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Abstract: Plug-in Hybrid Electric Vehicles (PHEVs), as a new type of environmental-friendly low
cost transportation, have attracted growing interests for logistics. The path-planning optimization for
PHEV has become a major challenge. In fact, PHEV-based routing optimization is a type of hybrid
vehicle routing problem (HVRP). Compared with the traditional Traveling Salesman Problem (TSP)
and Vehicle Routing Problem (VRP), the PHEV routing problem should consider more constraints,
such as time limits, capacity constraints (including fuel tank capacity and battery capacity), electric
stations, fuel stations and so forth. In this paper, a Mixed Integer Linear Programming formulation
is presented and a novel hybrid metaheuristic approach (HMA_SVND) is proposed. Our method
is a combination of memetic algorithm (MA), sequential variable neighborhood descent (SVND)
and a revised 2_opt method. Comparative studies show that our proposed method outperformed
previous works.

Keywords: hybrid vehicle routing problem; memetic algorithm; sequential variable neighborhood
descent; plug-in hybrid electric vehicle

1. Introduction

Transportation plays an important role in the logistics system. Actually, transportation for logistic
mainly contained two phases: sending raw materials from suppliers to manufacturers and the delivery
of finished products from manufacturers to customers [1]. However, current transportation mostly
employs fuel powered vehicles, which emit a lot of greenhouse gases (GHG) and harmful substances,
such as carbon dioxide and sulfide, causing various environmental problems. Therefore, energy saving
and emission reduction are more than necessary for logistic transportation. Recently, the conception
of green logistics has been proposed. Green logistics is more environment-friendly. It has quickly
become a hot research subject. By optimizing the usage of logistic resources, it focuses on restraining
the environmental harm while reducing the whole logistic cost.

In order to build green logistics, the first objective is to make a reasonable layout and path
planning. This is usually regarded as a Vehicle Routing Problem (VRP). The VRP is a well-known
NP-hard combinatorial optimization problem. It was first introduced in 1959 [2]. The VRP problem is
different from traditional routing problems such as Traveling Salesman Problem (TSP), it can be more
complicated by taking consideration of multiple vehicles and various constraints. The classical VRP
problem can be summarized as follows [3]—there is a certain number of customers with different cargo
needs. Distribution centers provide cargo to customers. A fleet is responsible for distributing cargo and
organizing appropriate driving routes. The aim is to satisfy the customer’s needs and to achieve goals
like minimizing the travel distance, reducing costs or optimizing travel time under certain constraints.
Lin et al. [4] provided a review study on VRP and classified them into two categories—traditional VRP
and Green Vehicle Routing Problem (GVRP) which is firstly proposed by Erdoğan and Miller-Hooks [5].

Appl. Sci. 2020, 10, 441; doi:10.3390/app10020441 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5026-8513
https://orcid.org/0000-0002-1139-8320
http://dx.doi.org/10.3390/app10020441
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/2/441?type=check_update&version=2


Appl. Sci. 2020, 10, 441 2 of 23

Compared to VRP, GVRP considers environmental factors in the whole route planning. GVRP aims to
achieve the balance of economic and environmental interests.

The abbreviation of HVRP used in this work is derived from Mancini’s [6] article, in which the
Hybrid Vehicle Routing Problem is defined as an extension of the classical VRP where vehicles can
work both electrically and with traditional fuel. Lin et al. [4] classified HVRP as a special case of GVRP.

Green vehicles or environment-friendly vehicles are also known as new energy vehicles (NEVs),
of which, Battery Electric Vehicle (BEVs) is considered one of the most promising solutions to
zero-emission transportation. Compared to traditional fuel powered vehicles, BEVs use renewable
sources, they are not only much more environment-friendly, but also more energy efficient [6].
However, due to the limitation of the battery capacity, they require frequent visits to recharging
stations along the route. At present, the major issue for BEV is that the number of charging stations
in urban areas is quite limited globally. In addition, due to the physical characteristics of electric
batteries, pure electric vehicles now have shorter transport distances in cold regions. Therefore, BEVs
are ideal for last mile deliveries rather than long distance transportation. Hybrid electric vehicles
(HEVs), on the contrary, are powered by both fuel and electricity [7]. It can be more practical for
long distance logistics. A Plug-in Hybrid Electric Vehicle (PHEV) is the latest generation of HEVs.
The PHEV used in this paper is not for inter-city logistics distribution, but for intra-city logistics
distribution. PHEVs have been gradually applied in intra-city logistics in many countries. In terms
of logistics, PHEVs can be more economical and environment-friendly than traditional fuel powered
vehicles [8]. Furthermore, it can serve a much longer distance compared to pure electronic logistic
vehicles. The difference between PHEV and ordinary HEVs is that the battery capacity of ordinary
HEVs is very limited and its battery cannot be charged externally. The HEV’s driving distance in pure
electric mode is very short; on the contrary, a PHEV can be charged at any available electric power
stations. It can operate in pure electric mode (zero-emission). After battery power is exhausted, it can
automatically shift into hybrid mode (mainly fuel power). Therefore, PHEVs combine the advantages
of fuel powered vehicles and pure electric vehicles. Hiermann et al. [9] studied an electric vehicle
routing problem combining conventional, plug-in hybrid, and electric vehicles. To solve this problem,
they have designed a sophisticated metaheuristic which combines a genetic algorithm with local and
large neighborhood search. Björnsson and Karlsson [10] gave detailed explanations of the advantage
of PHEV and BEV under different scenarios. Silva et al. [11] evaluated energy consumption, emissions
and costs of PHEV.

Path planning for a plug-in hybrid vehicle is a typical Hybrid Vehicle Routing Problem (HVRP).
Lin et al. [4] classified HVRP as a special case of GVRP. The traditional vehicle routing problem
does not consider the access to the fuel stations, while the electric vehicle routing problem (EVRP)
considers the access to the electric stations. The HVRP should further consider the access to both
electric stations and fuel stations. In addition, HVRP takes into account the environmental impacts.
The method and model in this paper are based on some assumptions—Firstly, the vehicle’s speed keeps
constant in the course of route driving. Secondly, PHEV has two energy sources, fuel and electricity,
electricity has a high priority, and when the maximum driving capacity of the battery is exhausted,
the vehicle will switch to the fuel mode. In this work, time limits, battery capacitance and fuel capacity
are also the major considered constraints. The purpose is to consider the use of electricity and fuel
reasonably according to the availability of electric or fuel stations while minimizing the total travel
cost. A good PHEV routing solution can help enterprises or organizations reducing the overall travel
cost by providing the optimal/near-optimal path planning within a certain time limit.

