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Abstract: Traffic visibility is an essential reference for safe driving. Nighttime conditions add to the
difficulty of estimating traffic visibility. To estimate the visibility in nighttime traffic images, we
propose a Traffic Sensibility Visibility Estimation (TSVE) algorithm that combines laser transmission
and image processing and needs no reference to the corresponding fog-free images and camera
calibration. The information required is first obtained via the roadside equipment which collects
environmental data and captures road images and then analyzed locally or remotely. The proposed
analysis includes calculating the current atmospheric transmissivity with the laser atmospheric
transmission theory and acquiring image features by using the cameras and the adjustable brightness
target. Image analysis is performed using two image processing algorithms, namely, dark channel
prior (DCP) and image brightness contrast. Finally, to improve the accuracy of visibility estimation,
multiple nonlinear regression (MNLR) is performed on the various visibility indicators obtained
by the two methods. Extensive on-site measurements analysis confirms the advantages of TSVE.
Compared with other visibility estimation methods, such as the laser atmospheric transmission theory
and image analysis method, TSVE significantly decreases the estimation errors.

Keywords: traffic visibility; laser atmospheric transmission theory; image processing algorithms;
dark channel prior; multiple nonlinear regression

1. Introduction

In bad weather, the absorption or scattering of light by atmospheric particles such as rain, snow,
fog, or haze can significantly reduce the visibility of scenes [1]. On the highway, the reduction of visibility
makes it difficult for the drivers to clearly see the road ahead of them, dramatically degrading driver’s
judgment in vehicles and causing various traffic accidents [2]. The visual conditions of nighttime driving
are challenging for drivers, including dim street lighting, oncoming headlight glare, and the need for
quick adaption across a wide range of lighting levels [3]. If visibility can be accurately identified and
predicted in time, traffic accidents will be significantly reduced.

At present, the attenuation characteristics of the laser in the atmosphere were generally used
to estimate the visibility at major airports, highways, and meteorological monitoring stations.
The implementation of this theory needs to be equipped with laser transmitting and receiving units.
Although there are many hardware settings and fixed detection distance, this method is relatively mature,
stable, and has less environmental interference. The visibility meter on the market mainly uses
this method.

In recent years, making use of image analysis to estimate visibility has attracted more and more
attention. The advantages of these methods include fewer hardware facilities needed and no additional
equipment required, and thus, the estimation can be made only with the video processed by the
cameras. However, the shortcomings of these methods are also undeniable, such as low accuracy in
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special circumstances, high instability, and so on. Nicolas Hautière et al. have developed a system
which is used in-vehicle CCD cameras, aiming to estimate the visibility in adverse weather conditions,
particularly in fog situations [4]. They presented several dedicated roadside sites and used them
to validate the proposed model. Rachid Belaroussi et al. have identified an approach to estimate
visibility conditions using an onboard camera and a digital map [5]. The method determines the
current visual range in hazy conditions with reference to the characteristics of the traffic sign detectors
in the fog and the registered detection by vision and information encoded in the map. Li Yang et al.
proposed a visibility range estimation algorithm for real-time adaptive speed-limit control in intelligent
transportation systems [2]. Environmental data and road images are collected via roadside units.
The analysis is performed using two image processing algorithms, namely, the improved dark channel
prior (DCP) and weighted image entropy (WIE), and the support vector machine (SVM) classier is
used to produce a visibility indicator in real-time. The method mainly relies on the road image taken
by the camera to achieve real-time visibility estimation, and it also requires high precision and speed
calculation of the analysis processing unit. According to the visual effects of night fog, Gallen R et al.
proposed two methods [6]. The first method evaluates the presence of fog around a vehicle due to
the detection of the backscattered veil created by the headlamps. The second evaluates the presence
of fog due to the detection of halos around light sources ahead of the vehicle. These two schemes
can work in the condition either with streetlights or without streetlights. The scheme of recognizing
the night fog by the halo of the lamp is a solution that can be widely applied to traffic. Andrey
Giyenko et al. discussed the possibility of application of a Convolutional Neural Network for visual
atmospheric visibility estimation [7]. The authors implemented a Convolutional Neural Network with
3 convolution layers and trained it on a data set taken from CCTV cameras in South Korea. The authors
divided the visibility condition into 20 levels, so the estimate results were not specific visibility values.
Yang You et al. proposed a CNN–RNN model for directly estimating relative atmospheric visibility
from outdoor photos without relying on weather images or data that require expensive sensing or
custom capture [8]. The CNN captures the global view while the RNN simulates human’s attention
shift, namely, from the whole image (global) to the farthest discerned region (local).

