlab.dcae.pub.ro/research/chaos/AppliedSciencesPaper
https://gitlab.dcae.pub.ro/research/chaos/AppliedSciencesPaper
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AppliedSciencesPaper. Section 5 concludes this paper with a discussion of the results and a proposal
for future development.
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Figure 4. The largest Lapunov exponents for b = 0.1, a ∈ [1.35; 1.8]. λ1 in blue, λ2 in red, for different
computation steps.

2. New Generator Design

As a modification to the first version of the generator [16] which only used one chaotic map,
the generalized Hénon map, and never altered the internal states other than by simply computing the
map’s formula, the second version [32] added a block that accumulates the values of all intermediate
states, gathering entropy. This block was named entropy builder. Once every n iterations (where n is
a parameter of the generator called the parameter change interval in the rest of the paper) the accumulator
was used to change the map’s parameters according to (2).

In the current paper we introduce the third version of the generator along with a C++ implementation,
where the generator map as well as the entropy builder are configurable. An advantage of this approach is
that the system is modular and flexible, allowing configuration with any chaotic map and with several
algorithms for building entropy. Also, selecting particular configurations will yield high throughput
performance, as other configurations will increase the quality of the random sequence. The block diagram
is presented in Figure 5 where the green blocks are parameterized and the byte generator block is depicted
in Figure 1.

a = E mod 2.0

b = E mod 0.6− 0.3 (2)

https://gitlab.dcae.pub.ro/research/chaos/AppliedSciencesPaper
https://gitlab.dcae.pub.ro/research/chaos/AppliedSciencesPaper
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Figure 5. Block diagram of the new system proposal. Green blocks are configurable.

Each chaotic map (see Figure 5) has a number of parameters, ||P||, and a number of states ||S||.
As an example, the 3D generalized Hénon has two parameters denoted by P = (a; b) and three states
denoted by S = (x; y; z). Every iteration, the entropy builder takes tuples of ||S|| values (the current
state values) and accumulates entropy. Every n iterations it also provides a tuple of ||P|| values that
replaces the current parameter set of the map. The entropy builder and the chaotic map have to match
the same ||P|| and ||S|| to obtain a valid configuration. A general form for a three-dimensional map is
given in (4).

x+ = y

y+ = z (3)

z+ = f (x, y, z)

The maps tested in this paper include the 3D Hénon and all maps presented in [34] and given in
Table 2. The formula in row 13 is the generic form of the chaotic map used.

As entropy builders, besides the initial sum approach, named E1, one more design was added, E2,
both given in (4). Since there are two parameters involved in the computation of the 3D generalized
Hénon map, a third approach was to use a combination of both E1 and E2, one for each of the
parameters, with good results.

E1 = E1 + xk + yk + zk

E2 = E2 + sin((zk − yk)/2) (4)

Table 2. Nonlinear functions [34].

ID Maps Cases

1 xk − xk · yk + xk · zk + 0.5 NFI1
2 xk + xk

2 + zk
2 − 2 · xk · yk − 0.2 NFI2

3 1.7 · xk − 0.7 · zk + zk
2 − xk · yk − 0.3 NFI3

4 1.07 · xk − 0.07 · zk − xk · yk + xk · zk + 0.28 NFI4
5 xk + 0.2 · xk

2 + 0.8 · yk
2 − xk · zk − 0.1 NFI5

6 xk + 0.19 · xk
2 − 0.22 · zk

2 + 0.03 · yk · zk + 0.03 NFI6
7 −zk + xk · yk + yk · zk + 1 NFII1
8 xk − 0.2 · zk

2 + 0.3 · xk · yk + 1 NFII2
9 −zk

2 + 0.7 · xk · yk + xk · zk + 0.7 NFII3
10 −yk − 0.1 · xk · yk + xk · zk + 1.2 NFII4
11 0.9 · xk − zk + 0.7 · xk · yk + 0.9 NFII5
12 0.35 · zk

2 − 0.57 · xk · yk − 1.27 NFII6
13 a0xk + a1yk + a2zk + a3x2

k + a4y2
k + a5z2

k + a6xkyk + a7xkzk + a8ykzk + a9 NF_GEN
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3. Generator Implementation and Testing

3.1. Testing Setup

The experimental implementation done in C++ defines a GeneratorTemplate template class that
can be parameterized with a specific map function and an entropy builder. Four applications were
developed for testing and evaluation:

1. generator—an application that takes as arguments a byte count, the name of the map, the entropy
builder, the number of iterations for time spacing and the initial state values and parameters and
generates a text file with the specified number of bytes, one per line, in binary format;

2. test_suite—an application that takes as arguments the name of the map, the entropy builder,
the number of iterations for time spacing and the initial state values and parameters and runs the
TestU01 and NIST test batteries, outputting the results in a corresponding file, and appending
a summary to the results.csv file;

3. throughput_test—an application that takes as arguments a byte count, the name of the map,
the entropy builder, the number of iterations for time spacing and the initial state values and
parameters and computes the throughput of the specified generator in MB/s;

4. codec—an application that takes as arguments the name of the input PNG file, the name of the
output PNG file, the name of the map, the entropy builder, the number of iterations for time
spacing and the initial state values and parameters and encrypts (or decrypts, as the stream cipher
is symmetric) the input image, writing the results in the output file.

The generator can be used to write pseudo-random data to a file for later use in other third party
applications or test batteries, like Diehard [35]. For this section however, the relevant executables are
test_suite and throughput_test.

The randomness statistical tests used to validate the generator are TestU01 [36] running either
SmallCrush, Crush or BigCrush suites and the NIST [14] test battery. TestU01 is installed in the system
and dynamically linked to the testing application as opposed to the NIST suite which is integrated at
code level. The NIST suite has also suffered minor code changes in order to strip down the test harness
and run the tests directly. TestU01 is called using its own API which provides a simple and direct
way of specifying a function to call in order to receive a new pseudo-random word. NIST however
required some additional work since all the tests are designed to read pseudo-random data from
a file, so the testbench starts by generating all required data and writing it into a file and then calling
NIST’s asses function which in turn will invoke each test that will read pseudo-random data from the
aforementioned file. NIST is configured to test 12 streams of 1 million bytes for each tested seed value.
TestU01’s SmallCrush is used in all tests presented in this paper. The entire testbench design is shown
in Figure 6.

Figure 6. Testbench block diagram.
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As a comparison with state-of-the art pRNGs, three algorithms were selected and tested along
with the current system proposal:

1. Mersenne Twister—a non-cryptographically secure pRNG, described in [37] and implemented
in the GCC C++ standard library;

2. ChaCha—a cryptographically secure pRNG, from the stream cipher implementation in [38];
3. Adaptive Chirikov Map pRNG—another chaos-based pRNG proposed in [9] which uses two

adaptive Chirikov maps and a comparison procedure to generate random bits.

The following subsection presents the results of three experiments done in order to qualify the
generator. First, a visual evaluation for the (a, b) pairs generated by each entropy builder algorithm
was made by plotting the pairs in a 2D space. The expectation is to see better randomness from plots
that cover the entire plane as opposed to those showing distinctive patterns.

The second experiment chose certain tuples of parameters and initial states that are known to
produce periodic trajectories of the considered map. The experiment determines if such seeds can still
be used by generators if a suitable entropy builder is used to break the patterns.

The third experiment complements the second in order to generate a statistic regarding the
percentage of suitable seeds in the entire seed space. Obviously, an exhaustive approach is out of
the question since the seed space, which is determined by all combinations of possible values for
(a, b, x0, y0, z0) is approximately 314 bits if computation is done in 64-bit floating point precision. Some
bits are lost because valid values for all numbers in the tuple are in a small interval around 0, as stated
already in [16]. Therefore, a script was developed to run the testbench for 100 seeds considering all
combinations of maps and entropy builders. The parameters of the map were changed by the entropy
builder at each n iterations, with n ∈ {5, 10, 15, ..., 50}.

On top of the randomness testing, a throughput test was designed and implemented in order to
evaluate the performance of the system.

3.2. Randomness Test Results

The entropy builder in [32] changed both parameters a and b by computing entropy E1. In Figure 7
it can be observed that there is an obvious linear dependency between the two. This is also the case
for the new entropy builder proposed in this paper, E2. When using two builders concurrently,
accumulating entropy differently, the parameters are completely uncorrelated and so they cover all the
possible space, as depicted on the right image in Figure 7.

Figure 7. Entropy builder, E1 and E2 on the left, E1E2 and E2E1 on the right.