Contribution and innovation of this study are highlighted as follows:

• Compared with the existing HVRP studies on PHEV routing problem (Yu et al. [8]), this work
deals with a complicated PHEV routing problem in which the types of charging power stations
(fuel station or electric station) are provided to the vehicle. The vehicle can be refueled or charged
during its delivery.
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• The PHEV routing problem is formulated as a Mixed Integer Linear Programming model, different
from previous research, various hybrid vehicles are considered.

• This study proposes a new hybrid metaheuristic which combines the memetic algorithm with a
powerful local search technique SVND; the experimental results show that our algorithm obtains
better results than previous ones.

The rest of this article is organized as follows. Section 2 reviews the relevant literature. Section 3
defines the problem. Section 4 describes the proposed memetic algorithm and SVND neighborhood
search method. Section 5 reports the experimental results and the conclusion is given.

2. Literature Review

The Vehicle Routing Problem (VRP) was first introduced in 1959. Since then, many variants of the
VRP problem have been studied. Recently, the environmental impacts of logistics transportation have
grabbed more attention. Green logistics has therefore become a hot research topic. It was first proposed
by Dekker et al. [12] and Sbihi et al. [13], and it takes environmental problems into combinatorial
optimization problems. Indeed, green logistics has attracted increasing research attention. For example,
the GVRP was proposed by Erdoğan and Miller Hooks et al. [5], and focuses on reducing emissions and
eliminating environmental impacts. In their work, they considered the limited fuel capacity of vehicles
and the possibility of refueling at fuel stations along the way. In recent years, there have been many
studies on the variants of GVRP and there are some studies combining carbon emissions or energy
consumption with different constraints and optimization objectives. For example, Messaoud et al. [14]
proposed the Dynamic Green Vehicle Routing Problem (DGVRP), which combines the Dynamic Vehicle
Routing Problem (DVRP) with GVRP. Leu et al. [15] took into account the distribution efficiency
and carbon emissions and developed a cargo flow modeling method to analyze logistics planning.
Ubeda et al. [16] conducted a study aimed at minimization of both traveling distances and pollutant
emissions. For GVRP, there are two kinds of solutions based on exact and heuristic algorithms. Zhou
et al. [17] proposed a Lagrangian Relaxation-Based Solution for GVRP. Zhang et al. [18] proposed a new
tabu search named the RS-TS algorithm to solve the Vehicle Routing Problem with fuel consumption
and carbon emissions. Demir et al. [19] used an adaptive large neighborhood search algorithm (ALNS)
to minimize driving time and fuel consumption, respectively. Lately, many works have focused on
the path planning problem of new energy vehicles. The path planning problem for electric vehicles
is called the electric vehicle routing problem (EVRP). Schiffer et al. [20] proposed a location routing
method for charging stations, which considered both the path of electric vehicles and the location of
charging stations. On the basis of EVRP, Shao et al. [21] considered the impact of an electric vehicle’s
driving speed and cargo load on energy consumption. They adopted a hybrid genetic algorithm to
solve the problem. For EVRP, latter works also considered time window constraints. Roberti and
Wen [22] investigated the Electric Traveling Salesman Problem with Time Windows. Keskin and
Çatay [23] discussed the electric vehicle routing problem with time-windows and partial recharging
(EVRP-TWPR). In recent works on EVRP, the objectives have been to reduce energy consumption,
cost, distance and so on. In terms of constraints, the layout of charging stations, partial charging,
time window and variable speed are considered. For example, Mavrovouniotis et al. [24] applied the
ant colony algorithm (ACO) for EVRP which estimated whether the electric vehicle has a charging
station in its working range. Schneider et al. [25] introduced a hybrid heuristic for EVRP with time
windows and recharging stations. Hannan et al. [26] provided a comprehensive survey of HEVs’
source combination, models, energy management systems and so forth. Wen et al. [27] discussed the
plug-in electric vehicles (PEVs) charging selection problem.

Plug-in hybrid vehicles are regarded as one of the most environment-friendly solutions for
logistic transportation. Actually, there are more related works that try to provide a solution for HVRP.
The vehicle routing problem for new hybrid energy vehicles is termed HVRP, which was proposed
by Mancini [6]. The author defined HVRP as an extension of GVRP, in which vehicles can use both
electricity and fuel, the unitary travel cost is much lower for distances covered in electric mode, a mixed
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integer linear programming formulation and a large neighborhood search based on matheuristic are
proposed. Yu et al. [8] proposed a simulated annealing (SA) algorithm based on restart strategy for
HVRP. Hiermann et al. [9] presented a complex meta-heuristic method, which combines a genetic
algorithm with a local and large-scale neighborhood search. Macrina et al. [28] proposed an iterative
local search heuristic algorithm to optimize the routing of hybrid vehicles with electric engines and
internal combustion engines. Sun and Zhou [29] proposed a Cost Optimization Algorithm (COA)
based on the fact that plug-in hybrid electric vehicles have two power sources, so even along the
same route, different power choices will lead to different energy consumption. In Tarek Abdallah’s
thesis [30], the vehicle routing problem for PHEV with time window constraint is studied. The objective
of optimization is to minimize the fuel powered driving time within the time window. A Lagrange
relaxation method is used to solve this problem, also a new tabu search algorithm is proposed. To our
knowledge, Tarek Abdallah was the first to put forward the vehicle routing problem for PHEV.

Generally, HVRP is a combinatorial optimization problem. The solutions can be divided into
three categories—neighborhood-centered, population-based and hybrid methods [31]. The first type
of approach is generally proceeded by iteratively exploring neighborhoods of a single incumbent
solution. Such as Simulated Annealing (SA) [8], Adaptive Large Neighborhood Search (ALNS) [32],
Large Neighborhood Search (LNS) [5]. The second type is usually based on natural laws, such as
Genetic Algorithms (GA), Evolutionary Algorithms (EA) and Memetic Algorithm (MA) [33]. The third
combines the previous methods, it is a hybridization of the metaheuristic and a powerful local search
technique. Vidal (2012) et al. [34] proposed a new approach based on a hybrid genetic algorithm for
Multidepot and periodic vehicle routing problem. The algorithm combined population evolutionary
search, meta-heuristic neighborhood search and adjusted population diversity management to improve
the solution’s general performance.

As a matter of fact, there are many studies about the vehicle routing problem of electric vehicles,
but few articles about the vehicle routing problem of PHEV. To some extent, this paper presents a
Mixed Integer Linear Programming model and provides a new algorithm for the vehicle routing
problem of PHEV. In our previous work [35], we employed a memetic algorithm for solving the
PHEV based HVRP problem by considering both electric and fuel stations. In order to obtain a better
solution for a large-scale HVRP with PHEV, we have made some improvements on the previous
algorithm. We proposed a novel hybrid memetic algorithm. It mainly combines memetic algorithm
with sequential variable neighborhood descent (HMA_SVND). We tested our new approach on larger
test instances and detailed comparative studies on open source benchmarks are performed.