Present literature shows that most methods for road visibility estimation are performed on two
separate methods, namely, laser transmission and image processing. The measurement range of the
laser atmospheric transmission method is not wide enough. The image processing method is affected
strongly by camera quality. Based on this, some people have proposed methods for estimating visibility,
which combine laser transmission and image analysis. Miclea Razvan-Catalin et al. built a system that
uses light-scattering properties to estimate the visibility distance in foggy conditions [9]. The laser
emitter is mounted next to the camera. The camera captures the laser images during the launch and
estimates the visibility distance by image characteristics such as the contrast. Silea Ioan et al. have
presented some principles which can lead to the development of a system capable of estimating the
visibility distance in foggy weather conditions by using the light scattering property [10]. The effect of
fog concentration on the light source and the relationship between fog concentration and visual acuity
are used as the input data. The authors analyzed the influence of the LED light source and the laser
light source on the fog environment. Experiments using visual acuity charts show a link between fog
concentration and vision. These methods are not suitable for road visibility estimation, because the
use of images is limited to the simple analysis of laser image contrast and eye chart.

Consequently, we propose a Traffic Sensibility Visibility Estimation (TSVE) algorithm which
combines laser transmission and image analysis. By extracting the visibility characteristics obtained
from laser transmission and image processing, we can estimate the visibility of foggy traffic scenes
at night without reference to the corresponding fog-free images and camera calibration. Guided
by laser atmospheric transmission theory, TSVE organizes laser emitters and receivers to detect the
transmissivity of the current atmospheric environment. For the road images and the adjustable
brightness target images, the dark channel prior (DCP) algorithm is used to detect and calculate the
image transmittance [11]; then, the gray distribution information in the brightness and contrast of the
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adjustable brightness target images is extracted for visibility calculation. The adjustable brightness
target can be applied to different brightness environments. Multiple nonlinear regression (MNLR)
is used to fuse the multiple different visibility features obtained before. Due to the low ambient
brightness at night, the final estimation results may be different from human perception. Based on
the actual nighttime ambient brightness, we adjust the nighttime road visibility. The algorithm has
been evaluated by using actual traffic images and reference visibility meter. TSVE has significant
advantages compared with the method of laser atmospheric transmission theory or image analysis.
Once the visibility is estimated, the driver can adjust his or her current driving speed accordingly.

2. Backgrounds

2.1. Laser Atmospheric Transmission Theory

When the laser propagates in the atmosphere, part of the optical radiation energy is absorbed
and converted into other forms of energy (such as thermal energy, etc.); the total effect of absorption
and scattering weakens the intensity of transmitted light radiation. The change in light intensity is
the following:

dI
I0

=
I − I0

I0
= −βdl (1)

I is the light intensity after the laser atmosphere transmission, I0 is the light intensity emitted by
the laser, l is the transmission distance, β is the atmospheric extinction coefficient; the atmospheric
transmissivity (%) is τ at the transmission distance L:

τ =
I
I0

= e−
∫ L

0 βdl (2)

If β is constant at the transmission distance L:

τ =
I
I0

= e−βL (3)

Equation (3) is Lambert’s law which is used to describe the atmospheric attenuation.

2.2. Dark Channel Prior (DCP)

Atmospheric scattering models have been widely used in image processing and computer vision.
The model describing the foggy image represents [12]:

I(x) = J(x)t(x) + A(1− t(x)) (4)

I(x) is an image captured by the camera (fog image), x is the 2D spatial location, J(x) is an image with
no fog on a sunny day, A is the atmospheric light, and t(x) is the transmittance. Now assume that the
transmittance t(x) is constant in the local Ω(x). Taking the min operation for Equation (4), we have
the following:

min
y∈Ω(x)

(Ic(y)) = t(x) min
y∈Ω(x)