Analyzing the Lyapunov exponents for the generalized Hénon map in Figure 3, it can be seen
that for b = 0.1 and all a ≤ 1.35, the exponents are negative denoting pairs that do not determine
chaotic behavior. Surely enough, when attempting to use them without any entropy control, all TestU01
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and NIST tests fail, as it can be seen in Table 3 where several configurations were tested with the
three-dimensional generalized Hénon map and a known non-chaotic initial state:

(a, b, x0, y0, z0) = (1.35, 0.1, 0.814724, 0.905792, 0.126987)

When introducing an entropy builder of type E1 (sum), the vast majority of tests pass. For E2

builder all tests fail even when changing the parameters at each iteration. The E1, E2 combination
however yields good results, as expected, passing all tests.

Table 3. Randomness test results for known non-chaotic state of the 3D generalized Hénon map.

Entropy Interval Failed Failed
Builder TestU01 NIST

– – 15 162
E1 1 0 0
E2 1 15 162

E1, E2 1 0 0
E1 100 12 2
E1 45 2 0
E1 35 0 0
E1 25 0 0
E1 15 0 3
E2 100 15 10
E2 45 3 1
E2 35 0 0
E2 25 1 0
E2 15 0 0

E1, E2 100 14 4
E1, E2 45 2 0
E1, E2 35 1 0
E1, E2 25 0 0
E1, E2 15 0 0

For a Monte Carlo analysis, one hundred tuples were randomly selected from an uniform
distribution in their corresponding definition intervals in order to characterize the generator instances.
The histogram of failed tests for each generator configuration is given in Figure 8. It is clear that the
correct use of an entropy builder greatly improves the randomness quality of the generator. There can
also be observed that the smaller values for parameter change interval—changing the parameters
more often—also improves the quality of the generator, but, as it will be seen in the next subsection,
with a throughput performance penalty. Surprisingly, the lower cost sum entropy builder E1 performs
better than E2 in terms of statistical tests results. Nevertheless, E2 with an interval of 10 displays the
best results of all tested configurations. E2 results are the most irregular, both displaying the best and
the worst results depending on the parameter change interval. One explanation would be that the sinus
function used by E2 is periodic so randomness function of the change interval is also periodic. Thus,
results alternate from all tests failing for 20 and 40 to extremely good results for 10 and 30. However
a combination of the two builders gives the best results on average, but still showing a performance
decay with the increase of the parameter change interval.

NF_GEN general form in Table 2 is evaluated through several tests run with no entropy builder
as well as with a generic form of the E1 builder. E1 sums all state values when builds up entropy
and generates new parameter values by using a fractional modulo operation in order to force the
values in a particular range. The considered range is (−1; 1). The results for the generator without
an entropy is shown in Figure 8 as the last column and it is evident that the percentage of tests passed
is rather low. When using the entropy builder E1, the results did not improve. On the contrary, all tests
for all configurations failed. The reason, most likely, is not selecting appropriate intervals for the
10 parameters of the function. This issue needs further study in future research.
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Analyzing the state-of-the-art generators selected for comparison, it is clear that even the
cryptographically secure pRNG ChaCha does not pass 100% of statistical tests for all seeds tested.
In fact, it scores lower that the non-CSPRNG Mersenne Twister which achieves a 95% of seeds passing
all tests. What this shows is that the passing of statistical tests is a necessary but not sufficient condition
for a CSPRNG. Unfortunately, we were unable to run the Monte-Carlo analysis on the Adaptive
Chirikov Map, since the run-time was extremely long, and we were also unable to reproduce the
results given by the authors.

Figure 8. Monte Carlo analysis of seeds and failed tests for several generator configurations.

3.3. Throughput Test Results

The throughput analysis was done on a Lenovo 920-13IKB convertible, with an Intel Core i7-8550U
processor having a maximum frequency of 4 GHz, 16 GB Dual-Channel SODIMM DDR4 at 2400 MHz,
running Linux Mint 19.2 and using g++ version 7.4.0. The results are shown in Figure 9.

From the three existing algorithms, ChaCha8 is the fastest when compiled with Intel AVX extensions.
This feature allows the processor to generate 32 bytes of random data at once using the 256-bit wide
XMM registers. To test this, the generator function was called for each output byte (instead of generating
an entire 64-byte block at a time), and as a result, the performance plummeted from 390 MB/s to
12.5 MB/s. The Mersenne Twister implementation, as well as any chaos based pRNG, can not make
use of SIMD extensions, as the computation is recursive and as such, inherently sequential. As for the
Adaptive Chirikov Map, because it computes four sin values for each random bit, it is significantly
slower than all others, being able to output only 410 kB of random data each second.