3. Problem Description and Mathematical Formulation

Inspired by the works of Yu et al. [8], Erdoğan [5] and Mancini [6], we describe the problem as
follows—the PHEV routing problem can be defined as an undirected complete graph G = (V, E),
where vertex set V is a combination of the customer set I = {v1, v2, . . . , vn}, the depot v0, a set of
fuel stations (S f ) and a set of electric stations (Se). The fuel station or electric station can be visited
several times by the vehicle. Each node j is characterized by a service time pj. Each edge (vi, vj) is
associated with a non-negative travel time tij and distance dij. This problem seeks to find at most m
tours, visiting a subset of vertices including Se and S f when needed such that the total transportation
cost is minimized. The studied problem considers two kinds of constraints: time constraint and
capacity constraint (including fuel tank capacity and electric capacity). The time constraint means
that the duration of the route in a feasible solution should not exceed the Tmax. Admittedly, in certain
cases, there is a possibility that all customers are visited by one vehicle. The following assumption is
considered in this work.

1. All customers need to be visited and each customer can only be visited once.
2. There are at most m vehicles available and each vehicle must start and finish in the depot.
3. Vehicles can enter Se or S f when needed. The station type Z(Sz) can be visited more than once or

not visited at all.
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4. There are no restrictions on the number of vehicles accessing electric or fuel stations.
5. When the vehicle visits the power station, the corresponding fuel or electric energy will be

filled up.
6. Once the vehicle returns to the depot, both its fuel and battery will be filled to its maximum.
7. Each route may be covered using only the electric engine, or a part of it can be covered using

traditional fuel propulsion, we give energy priority to electricity power.
8. Travel speeds are assumed to be constant over a link.
9. The travel time of each vehicle used in this problem should not exceed the predetermined

maximum time Tmax.

The mathematical formulation of PHEV routing problem is as follows:
Objective function:

Min ∑
i,j∈V0

i 6=j

∑
z∈Z

∑
k∈M

fijkzcz. (1)

Subject to:

∑
j∈V0
j 6=i

∑
k∈M

xijk = 1 ∀i ∈ I (2)

∑
j∈V0
j 6=i

∑
k∈M

xijk ≤ 1 ∀i ∈ S0 (3)

∑
j∈V0
j 6=i

∑
k∈M

xjik = ∑
j∈V0
j 6=i

∑
k∈M

xijk ∀i ∈ V (4)

∑
j∈V

∑
k∈M

x0jk ≤ m (5)

∑
j∈V

∑
k∈M

xj0k ≤ m (6)

τj ≥ τi + (tij + pi) ∑
k∈M

xijk − Tmax(1− ∑
k∈M

xijk) ∀i, j ∈ V0, and i 6= j (7)

0 ≤ τ0 ≤ Tmax (8)

t0j ≤ τj ≤ Tmax −
(
tj0 + pj

)
∀j ∈ V (9)

yjkz ≤ yikz − fijkz + C(1− Xijk) ∀i, j ∈ V0, ∀k ∈ M, ∀z ∈ Z, and i 6= j (10)

fijkz ≤ Qkz ∀i, j ∈ V0, ∀k ∈ M, ∀z ∈ Z, and i 6= j (11)

fijkz ≤ yikz ∀i, j ∈ V0, ∀k ∈ M, ∀z ∈ Z, and i 6= j (12)

∑
z∈Z

fijkz

rkz
= dijxijk ∀i, j ∈ V0, ∀k ∈ M (13)

yjkz = Qkz ∀i, j ∈ V0, ∀k ∈ M, ∀z ∈ Z (14)

xijk ∈ {0, 1} ∀i, j ∈ V0, ∀k ∈ M (15)

yjkz ≥ 0 ∀j ∈ V0, ∀k ∈ M, ∀z ∈ Z (16)

τj ≥ 0 ∀j ∈ V0 (17)

fijkz ≥ 0 ∀i, j ∈ V0, ∀k ∈ M, ∀z ∈ Z. (18)

Objective (1) is to minimize the total cost of travel using PHEVs in a given day. Constraint (2) and
(3) ensure that each customer is visited exactly once by one vehicle and each station may be visited at
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most once, respectively. Route continuity is guaranteed by constraint (4) while a maximum number of
routes is imposed by constraints (5) and (6).

The arrival time at each vertex by one vehicle is tracked through constraint (7). Constraint (8)
ensures that each vehicle returns to the depot before the time limit Tmax. Constraint (9) implies the
lower and upper bound on arrival time at customer and station vertices.

Constraint (10) tracks a vehicle’s energy level based on vertex sequence and type. If vertex j is
visited right after vertex i by vehicle k (Xijk = 1), then the vehicle’s remaining energy level should
minus the fuel and electric consumed on this route. Constraints (11) and (12) implies the upper bound
of energy consumption of type z from vertex i to vertex j by vehicle k. Constraint (13) implies that
vehicle k’s energy consumption from vertex i to vertex j is based on the distance and vehicle k’s energy
consumption rate. Constraint (14) resets the power level of type z to Qkz after visiting the depot or the
station vertex of type z. Finally, the domain of the variables are specified by the constraints (15) to (18).

4. Methodology

A memetic algorithm is a hybridization of a genetic algorithm with a local search, so this work
proposes a memetic algorithm using an SVND.

4.1. Memetic Algorithm

Memetic Algorithm (MA), a population-based metaheuristic, is an improvement of the
evolutionary algorithm (EA). It is defined by the collaboration between cultural evolution and natural
evolution to explore and exploit the search [36]. The concept of MA was inspired by Dawkin’s notion
of memes (a unit of cultural evolution), which consists of self-improvement [37]. The classical memetic
algorithm is a combination of EA and local search procedure (LSP). The pseudo code of standard MA
is given in Algorithm 1.

Firstly, an initial population is generated randomly and a local search procedure is applied to
optimize it. Then, the fitness values of all the individuals are calculated by using an evaluation process.
Afterwards, during the whole loop, the selection, crossover and mutate operators are employed to
generate new offsprings. These offsprings are further optimized through the local search procedure,
then these solutions are evaluated through the evaluation process. After that, the SelectNewPop
operator tries to choose the best individuals for the population of the next generation. These steps are
repeated until the stopping criterion is satisfied.