(Jc(y)) + (1− t(x))Ac (5)

y is any pixel contained in the local Ω(x), c is an R, G, B color channel, and Ac usually takes the first
0.1% of the brightness of the c color channel. Adjust the Equation (5) as what follows:

min
y∈Ω(x)

(
Ic(y)

Ac

)
= t(x) min

y∈Ω(x)

(
Jc(y)
Ac

)
+ (1− t(x)) (6)
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Then, find the minimum of the three colors channels in Equation (6) as what follows:

min
c∈(r,g,b)

(
min

y∈Ω(x)

(
Ic(y)

Ac

))
= t(x) min

c∈(r,g,b)

(
min

y∈Ω(x)

(
Jc(y)
Ac

))
+ (1− t(x)) (7)

According to the mathematical definition of the dark channel, the fogless images J(x) always have
smaller pixel values in one channel of RGB. Supposing the dark channel values of J(x) approach 0:

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

Jc(y)) ≈ 0 (8)

The transmittance t(x) obtained by the above two formulas is the following:

t(x) = 1− min
c∈{r,g,b}

(
min

y∈Ω(x)

(
Ic(y)

Ac

))
(9)

In sunny weather, there is always a small amount of fog on distant objects captured by the camera.
Therefore, it is necessary to introduce a weight coefficientω (range 0 < ω ≤ 1). The correction formula
is the following:

t(x) = 1−ω ∗ min
c∈{r,g,b}

(
min

y∈Ω(x)

(
Ic(y)

Ac

))
(10)

As shown in Figure 1, the dark channel of the original image can approximate the concentration of
the fog. The higher the fog concentration, the brighter the corresponding position in the dark channel
image. The dark channel image of the fog-free image is the darkest. Since the fog concentration directly
affects visibility, the DCP theory can be used for visibility estimation.
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Figure 1. The images of the DCP algorithm. (a) The original image. (b) The dark channel image.
(c) The transmittance image.

2.3. Multivariate Nonlinear Regression Theory

In multivariate nonlinear regression (MNLR) analysis, observational data are modeled by
a function, which is a nonlinear combination of the model parameters and depends on one or
more independent variables [13]. Assume that the general behavior of a nonlinear relationship is
the following:

Y = α0
(
Xα1

1

)(
Xα2

2

)
. . . (Xαn

n ) (11)

α0, α1, . . . , αn are the parameters representing a nonlinear relationship. Some nonlinear regression
problems can be transferred to the linear domain by the appropriate transformation of the model
formulation [13]. Taking the logarithm of Equation (11), the nonlinear relationship becomes linear:

log(Y) = log(α0) + α1log(X1) + α2log(X2) + · · ·+ αnlog(Xn) (12)

We can obtain the regression equation for log(Y) on log(X1), log(X2) . . . log(Xn) by estimating
the parameters.
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When the goodness-of-fit test is performed on the selected curve equation fitting results, the sample
determination coefficient R2 is used as the basis for determining the goodness of fit [14]. R2 is defined as:

R2 =
SSR
SST

= 1−
SSE
SST

= 1−
∑
(y− ŷ)2∑
(y− y)2 (13)

SSR is the sum of the squares of the regression. SSE is the sum of the squares of the residuals. SST is
the sum of the squares of the total deviations. R2 is a comprehensive measure of the fitting precision to
the regression equation. The larger the R2, the better the fitting precision. The smaller the R2, the worse
the fitting precision. The R2 range is from 0 to 1. The closer the R2 is to 1, the higher the degree of fit
will be.

The F-test is used to test the significance of the regression equation [14]. The F statistic is the
ratio of the sum of the squared regressions of the mean to the sum of the squares of the residuals of
the average:

F =
SSR/k

SSE/(n− k− 1)
=

∑
(ŷ− y)2/k∑

(y− ŷ)2/(n− k− 1)
(14)

SSR is the sum of the squares of the regression, SSE is the sum of the squares of the residuals, n
is the number of samples, and k is the number of independent variables. The statistic F obeys the
F distribution of the first degree of freedom k and the second degree of freedom n − k − 1, that is,
F ~ (k, n − k − 1). It can be concluded from the definition of F statistic that if the F value is significant,
the change of the dependent variable caused by the independent variable is more significant than
the influence of the random factors on the dependent variable. The more significant the F statistic,
the better the fitting precision.