Analyzing several of the proposed configurations, it can be seen that the performance of the
generator depends strongly on the selected entropy builder and the parameter change interval.
However, compared to the non-CSPRNG Mersenne Twister, there is a significant performance
improvement when using E1 as an entropy builder. The best performance is given, as expected, by the
generalized Hénon Map without any entropy builder, but that configuration has a low percentage
of tests passed (≈50%). A good trade-off between tests passed and speed is the Hénon3D with the
E1 builder and 35 iterations between parameter changes. It provides an almost 300% increase of
performance over the Mersenne Twister with only a 10% decrease in percentage of seeds with no test
fails. A safer approach would be to use either E2 with a change interval of 10 or E1, E2 with a change
interval of 15, which pass the same amount of tests as Mersenne Twister but with about 30% increase in
throughput. Compared to AVX-accelerated ChaCha8, the performance needs to be improved. This is
an important target for future work and might be achieved by using several chaotic maps in parallel.
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Figure 9. Throughput of several generator configurations.

4. One-Time Pad Stream Cipher Application

4.1. Application Design

A stream cipher is an encryption mechanism that uses a cryptographically secure pseudo-random
number generator and for each byte in the clear text it generates a pseudo-random byte, producing
the cipher text by XOR-ing the two values together. It has been proven [15] that if the generator is
cryptographically secure and the same sequence is not used for multiple encryptions, the generated
cipher text is impossible to discern from pseudo-random data and thus unbreakable. This section
describes the implementation of such a one-time pad cipher with application on image security.
The implementation uses the PNG Library in Linux to read and write images. The encryption is done
on each byte on each channel on each pixel using a new pseudo-random byte. The application will
write the encrypted result in the same format as the input image (grayscale, color, with or without
alpha channel). The decryption is symmetric therefore it is achieved by running the same application
with the encrypted image as input and the same seed used when encrypting. Running decryption
with a different key yields pseudo-random data as output.

4.2. Results Analysis

The ideal entropy for an encrypted grayscale image is 8 [39] as it can be deduced from:

H(s) = −
2n−1

∑
k=0

p(k) · log2 p(k) (5)

where k is a certain gray level, p(k) is the probability of occurrence of that particular gray level k and n
is the number of bits per pixel (here n = 8).

An image obtained from a phone camera was enciphered in Figure 10. As it can be observed in
the left side of Table 4, this plain-image (given in Figure 10, left side) already has a high entropy level.
Next to it, the middle image shows the result of the encryption process when using (a; b) = (0.15; 0.1)
(a pair not engendering chaotic behavior for the generalized Hénon map). Its corresponding entropy is
slightly greater than for the plain-image, 7.20 compared to 7.17, being still clearly visible. When E2

is used alone, the right image from Figure 10 and its corresponding entropy in Table 4 show a weak
encryption. The image encrypted with (a; b) = (1.76; 0.1) (enabling chaos [40]), has a satisfying result
of H(s) = 7.99, as it is the case for the entropy builder from [32] also. Switching the a parameter using
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E1 and b with E2 (see (4)) gives 7.99 as well, the encryption being indiscernible, the image being similar
to the one in Figure 11, bottom right.

Figure 10. A high entropy plain-image and its poorly encrypted versions.

Table 4. Entropy values for plain-images in Figures 10 and 11 and their enciphered versions.

Entropy Entropy

original image 7.17 original image 0.19
encrypted; (a; b) = (0.15; 0.1) 7.20 encrypted; (a; b) = (0.15; 0.1) 1.19
encrypted; (a; b) = (1.76; 0.1) 7.99 encrypted; (a; b) = (1.76; 0.1) 7.99
encrypted with E1 7.99 encrypted with E1 7.99
encrypted with E2 7.94 encrypted with E2 5.55
encrypted using E1 and E2 7.99 encrypted with E1 and E2 7.99

An image characterized by a very low entropy was used to highlight the effect of the enciphering
process in Figure 11. From the left to right and top to bottom, there are shown: the plain-image,
the encryption with (a; b) = (0.15; 0.1), enciphering with E2, and the bottom right image is the result
of successful encryption when using (a; b) = (1.76; 0.1), using E1, respectively E1 and E2. The visual
effects are the same as for the high level entropy plain-image in Figure 10, but the entropy computed
in Table 4 is more conclusive since it shows the differences between original and cipher more clearly.