Algorithm 1: Structure of the Memetic Algorithm

Input: Data of problem and parameters of algorithm
Output: The best individual
Begin

t← 0
P(t)←InitPop()
P(t)←LocalSearch(P(t))
Evaluate Fitness(P(t))
While stopping criterion is not satisfied DO

P’(t)←Selection(P(t))
P’(t)←Crossover(P’(t))
P’(t)←Mutate(P’(t))
P’(t)←LocalSearch(P’(t))
Evaluate Fitness(P’(t))
P(t+1)←SelectNewPop(P(t),P’(t))
t←t+1

End While
End
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4.2. Representation and Evaluation

The solution consists of n customers and q(q ≥ 0) selected fuel or electric stations, where the power
stations come from sets Se and S f . Each customer must be visited and can only visited once, but each
electric station and fuel station may be visited more than once or not at all. Therefore, the number of
visited power stations in solutions may be different. Index 0 represents the depot, the ith number in
1, 2, ..., n denotes the ith customer to be served. The following number of n + 1, n + 2, ..., n + m then
denotes the index of power stations. Figure 1 shows two feasible solutions.

An example in Figure 1 shows the representation for an instance where 15 customers need to be
visited and 4 power stations were considered, indexes 1 to 15 represent the customers, 16 and 17 electric
stations, 18 and 19 fuel stations. As can be seen from Figure 1a,b, we adopt a chromosome coding
method in which −1 is used as the delimiter between routes. In Figure 1a only 15 customers were
visited without access to the energy station and 4 vehicles were used to visit all customers. In Figure
1b, all customers were visited by 3 vehicles, and the second vehicle and the third vehicle visit a electric
station and a fuel station in their tour, respectively. Comparing two representations, the latter uses
fewer vehicles because there are vehicles visiting the power station on the way, their driving distance
capacity was extended. Of course, their driving time still should not exceed Tmax.

Figure 1. Example of the proposed representation. (a) is a feasible solution without accessing power
stations. (b) is a feasible solution accessing power stations.

As we considered more constrains than GVRP [5] and HVRP [6] in this work, there would be
more infeasible solutions during the computation of the objective function; however, the elimination
of all infeasible solutions would harm the diversity of the population and the solution would highly
likely fall into local optimum. Therefore, we introduced a penalty mechanism to maintain the diversity
of population. The evaluation of the solution can be described as follows—the delimiter is a sign
to distinguish different routes. For each route, we need to determine whether time constraint and
vehicle energy capacity constraint are satisfied. We set the time constraint as a soft time constraint,
and the solution beyond Tmax is also acceptable. Only a certain penalty should be added to reduce
the probability of the solution selected, the objective function of the solution with penalty P will
become worse and be eliminated in the process of iterating to produce the new solution. The reason
for introducing penalty P is to ensure the diversity of population. However, when the residual electric
and fuel energy of the vehicle are not enough to support its return to the depot or to the nearest energy
station, the solution is not feasible. The feasibility checking of the solution refers to the checking of the
vehicle energy capacity constraint, which is a constraint condition. If the constraint is violated, the
solution is not feasible. We added an infinite number to the objective function to cancel the probability
of the solution being selected.the pseudo-code for evaluation procedure is shown in Algorithm 2,
where the symbols vn, EPCosti, FPCosti, time_spenti represent the number of the route, the cost of
electric, the cost of fuel and the time spent in route i, respectively.
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Algorithm 2: Evaluation of the individual

Input: An individual
Output: The value of objective function
Begin

Cost←0
for i = 1 to vn do

Calculate EPCosti, FPCosti of route i
Cost← Cost + ce × EPCosti + c f × FPCosti
Calculate time_spenti
If time_spenti > Tmax then

Cost← Cost + P
End
Solution-feasibility checking
If unfeasible then

Cost← Cost + A large Penally
End

End
return Cost

End

4.3. Individual Initialization

Generally, the initial solutions are generated randomly but the convergence of the solution can
be accelerated by using a heuristic. In this work, in order to speed up the convergence, we generate
an initial population including a heuristic solutions and random solutions to explore the different
regions of solution space. A single individual can be generated by a novel approach which is revised
from Nearest Neighborhood Heuristic (NNH) [38] and the other individuals are generated randomly.
The detailed procedure of this method is shown in Algorithm 3.

4.4. Select Individual for the Recombine Operator and The Mutate Operator

Inspired by Singh and Banghel [39], Singh and Gupta [40], to avoid premature convergence of
programs, we have used a binary tournament individual selection based on the probability pbetter.
The candidate with better fitness is selected with this probability. It is a pre-set value, and this value
is suggested to 0.8 [41]. The binary tournament selection takes two individuals randomly from the
population, it means that in each selection process, we first generate a random number. If this random
number is smaller than the pbetter, we choose the better one in the two individuals, otherwise we choose
the worst one. This process will be repeated twice to select two different individual as the parents for
the recombine operator and the mutate operator. The pseudo code of the binary tournament selection
is given in Algorithm 4.
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Algorithm 3: Method to generate a signal individual

Input: The data of problem
Output: An initial solution R
Begin

i = 0, count = 0, R = NULL
vn = 1, routevn = NULL
While count ≤ n DO

j=the nearest unassigned node from i
If i = 0 then

time_spent = Tij + Tji
Else

time_spent = time_spent− Ti0 + Tij + Tj0
End
If time_spent ≤ Tmax then

routevn = routevn + j
i = j
count ++

Else
i = 0, vn ++

routevn = NULL
End

End While
for i = 1 to mR do

Calculate EPi and FPi of route i
If EPi and FPi >vehicle capacity then

routevn = routevn + Se or S f
R = R + routevn

End
End
return R

End

Algorithm 4: The pseudo-code of binary tournament selection

Input: Individual population
Output: new population X
Begin

Select two employed solution S1 and S2 from the population
r=random()
If r < pbetter then

X←the best of S1 and S2

Else
X←the worst of S1 and S2

End
return X

End

4.5. Recombine Operator

Before the recombine operator, we obtained two parent individuals by using binary tournament
selection method. In this paper we attempt to exchange memes between two parents to obtain new
individuals. The recombine operator was proposed firstly by Singh and Baghel [39] to solve a multiple
traveling salesperson problem (MTSP) where the number of vehicles is fixed. In our studied problem,
due to the uncertainty of vehicle number and the choice of the power station, the individual may have
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different tour numbers and different individual lengths. Thus, a new revised recombine operator is
proposed to solve the studied problem, the details of the reorganization operation are as follows:

Let x1 and x2 be the two selected parents to recombine operator and let m1 and m2 be the number
of tours present in x1 and x2, and mR is defined as the minimum tour number mR = min(m1, m2).
The recombine operator can be divided into the following steps. The first step, sorting all tours by
their distances in an ascending way within x1 and x2, and then it constructs a offspring individual x′

in an iterative way. In each iteration, it selects one of the two parent individuals randomly and moves
the ith tour to x′. This process is repeated in mR times in our case and the parents are selected with
equal probability. Clearly, at the end of first stage, some customers still remain unassigned and they
will be moved into an unassigned list.