3. Proposed Visibility Estimation Methodology

In this section, the proposed visibility estimation process is to be demonstrated. Firstly, obtain
the atmospheric transmissivity of the current environment. Then, combine the DCP algorithm with
brightness and contrast to obtain image visual visibility indicators. Finally, merge the multiple visibility
indicators by MNLR analysis. The obtained visibility results are calibrated to span the range [10, 10000],
where the lower limit corresponds to the worst visibility possibly, and the upper limit corresponds to
the visibility which has no adverse effects on people’s travel.

3.1. Visibility Estimation Based on Laser Atmospheric Transmission Theory

The theory of laser atmospheric transmission mentioned in Section 2.1 is to obtain the current
atmosphere transmissivity by the ratio of the received optical power to the optical power emitted by
the laser, and then to obtain the visibility according to Lambert’s law. Our laser transmission system
uses a multi-point measurement method to obtain the optical power received at different points and
obtains multiple sets of atmospheric transmissivity [15], as shown in Figure 2.

1 
 

 Figure 2. Schematic diagram of multi-point measurement.
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To test the attenuation of the system, the distance between the transmitter and the receiver is set to
zero, at which point the laser transmission does not need to pass through the atmosphere. T0 indicates
the attenuation of light energy generated by the system (without atmospheric attenuation):

T0 = P0 − Pr(0) (15)

P0 is the emitted power of the laser in the initial state; Pr(0) represents the power received by the
receiver at the zero position. At this time, the atmospheric length is zero.

When the distance between the transmitter and the receiver is 1 cm, the measured value of the
receiver is T(1):

T(1) = P0 − Pr(1) (16)

T(1) is the total amount of light attenuation generated by the optical measurement system, including the
light attenuation T′(1) caused by the atmosphere and the light attenuation T0 generated by the system:

T(1) = T′(1) + T0 (17)

Therefore, the actual power emitted by the laser emitter can be considered as P0 − T0, at which
time the atmospheric transmissivity is the following:

τ =
Pr(1)

P0 − T0
=

Pr(1)
Pr(0)

(18)

Suppose that the transmittance of the gas to be tested is uniform and static during the measurement.
When the distance between the receiver and the transmitter is n cm, by analogy, the measured
transmittance at the point n is the following:

τ =
Pr(n)
Pr(0)

(19)

Pr(n) is the power received by the laser receiver at the point n. By moving the laser receiver, n groups
transmittances can be obtained.

3.2. Visibility Estimation Based on Image Analysis

Image brightness and contrast contain the information about the fog concentration during image
acquisition. We set a horizontal brightness histogram: the horizontal axis represents left-to-right
information of the intermediate horizontal line selected in the image, and the vertical axis represents
the pixel value of each point. For example, Figure 3 shows the horizontal brightness histograms of clear
daytime, foggy daytime, clear evening, foggy evening, clear midnight, and foggy midnight. Figure 3a,b
corresponds to a daytime image with good air quality and a foggy daytime image. The horizontal
brightness histogram y-axis absolute value of the fog-free image is larger than the foggy image.
The darkness of the foggy image is higher than that of the fog-free image. Since the darkness makes
high-value pixels be fewer in the images, it can be seen from the histograms of the evening images
given in Figure 3c,d that the y-axis absolute value of the foggy image with poor visibility is small,
and the brightness of the bright portion of the foggy image is significantly reduced while the brightness
of the dark part is significantly increased. The same pattern can be seen in the midnight images shown
in Figure 3e,f. Therefore, image brightness histogram analysis can be used to estimate the visibility
level of the given image.