Figure 11. A low entropy plain-image and its encrypted versions.

Inspired by a statistical test obtaining independent and identically distributed data from chaotic
maps [20] and some pRNGs using it [41,42], we enciphered the same images as in Figure 10 and in
Figure 11 with different update period for the entropy builder E2. Entropy values are given in Table 5
and histograms of the enciphering in Figure 12. The bottom middle histogram appears empty because
the values are concentrated in 0 and 255. While update periods of 10 and 70 improve the enciphering
using the entropy builder E2, the distance of 20 iterations does not have the same satisfying result.
Nevertheless, this is an issue that is to be thoroughly addressed in a future paper.
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Table 5. Entropy values for encrypted images with E2 and update period of 10, 20 or 70.

Update Period Entropy for Image in Figure 10 Entropy for Image in Figure 11

10 7.99 7.99
20 7.17 0.24
70 7.99 7.99
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Figure 12. Histograms of encypherings using E2 and update period of 10 (left), 20 (middle), 70 (right).

Further, we analyzed the correlation between adjacent pixels of the encrypted images compared
to those of the plain-image. Scatter diagrams for adjacent pixels were plotted for the high entropy level
plain-image in Figure 10 (top) and for the low entropy-level image in Figure 11 (bottom). Results are
given in Figure 13. The top left up corner depicts the almost perfect correlation existent in the original
high entropy image, while the down left corner shows the two gray levels in the low entropy chosen
image. The middle correlations reflect the uniform distribution of pixel values when enciphering using
the random-like behavior enabling parameters (a; b) = (1.76; 0.1) or the E1 entropy builder, as well as
E1 and E2. The right up corner demonstrates a pattern in the scatter plot, when using E2, indicating
dependence in the values of enciphered pixels. The right bottom corner (update with E2) also shows
unsatisfactory results, because the two gray-levels existing in the original low entropy level image
were maped to only a few different intensity levels.

Aiming to investigate the information obtained when deciphering with the wrong key, we changed
each of the parameters and the initial state values at the receiving end. The computation revealed that
the entropy is the same in this case as for the encrypted versions demonstrating that even the smallest
change of 10−15 of any of the components of the seed will not reveal any information regarding the
clear input image.
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Figure 13. Correlation for the high entropy level image (top) and the low entropy level image (bottom).

5. Conclusions

In this paper the authors proposed a template scheme for a cryptographically secure
pseudo-random generator based on the chaos theory. Several configurations were proposed and tested
with TestU01 and NIST batteries and performance-wise against the Mersenne Twister implementation
in the GNU C++ standard library, an established CSPRNG and a state of the art chaos based pRNG.
The tests showed that for certain configurations, most of the seeds tested passed the statistical analysis.
The throughput depends on the entropy builder function and the parameter change interval and as in
most cases, a trade-off must be made between speed and security. As proof of concept, the generator
was used to implement a one-time pad cryptographic system. The system was used to encipher
UHD images which were then analyzed by computing entropy, through histograms and correlation
coefficients. Therefore, chaotic functions are suitable building blocks for pseudo-random number
generators but a mechanism for breaking patterns is necessary for ensuring randomness for all initial
states. The authors plan to include the one-time pad developed in this research in a real time high
resolution video streaming application. In order for this to work, throughput must be increased with
a factor of 10.
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Abbreviations

The following abbreviations are used in this manuscript:
API Application Programming Interface
AVX Advanced Vector Extension
CPU Central Processing Unit
CSPRNG Cryptographically Secure Pseudo-Random Number Generator
DDR4 Double Data Rate (Synchronous Dynamic Random-Access Memory), version 4
GCC GNU Compiler Collection
GNU GNU’s Not Unix!
NIST National Institute of Standards and Technology
PNG Portable Network Graphics
pRNG Pseudo-Random Number Generator
RGB Red Green Blue
SIMD Single Instruction Multiple Data
SODIMM Small-Outline Dual Inline Memory Module
TSP Telecommunications and Signal Processing Conference
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