In the second stage, we adopt the method proposed by Singh and Baghel [39] to generate good
solutions. During each iteration, the customers in the unassigned list are reassigned one by one
to x′. Each time it assigns a customer to a particular tour whose distance increases the least by
this reassignment. To achieve this, we have to check all possible insertion positions in every tour.
Simultaneously, in order to avoid having only the depot in the route of the generated offspring x′,
a repair operation is performed. In this repair operation, we choose a tour randomly that has more
than two customers, and move one customer to the route which has only one depot. The pseudo code
of the recombine algorithm is given in Algorithm 5.

Algorithm 5: The pseudo-code of recombine.

Input: Two parent individuals x1 and x2

Output: The new offspring individual x′

Begin
Sort the tours of x1 and x2 according to their distance
mR=the minimum tour number of x1 and x2

for i = 1 to mR do
r=random()
If r > 0.5 then

S=get tour i from x1
Else

S=get tour i from x2

End
add S to x′

Delete the same city of S from both x1 and x2

End
unassigned list←Unallocated city
for j = 1 to the size of unassigned list do

Insert city j from unassigned list to a tour of x′ by minimum
distance increment

End
If there is only the depot in a tour then

x′=repair(x′)
End
return x′

End

4.6. Mutate Operator

In the mutate operator, all tours in x are sorted in ascending order. Each customer from a tour i is
moved to x′ with varied probability Pcopy, otherwise the customers are moved to the unassigned list.
This process is repeated until all customers are moved from x. Then, the customers in the unassigned
list will be reassigned to x′ by the same process in the recombine operator.
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Venkatesh and Singh [41] explained why they did not use the constant probability, but the
probability related to the number of iterations and they defined Pcopy in detail, it can be determined by
the following equation:

Pcopy =
(Pmaxcopy − Pmincopy)

itermax
× iter + Pmincopy. (19)

Where iter is the running time or the number of iterations, itermax is the maximum running time
or the maximum number of iterations, Pmaxcopy and Pmincopy represent respectively the maximum value
and the minimum value of Pcopy. The algorithm for mutate is given in Algorithm 6.

Algorithm 6: The pseudo-code of mutate

Input: Two selected individuals x
Output: The new offspring individual x′

Begin
Sort the tours of x according to their distance
TN=the tour number of x
for i = 1 to TN do

r=random()
If r < Pcopy then

S=get tour i from x
Else

unassigned list=get tour i from x
End
add S to x′

Delete the same city of S from x
End
for j = 1 to the size of unassigned list do

Insert city j from unassigned list to a tour of x′ by minimum
distance increment

End
If there is only the depot in a tour then

x′=repair(x′)
End
return x′

End

4.7. Sequential Variable Neighborhood Descent

Variable Neighborhood Search (VNS) is a metaheuristic based on a systematic change of the
neighborhood structures within a search introduced by Mladenović and Hansen [42]. It is based on the
idea of a systematic change of neighborhood both in a descent phase to find a local optimum and in a
perturbation phase to get out of the corresponding valley [43]. It has been proved that it could solve
various combinatorial optimization problems. The Sequential Variable Neighborhood Descent (SVND)
is a sample variant of the basic VNS where the systematic changes of the neighborhood structures
are performed in a deterministic way. The pseudo code of SVND is shown in Algorithm 7. It should
be noted that there are two ways to explore local search, one is called first improvement strategy
(a move made when an improvement in the neighborhood is once found) and the other is called the
best improvement strategy (a move to the best solution in the neighborhood) [44]. In this work, we
adopted the former.

The SVND in this paper is applied as a local search algorithm to improve the performance of
a global search algorithm, and five neighborhood structures are proposed in this study (lmax = 5).
Among all the new individuals produced, the SVND is used to improve the best one among them.
The SVND method starts from a given solution x, and the lth neighborhood structure is applied to
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generate a new solution x′, then the fitness value f (x′) is compared with the current value f (x). If the
new value is better, the solution x moves to x′ and continue the search with premier neighborhood
(l ← 1), otherwise the next neighborhood structure is applied with l ← l + 1. If the search operation
runs lmax times without finding better values. The process will be terminated. Specifically, during the
search process, an extra search technique 2_opt is applied when the new solution x′ is better than the
incumbent, it generates x′′ and update the solution x only when f (x′′) < f (x). The 2_opt method and
the neighborhood structure in the SVND algorithm are described in the following.

Algorithm 7: The pseudo-code of SVND

Input: the best offspring individual x
Output: The new offspring individual x′

Begin
l ← 1
while l < lmax do

x′ ←lth_neighborhoodmove(x)
if f (x′) < f (x) then

x ← x′, f (x)← f (x′)
l ← 1

else
l ← l + 1

end
x′′ ← 2_opt(x)
if f (x′′) < f (x) then

x ← x′′, f (x)← f (x′′)
end

end while
return x

End

4.7.1. 2_Opt Method

The 2_opt method used in this paper was proposed by Lin et al. [45]. It is a simplified form of the
Lin-Kernighan algorithm [46], which is known as the k-opt method. In this paper, we can get a better
solution by constantly comparing the distances of customers in the cycle. If the following equation is
satisfied, then the indices of targets i + 1 and j should be swapped. Such comparisons can be repeated
many times over a route, number of repetitions equals to the length of route-2. The same operation
finally updates all routes. The pseudo-code for the 2_opt method is given in Algorithm 8.

di,j+1 + dj,j+1 > di,j + di+1,j+1 (20)

4.7.2. Neighborhood Search Structure

The performance of the local search procedure depends on the choice of neighborhood structures.
The size of the neighborhood is a key factor; the larger the neighborhood, the more likely it could
contain better solutions [46]. We utilize five neighborhood structures in this work, for example, Swap,
Insertion, Reverse, Insertion stations and Delete stations. The first three neighborhood structures are
common changes in other VRP papers, and the latter two are unique to the hybrid vehicle routing
problem in this paper. These operators are briefly explained below and illustrated in Figure 2.

1. Swap: The swap move is carried out by exchanging the positions of randomly selected i and j
nodes of solution x. It should be noted that i and j may come from the same route or may come
from different routes. That is to say, the swap operation may be an Intra-route movement or an
Inter-route movement.
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2. Insertion: The insertion is implemented by randomly selecting a node from index i and inserting
it immediately following a randomly selected j node of x. Similar to swap, insertion operation
may be an Intra-route movement or an Inter-route movement.

3. Reverse: A reverse is performed by randomly selecting i and j nodes from the same route of
solution x and then reversing the substring in-between them.

4. Insertion Stations: An insert station is executed by choosing a station each from Se and S f , and
then inserting them into the preceding random i index on solution x. Fuel stations, electric
stations and insertion locations are randomly selected.

5. Delete Stations: A delete station means randomly taking out a power station from solution x
Before performing this operation, it is necessary to determine whether there is an power stations
in the solution, if there are power stations in the solution, select a deletion from the existing
power station, and if not, the operation does not make any changes to the solution.