Develop the visibility indicators which are based on the image horizontal brightness histogram.
Making use of the concept of image brightness, from the image get tl, the 20% darkest pixels, and th,
the 20% lightest pixels. In the heavy foggy days, tl and th are around 0.5; in sunny and clear weather
conditions, tl = 0, th = 1. Additionally, using the concept of image contrast, in heavy foggy dense,
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tc = 0; in clear weather dense, tc = 1. However, these are ideal scenarios that do not often occur in the
real world. For example, the values of (tl, th, tc) of Figure 3a–f are (0.311, 0.559, 0.248), (0.342, 0.516,
0.174), (0.251, 0.781, 0.467), (0.316, 0.476, 0.16), (0.182, 0.474, 0.292), and (0.208, 0.366, 0.158), respectively.
tc is significantly higher in the foggy images than that of the clear weather images, while tl, th mainly
indicate the current ambient brightness, such as daytime, streetlight night or no streetlight night.
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Although the DCP algorithm and image brightness contrast analysis are effective methods to
characterize the image visibility, in the high visibility environment, the gaps of image features are
minimal. To optimize the results, the method of obtaining atmospheric transmissivity described in
Section 3.1 is invoked to fuse the process as what is described in Section 3.3.

3.3. Feature Fusion and Classification

Visibility estimation by laser transmission or image analyses can generally produce satisfactory
results. However, the results of the two methods do not necessarily match, and there will be differences
between them. Therefore, the method of combining the results of the two methods through the
MNLR model to generate final image visibility is proposed. The variables describing the visibility are
composed of the atmospheric transmissivity obtained by the laser transmission system, the road image
transmittance, the target image transmittance, the target image low brightness values, the target image
high brightness values, and contrasts obtained by image analyses. The detailed descriptions of the
variables are given in Table 1. The MNLR model is first trained by using train set, then tested by using
the test set, and compared by using statistical measures of goodness of fit [16].

The visibility d is considered as the dependent variable. The variables in Table 1 are considered as
the independent variables. MNLR analysis is carried out using a computing package SPSS (Statistical
Package for the Social Sciences). The model developed is given as follow, α1, α2, . . . , α6, b1, b2, . . . , b6,
c are the parameters:

d = α1eτ+b1 + α2etR+b2 + α3etT+b3 + α4etl+b4 + α5eth+b5 + α6etc+b6 + c (20)

Since the actual night traffic environment includes two different situations, with streetlight
(ambient brightness) and without streetlight (non-ambient brightness), the degree of its influence on
traffic is different. We divide the MNLR model into two cases: ambient brightness and non-ambient
brightness. It is worth noting that the subdivision of the lighting environment and the production of
the training set should be processed and optimized empirically on a large number of images.
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Table 1. List of variables describing visibility.

Variable Description

Atmospheric transmissivity τ Atmospheric transmissivity obtained according to the
theory of laser atmospheric transmission

Road image transmittance tR
Image characteristic: road image transmittance
obtained according to the DCP algorithm

Target image transmittance tT
Image characteristic: target image transmittance
obtained according to the DCP algorithm

Target image low brightness values tl
Image characteristic: low brightness area pixel value
of the image

Target image high brightness values th
Image characteristic: high brightness area pixel value
of the image

Target image contrast tc Image characteristic: tc = th − tl

3.4. Road Visibility Adjustment in Night Scenes

Although the methods described in Sections 3.1–3.3 might be used to estimate the visibility,
they do not generally produce accurate results because the DCP algorithm does not consider the
visibility in other driving conditions such as during night time. For example, as shown in Figure 4,
from daytime to evening and to late-night, as the ambient brightness decreases, even when the air is
clear, the information about the road ahead that people can recognize during driving is less and less.
Night road visibility should be based on the driver’s identification of road information such as road
directions, road boundaries, road signs, etc., so we refer to the actual ambient brightness to estimate
night road visibility.

In the same context, we use the average brightness of the image as the current ambient brightness.
First, the ambient brightness g0 of the clear day in this context is to be obtained. The ambient brightness
of the current image is g. The adjustment parameter α at this time is:

α =
g(x)
g0(x)

(21)

Night road visibility is:
d = α ∗ d0,α ∈ (0, 1] (22)
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4. Experiment

4.1. Laser Transmission System

The laser transmission system consists of a laser, a data acquisition, and the control unit (photodiode
and peripheral circuitry). We chose a point-like near-infrared laser with a wavelength of 905 nm and
a power of 50 mW as the emitter. The parameters are shown in Table 2. The data acquisition and
control unit consists of an avalanche photodiode (APD), several amplifiers, several relays, and a STM32.
The transmitted laser signal, which is collected by an avalanche photodiode, then amplified and A/D
sampled by the data acquisition and control unit, is the output as a high signal to noise ratio signal [17].
During the measurement process, a visibility meter is placed at the same time for data calibration.

Table 2. Main parameters of the laser.

Parameter Range

Wavelength 905 nm
Power 50 mW
Voltage DC2.8–5.0V

Working current ≤180 mA
Size φ22 × 110 mm

Divergence angle 0.5–1.0 mrad
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The avalanche photodiode measures the photocurrent according to the amount of laser irradiation
received. Response r = I

P , received optical power Pλ = I
r , APD(AD500-9) response r is 52 A/W, and Pλ0

is the input power of the laser. The distance between the laser and the receiver is 10 cm. During this
process, the atmospheric transmissivity of the system is:

τ =
Pλ
Pλ0

(23)

4.2. Adjustable Brightness Target

So far, our methods have passed the laboratory analysis of the measured values in different cases
under the assumption of continuous unfavorable visibility. In the actual environment, the detection
needs a reference target. We installed a large, specific target with adjustable brightness on the test road.
The idea is to take photos of the target in different weather conditions and to estimate the visibility,
which is based on the attenuation of their brightness and contrast. This static measurement, which
uses a reference target, can then be compared on the images with the results of the same context,
which require no reference. The target is designed to have the goal of maximum contrast, as shown
in Figure 5.
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Compared to other targets, our target has two advantages. First, the goal is an LED panel light
with adjustable brightness, which can adapt to different actual environments. Secondly, the target
has six black parts in different sizes, and the current atmospheric transmissivity can be estimated by
the visible condition of the six parts, which has different powers for estimating visibility. Take the
centerline of the adjustable brightness target image as the reference line. The left-to-right position of the
center line is the x-axis, and the pixel value of each position of the center line is the y-axis. A horizontal
brightness histogram is created, as shown in Figure 6. The (tl, th, tc) of the adjustable brightness target
can be obtained.
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4.3. System Simulation Verification

In order to verify the accuracy of the above detection method, a comparison test system is
established [18]. The test system includes a laser transmission system, a visibility meter, two cameras,
an adjustable brightness target, and a high-pressure spray equipment. The visibility meter measurement
range is 10 to 10,000 m, which is unaffected by ambient brightness and weather conditions. The brightness
of the adjustable brightness target can be adjusted according to the environment and is suitable for
daytime and nighttime. One of the cameras is used to acquire the image of the road surface for the
analysis of the road image transmittance; the other is used to collect the images of the target for the
analysis of the transmittance, brightness, and contrast of the target images. High-pressure spray
equipment is used to adjust the fog concentration at the site. When the fog concentration is insufficient,
we will use equipment to supplement the fog to create a different visibility environment.

Before verification, the placement of hardware devices such as cameras is double checked to meet
our requirements: the camera for shooting target is on the same horizontal line as the target; the target
installation height is about 1.5 m, 10 m from the camera; the position of the camera shooting the road is
5–10 m higher; the visibility meter installation height is consistent with the target and placed near the
target with the laser transmission system.

In the verification process, first, via the laser transmission system, the current atmospheric
transmissivity is estimated. Two cameras respectively collect the road images and the adjustable
brightness target images. Combining the DCP algorithm, (tR, tT, tl, th, tc) is obtained. Finally, SPSS
is used to perform MNLR analyses on six variables for visibility prediction in similar environments.
The prediction results should be compared with the results of the visibility meter.

5. Experiment Results and Analysis

In different weather conditions such as sunny, foggy, and rainy days, pictures of the verification
site were captured. Since both fog and rainfall can lead to low visibility, no distinction is made between
fog and rainfall in practice. Approximately 600 verified images under different visibility conditions
have been collected.



Appl. Sci. 2020, 10, 440 13 of 16

In some pictures, cars and pedestrians are set on the road at various distances to test the robustness
of the method. Some samples of the original images are given in Figure 7. The laser transmission
scheme mentioned in Section 3.1 is used to estimate the atmospheric transmissivity of the current
state; the image analysis mentioned in Section 3.2, to obtain the image characteristics; and the method
mentioned in Section 3.3, to assess visibility as a whole. Table 3 shows the estimated visibility of the
images in Figure 7 and the errors between the estimated and measured values. The results show that
the visibility estimation errors are within 20% when there are cars and pedestrians on the road, which
has a certain degree of credibility.
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Table 3. Visibility estimation results of the images in Figure 7.