Figure 2. Neighborhood structures.
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Algorithm 8: The pseudo-code of 2_opt method

Input: individual x
Output: improved individual x′

Begin
for l = 1 to R do

for i = 1 to nl − 2 do
for j = i + 2 to nl do

d1=total length for the 2 edges
d2=total length of the edges when the targets are swapped
if d1 > d2 then

Swap indices of targets in tour l
end

end
end

end
End

4.8. Hybrid Memetic Algorithm Based on SVND for Solving PHEV Routing Problem

In conjunction with the above sections, the overall scheme of the proposed algorithm in this
paper is shown in Figure 3. To make our solution more applicable to the PHEV routing problem,
we made some customized improvement on the Memetic algorithm. First, for population initialization,
we proposed a new algorithm based on the nearest neighborhood heuristic, it takes the factors of time,
vehicle capacitance and fuel capacity as well as the access to the energy station into account. Secondly,
we introduced penalty mechanism to maintain the diversity of population. Last, we improved the
traditional 2_opt method with a cyclic comparison technique. The algorithm can be summarized as
the following steps.

1. Initialization operation is used to generate a set of solutions, an initial solution is generated by
rules and others are generated randomly. The total number of initial solutions is defined as Ps.

2. The 2_opt method is used to improve the generated solutions.
3. The objective function evaluation is carried out on these solutions.
4. The binary tournament selection operation is applied to choose the parents, then recombine

operator or mutate operator is executed to generate new offspring. This step is repeated Ps times,
in order to generate a new population with Ps individuals.

5. Evaluating the new population by using objective evaluation.
6. The SVND procedure is used to further improve the best individual at each generation, which

searches all its neighborhoods according to a sequence and returns the best individual among all
the searched neighbors.

7. Select the best individuals from the current population and the offsprings, they are considered as
the population for the next generation, and the population size are always kept to Ps.

8. If the stopping criterion is satisfied, the algorithm will be terminated and export the result,
otherwise go to step 4.

Steps 4 to 7 are executed in the iteration loop, in which the better solutions have a larger probability
to be selected for the recombine operator or the mutate operator. It is noted that the recombine and
mutation operators are used in a mutually exclusive manner, each offspring is generated by a recombine
operator or a mutate operator but not both. The former is employed with probability Pc, otherwise
the latter operator is used. The number of new individuals generated in step 4 of each iteration is Ps.
In step 7, we arrange the total solutions in ascending order and select the non-repetitive Ps individuals
in turn, if the objective values of the two solutions are identical but the compositions of the solutions
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are different, then both solutions should be retained, provided that they will be arranged in Ps. Finally,
the termination of the algorithm needs to satisfy the stopping condition.

Figure 3. Flowchart: Hybrid Memetic Algorithm.

5. Computational Experiments

The experimental results and analysis are described in detail in this section. A comparative study
is also conducted with the work of Yu et al. [8]. The proposed method was coded in C++ language and
compiled on Microsoft Visual Studio 2017. the computing platform configuration are as following:
Intel (R) Core (TM) i7 at 4.20 GHz, 16 GB of RAM with 64-bit platform under Windows 10 Operating
System.

The vehicle data used in this paper are the same as the work of Yu et al. [8]. The relevant data
are shown in Table 1. The test data we used for testing is a classic example of open source vehicle
routing problem. It is an extension of the classical benchmark of VRP. The data of these instances
are derived from Capacitated Vehicle Routing Problem (CVRP). This instances consists of datasets



Appl. Sci. 2020, 10, 441 16 of 23

for CVRP proposed by Augerat et al.(datasets A, B, and P), by Christofides and Eilon (for dataset E),
by Fisher(for dataset F). All instances are available in http://neo.lcc.uma.es/vrp/vrp-instances/.

Table 1. Data of Vehicles Specification.

Specification Total

Electric capacity 15 kwh
Maximum electric power can be used 10.5 kwh
Electric consumption rate 0.5 kwh/mile
Maximum electric distance 21 miles
Electric cost US dollar 0.12/kWh
Fuel capacity 25 gallons
Fuel consumption rate 17.7 mpg
Maximum fuel distance 17.7*25 = 442.5 miles
Fuel cost US dollar 4.18/gal
Velocity 40 mph
Tmax 11 h
Penalty value P 25 dollars

In order to better study the impact of electric stations and fuel stations on PHEV routing problem
research, we divided the test into three situations, taking different number of electric stations and fuel
stations for testing. The first case consists of 0 electric station and 0 fuel station (E0F0). The second
scenario considers 2 electric stations and 2 fuel stations (E2F2) and the third case has 4 electric stations
and 4 fuel stations (E4F4). In order to facilitate the comparison with existing methods, we use the same
station locations as in the work of Yu et al. [8]. Running tests were conducted on 14 kinds of test data
under these three conditions, and their costs and distances were recorded. Specifically, for CVRP, it can
be understood as a specific case of our E0F0 situation in this work where the fuel and electric stations
are not considered. By replacing the time constraint with load constraint, some modifications to the
proposed algorithm can be used to solve CVRP. Compared with HVRP defined by Simona Mancini,
our optimization goal is to minimize the total cost and our article covers all the constraints of their
articles and adds a few additional constraints. It is shown that the proposed algorithm can solve the
problems with energy stations and general vehicle routing problems without energy stations.

Parameter sensitivity analysis has been done in the work of Venkatesh and Singh, Singh and
Gupta. Therefore, in this work, our parameter settings are consistent with theirs which are Pc = 0.5,
Pbetter = 0.8, Pmincopy = 0.15, Pmaxcopy = 0.9, itermax = 1000. When E2F2 and E4F4 are used, lmax is set
to 5 and has five neighborhood structures. When E0F0 is used, lmax is set to 3. At this time, insert and
delete station are not performed. For the layout of the fuel station and electric station, the methods we
used are as follows—E2F2, 1 and 2 for charging stations, 3 and 4 for gas stations, then the customer
sequence will start from 5, and −1 for depot. Similarly, we can get the distribution of E4F4.

Yu et al. [8] compared Plug-in Hybrid Electric Vehicle (PHEV) with Mild Hybrid Vehicles and
Conventional Vehicles. The results suggested that PHEV has more advantages than the others. Thus,
we considered the PHEV in our work.