Model TSVE Visibility Meter Error

Figure 7a 8828 10,000 12%
Figure 7b 8992 10,000 10%
Figure 7c 3138 3791 17%
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In this paper, three values are presented for each image, which are based on the method used
to derive the visibility, namely, laser transmission method alone (V1), image analysis method alone
(V2), and proposed TSVE method (V). The estimated results and the errors with the visibility meter
measurements of the six representative sample images in Figure 8 are shown in Table 4. It can be seen
that the trend of the results obtained by using V1 is in line with the expectations. Both fog and rain can
block out the transmission of the laser and lead to low visibility. The results obtained by using V2 are
more inaccurate in the case of low visibility. Therefore, visibility must be calculated with the aid of
laser transmission in the case of low visibility. Laser transmission and image analysis are required for
reference in the case of high visibility. In addition, Table 4 shows a significant difference in the visibility
levels calculated by the three methods, where the V2 estimation error is higher than that of the V1.
The estimation result of V1 is consistent with the trend of the visibility meter results, with the visibility
level getting lower and lower from Figure 8a to Figure 8f. The estimated result of V does not match V1
result of Figure 8d, and does not match V2 result of Figure 8f, which to a certain extent agrees with the
human perception of these images. In the case of visibility greater than 2000 m, the accuracy of our
proposed TSVE method is less than 10%, and in the case of visibility below 2000 m, it is 10% to 30%.
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Table 4. Estimated results of the images in Figure 8.

Model V1 Error V2 Error V Error Visibility Meter

Figure 8a 9951 0.49% 9294 7.06% 9776 2.24% 10,000
Figure 8b 7906 1.26% 6188 22.72% 8046 0.49% 8007
Figure 8c 3691 28.76% 6803 31.3% 4966 4.15% 5181
Figure 8d 1250 44.44% 2315 2.9% 2230 0.89% 2250
Figure 8e 924 7.32% 1585 84.08% 970 12.64% 861
Figure 8f 368 107.91% 1845 942.12% 124 29.78% 177

We evaluate the proposed visibility algorithm by calculating the mean absolute error (MAE) [2].
The MAE is defined as:

MAE =
1
N

N∑
i=1

∣∣∣di − yi
∣∣∣ (24)

di is the estimated visibility, yi is the measured value by visibility meter,
{
di, yi

}
∈ [0, 10000], N is the

number of samples. The final experimental results in Table 5 show that the proposed algorithm made
fewer errors than V1 and V2. Some of the experimental images were captured in various common
nighttime conditions (clear day, foggy, and rainy conditions), which shows that our algorithm has high
accuracy under common nighttime weather conditions. In addition, experiments have shown that our
approach provides better performance when data size increases.

Table 5. Average absolute error of different visibility estimation methods (MAE).

Model V1 V2 V

MAE 482 446 128

Indeed, experimental verification of these methods is difficult. Taking photos in natural fog is
a daunting task because weather conditions and fog uniformity cannot be controlled. Increasing
the fog concentration of the environment through high-pressure spray equipment is also uneven.
Our implementation is done through a target, which has some minor flaws. Using a purely “black”
and larger target will result in a better estimate, but this is not realistic. In the future, we will test these
methods with better cameras, measure the atmospheric extinction coefficient in a more precise way,
and minimize or not use the target.

6. Conclusions

In this paper, we have presented a traffic perception visibility estimation algorithm that combines
laser transmission and image processing. Nighttime road visibility was estimated by current atmospheric
transmissivity and images characteristics, which include road image transmittance, target image
transmittance, target brightness, and contrast. Multivariate nonlinear regression analyses were performed
on various visibility indicators; two regression models with ambient brightness and without ambient
brightness were established. Different classifications and multiple data improved the accuracy of
the estimation. This algorithm was suitable for road visibility estimation under different weather
conditions, without camera calibration. Finally, the adjustment suggestions for nighttime road visibility
were also given. Experiments show that our proposed method can accurately estimate nighttime road
visibility. When applied to highways, the estimated visibility can be used to adjust the speed limit of
expressways, thereby reducing the occurrence of traffic accidents.
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