This paper focuses on the PHEV routing problem, which considers a series of constraints in
the VRP problem such as time limits, fuel capacity, electric capacity, fuel station and electric station.
Table 2 presents the experimental results of the proposed algorithm for this problem with different
power station arrangement (e.g., E0F0, E2F2 and E4F4). We have 14 instances tested under these cases,
and each configuration is tested 10 times. The size of the population is 1000, the number of iterations
is set to 100. With the increasing number of customers in test cases, the average CPU time of these
instances are between 3 and 30 s. The best value of cost, the mean value of cost, the related mile
value of the best obtained solution and the mean value of mile for each configuration are presented in
Table 2. Since the objective of this paper is to minimize the total cost, the related mile in the table refer
to the distances corresponding to the solution with best cost value, instead of the shortest distance
in the 10 runs. In most cases, the related mile is less than the average mile in Table 2, but there are

http://neo.lcc.uma.es/vrp/vrp-instances/
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few exceptions, such as instance B-35-K5 under E4F4 where the related mile is 408 miles and the
average mile is 401.2 m. In this paper, electricity or fuel can be selected for each route, and the HVRP
is an extension of GVRP, so we give priority to using electric energy. Therefore, as long as the electric
stations are visited enough times along a route, there may be a long distance but low costs for the route.

In order to verify the performance of the proposed algorithm, we considered simultaneously the
precision and the robustness. Table 3 shows the comparison results of HMA_SVND and SA_RS_CF
to solve the 14 instances with different power station arrangements. The SA_RS_CF is the method
proposed by Yu et al. [8]; it means that simulated annealing with a restart strategy and using the
Cauchy Function to determine the acceptance probability of poor solutions. The best obtained solution
with the lowest cost and related mile of the different methods are presented in this table. We proved
that HMA_SVND stability analysis presented in Table 4 where the standard deviation and error value
have been shown.

Table 2. Testing results of HMA_SVND for different instances.

Instances
E0F0 E2F2 E4F4

Best
Cost

Aver.
Cost

Related
Mile

Aver.
Mile

Best
Cost

Aver.
Cost

Related
Mile

Aver.
Mile

Best
Cost

Aver.
Cost

Related
Mile

Aver.
Mile

A-n33-k5 96.45 99.16 439 450.30 90.51 93.24 398 431.90 77.98 82.25 417 430
A-n46-k7 133.94 137.25 597 611.70 123.58 125.04 585 591.17 115.42 116.70 597 605.17
A-n60-k9 150.44 154.03 667 682.29 136.45 140.24 681 695.14 127.46 130.67 664 669.86
B-n35-k5 88.45 89.90 390 396 78.03 78.69 402 405.90 65.34 65.56 408 401.20
B-n45-k5 109.92 111.29 496 501.60 100.74 105.61 488 539.50 86.20 88.15 520 523.30
B-n68-k9 92.19 95.28 406 420.20 81.98 85.24 420 458.50 69.03 72.63 439 458.80

B-n78-k10 136.10 141.03 607 627.30 112.83 117.69 566 581.30 102.66 104.66 603 605.80
E-n30-k3 84.49 85.18 388 391.17 74.98 76.95 376 378.33 63.58 65.85 333 335.50
E-n51-k5 99.99 102.43 454 463.80 88.44 90.86 449 467.20 75.77 78.61 451 459.30
E-n76-k7 127.46 132.84 570 592.90 116.22 119 592 632.90 104.44 105.55 619 639.20
F-n72-k4 45.60 45.97 208 209.75 37.37 37.96 218 218.50 30.82 32.33 215 219.25

F-n135-k7 190.63 194.85 852 870.50 166.85 171.83 930 947.60 158.49 163.87 892 893.90
P-n76-k4 128.84 133.13 575 594 118.30 120.35 650 638.50 104.41 106.76 624 644.80
P-n101-k4 157.80 161.43 699 714 142.97 149.82 780 784.60 127.34 134.10 750 790.50

In Table 3, we have shown the comparison results of HMA_SVND and SA_RS_CF. The first line of
Table 3 is explained. This problem is defined with 33 nodes, in the situation of E0F0, there are 1 depot
and 32 customers to be visited, and this problem is considered as a classical CVRP problem. In the case
of E2F2, there is 1 depot, 2 electric stations, 2 fuel stations and 28 customers, their indexes are arranged
in the above order, in the case of E4F4, there is also a similar circumstance with 4 electric stations and
4 fuel stations. The cost value and mile value of HMA_SVND and SA_RS_CF correspond their best
found solution. In the first line, the HMA_SVND has obtained better solutions than SA_RS_CF under
both 3 situations. For most cases in Table 3, HMA_SVND has found better solution than the other
(39 cases were better of the 42 configurations), the comparison results proved the effectiveness of the
HMA_SVND algorithm.

In order to present the comparison results more clearly, we draw the bar chart shown in
Figure 4, where Figure 4a–c are the results of the comparison under E0F0, E2F2 and E4F4, respectively.
According to Figure 4, we can clearly observe the effectiveness of our proposed algorithm HMA_SVND,
which outperforms the SA_RS_CF algorithm to a great extent. According to these graphs, it is not
difficult to find that in some benchmark problems, our proposed algorithm can greatly improve the
solution, some are slightly improved for most cases.
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In order to prove the robustness of the algorithm, the standard deviation (SD) and error
of HMA_SVND for tested configurations are shown in Table 4, the latter is defined by the
following equation

Error =
Aver−Opt

Opt
,×100%. (21)

where Aver is the mean value of the results for 10 runs, Opt is the best value (related value for mile)
for the 10 runs. As shown in Table 4, in the cases of E0F0, the maximum cost Error is 4.2% and the
minimum cost Error is 0.8%, the SD values of cost are between 0.35 and 3.46, in the cases of E2F2,
the cost SD values and cost error values are between 0.51 and 0.38, 0.8% and 4.8% respectively, in the
cases of E4F4, the cost SD values are from 0.2 to 4.39, the cost error values are from 0.3% to 5.4%. In this
study, our aim is to minimize the total cost, the value of mile is the total distance of the solution which
has the minimum cost value. The total distance is not the considered point of our problem; therefore,
the stability of mile values for the tested instances is less than that of the cost value. In a special case
of the B-n35-K5 in E4F4, the mile error is −1.6%, this is because the related mile is greater than the
average value in this case. The standard deviation and the error could be used to express the degree
of data dispersion. The smaller the two values are, the more centralized distribution of experimental
results is, on the contrary, the more decentralized the distribution is.

Table 3. Comparison results of HMA_SVND (proposed) and SA_RS_CF [8].

Instances

E0F0 E2F2 E4F4

SA_RS_CF HMA_SVND SA_RS_CF HMA_SVND SA_RS_CF HMA_SVND
Cost Mile Cost Mile Cost Mile Cost Mile Cost Mile Cost Mile

A-n33-k5 113.70 521 96.45 439 111.36 527 90.51 398 103.98 512 77.98 417
A-n46-k7 157.68 720 133.94 597 154.08 750 123.58 585 150 754 115.42 597
A-n60-k9 205.50 944 150.44 667 201.84 979 136.45 681 195.90 970 127.46 664
B-n35-k5 166.80 758 88.45 390 155.58 778 78.03 402 144.06 814 65.34 408
B-n45-k5 138.72 641 109.92 496 132.66 678 100.74 488 123.66 768 86.20 520
B-n68-k9 187.32 875 92.19 406 186.30 981 81.98 420 174 914 69.03 439
B-n78-k10 196.50 929 136.10 607 183.84 952 112.83 566 171.18 996 102.66 603
E-n30-k3 100.26 465 84.49 388 97.38 522 74.98 376 86.82 556 63.58 333
E-n51-k5 102.48 490 99.99 454 93.24 534 88.44 449 81.78 574 75.77 451
E-n76-k7 133.98 637 127.46 570 132.90 754 116.22 592 113.82 775 104.44 619
F-n72-k4 44.40 248 45.60 208 29.76 322 37.37 218 22.2 349 30.82 215

F-n135-k7 319.08 1487 190.63 852 317.64 1481 166.85 930 313.14 1616 158.49 892
P-n76-k4 138.84 673 128.84 575 125.46 726 118.30 650 114.84 741 104.41 624

P-n101-k4 168.86 813 157.80 699 155.88 870 142.97 780 154.08 981 127.34 750
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Table 4. Standard deviation and Error on tested instances.

Instances

Standard Deviation Error

E0F0 E2F2 E4F4 E0F0 E2F2 E4F4
Cost Mile Cost Mile Cost Mile Cost Mile Cost Mile Cost Mile

A-n33-k5 2.44 10.40 3.38 26.69 3.75 9.94 2.8% 2.6% 2.9% 7.8% 5.4% 3.1%
A-n46-k7 2.84 11.88 0.86 7.14 1.10 10.19 2.4% 2.4% 1.1% 1.0% 1.1% 1.3%
A-n60-k9 2.68 11.22 2.18 21.42 2.37 22.16 2.4% 2.3% 2.7% 2.0% 2.5% 0.8%
B-n35-k5 1.81 7.57 0.51 10.96 0.20 8.36 1.7% 1.5% 0.8% 0.9% 0.3% -1.6%
B-n45-k5 0.95 3.98 2.99 28.67 1.60 11.76 1.2% 1.1% 4.8% 10.5% 2.3% 2.4%
B-n68-k9 2.32 13.09 2.38 27.11 2.38 28.22 3.3% 3.5% 4.0% 9.2% 5.2% 4.5%
B-n78-k10 3.46 14.52 2.99 10.32 4.04 7.47 3.6% 3.3% 4.3% 2.7% 1.9% 0.5%
E-n30-k3 0.65 2.93 1.20 4.03 1.42 12.47 0.8% 0.8% 2.6% 0.6% 3.6% 0.8%
E-n51-k5 2.97 12.84 2.45 16.74 2.40 20.03 2.4% 2.2% 2.7% 4.0% 3.7% 1.8%
E-n76-k7 2.39 10.02 1.55 21.02 0.84 15.38 4.2% 4.0% 2.3% 6.9% 1.0% 3.2%
F-n72-k4 0.35 1.66 0.69 2.32 0.95 8.75 0.8% 0.8% 1.5% 0.2% 4.8% 1.9%

F-n135-k7 3.29 14.36 2.75 13.18 3.79 8.65 2.2% 2.2% 2.9% 1.8% 3.4% 0.2%
P-n76-k4 3.35 14.51 1.40 7.04 1.83 22.49 3.3% 3.3% 1.7% −1.7% 2.2% 3.3%

P-n101-k4 2.81 11.98 3.36 14.63 4.39 24.45 2.3% 2.1% 4.8% 0.6% 5.3% 5.4%

(a) Best results comparisons under E0F0

(b) Best results comparisons under E2F2

(c) Best results comparisons under E4F4

Figure 4. The comparative results of the proposed HMA_SVND method and SA_RS_CF method of
Yu et al. [8]
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In terms of the robustness, Figure 5a,b graphically illustrate the box plot of the standard deviation
and error of cost for different power station configurations. It can be observed that, in the case of
E0F0 and E2F2, the stability of the algorithm is better when the number of energy stations increases,
the robustness of the algorithm will become slightly worse.

In summary, compared to SA_RS_CF algorithm, our proposed HMA_SVND algorithm obtained a
better performance in terms of precision and the robustness.

(a) The box plot of the cost standard deviation (b) The box plot of the cost error

Figure 5. The graphics of the comparison result.

6. Conclusions

In this paper, we focused on solving the routing problem for PHEV, a new hybrid optimization
algorithm which merges the memetic algorithm and the sequential variable neighborhood descent
is proposed. The proposed approach exhibits a competitive performance in terms of precision and
robustness, achieving superior results to prevalent algorithms. However, our studied problem is still
based on some simplified assumptions. For example, the charging time of the charging station was not
considered and the electric station is set to be always available. In real life, charging time and mode
should be considered, and there may be queues at stations; vehicles may need to wait for charging
and refilling in energy stations, so the cost of waiting should also be considered. At the same time,
each customer may have a time window for their services. Therefore, in future research, we will
concentrate on more comprehensive problems for real-life PHEV routing.
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Abbreviations

The notations is introduced as follows:

Sets
Z Set of power source, Z = {e, f }
M Set of vehicles
I Set of customers
I0 Set of customers vertices and depot, I0 = I ∪ {v0}
Se Set of electric stations
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S f Set of fueling stations
Φe Set of dummy electric stations
Φ f Set of dummy fuel stations

S0
Set of stations vertices including depot, fuel stations, electric stations and dummy stations,
S0 = {v0} ∪ Se ∪ S f ∪Φe ∪Φ f

V Sets of vertices(without depot) and dummy vertices, V = I ∪ S0

V0 Sets of vertices and dummy vertices, V0 = I0 ∪ S0

Coefficients
n Number of customers
m Number of vehicles

pj
Service time at vertex j; if i ∈ I, then pj is the service time at the customer vertex; if i ∈ S0, then pj is
the refueling time or recharging time at the station vertex

dij Distance from vertex i to vertex j
tij Time of arrival at vertex j from vertex i
Qkz Vehicle k’s tank capacity of power type z
rkz Vehicle k’s consumption rate (gallons per mile) on power type z
cz Cost rate for power source type z, which includes ce and c f
Tmax Pre-determined maximum time for travel from depot until return to depot
C A large positive constant value
Decision variables
xijk Binary variable equal to 1 if vehicle k travels from vertex i to vertex j; otherwise, 0
yjkz The remaining tank Level of vehicle k’s power type z upon arrival to vertex j

τj
Time variable specifying the time of arrival of a vehicle at vertex j, initialized to zero upon departure
from the depot

fijkz Vehicle k’s consumption from vertex i to vertex j using power type z (electric or fuel)
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