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Abstract: Sentiment analysis refers to the algorithmic extraction of subjective information from textual
data and—driven by the increasing amount of online communication—has become one of the fastest
growing research areas in computer science with applications in several domains. Although sports
events such as football matches are accompanied by a huge public interest and large amount of related
online communication, social media analysis in general and sentiment analysis in particular are almost
unused tools in sports science so far. The present study tests the feasibility of lexicon-based tools of
sentiment analysis with regard to football-related textual data on the microblogging platform Twitter.
The sentiment of a total of 10,000 tweets with reference to ten top-level football matches was analyzed
both manually by human annotators and algorithmically by means of publicly available sentiment
analysis tools. Results show that the general sentiment of realistic sets (1000 tweets with a proportion
of 60% having the same polarity) can be classified correctly with more than 95% accuracy. The present
paper demonstrates that sentiment analysis can be an effective and useful tool for sports-related
content and is intended to stimulate the increased use of and discussion on sentiment analysis in
sports science.

Keywords: sentiment analysis; opinion mining; social media; Twitter; computer science in
sports; football

1. Introduction

Science, to some extent, has always been an image of society, as a changing world imposes
changing research areas and questions. In sports science, the invention and development of new sports,
changes in demographics and recreational behavior or—as outlined in our approach—digitization and
increasing volume of sports-related data are just some aspects influencing opportunities and relevance
of research. While the importance of traditional fields of sports science will remain, sports science also
needs to be open to new and innovative fields of research.

Digitization has led to a massive increase of available data and data complexity in almost every
aspect of life which is imposing new opportunities as well as new challenges and is often referred
to as Big Data [1]. Sports science has started to adapt to the era of Big Data, for example, by using
positional data or tracking data in match analysis of various sports such as football [2], tennis [3],
and basketball [4]. The increased technical and computational effort going hand in hand with these
data-driven research areas has given rise to the discipline of computer science in sports.

While the analysis of positional or tracking data has become possible through technical effort,
other sources of data are becoming available through increasing human communication. One of these
innovative fields is the analysis of online and social media data that have recently been investigated in
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various domains. Examples are the use of Google searches for early detection of influence epidemics [5]
or forecasting unemployment rates [6], the use of Twitter data to forecast elections [7,8] or stock market
prices [9] and the use of Facebook in psychological experiments [10]. On the one hand, these examples
demonstrate a hardly deniable potential of making use of online data in science. On the other hand,
various methodological issues in this young field of research will need to be discussed making it a
highly controversial topic. The present approach focuses on the possibility of analyzing textual online
data as an innovative avenue in sports science.

Sentiment analysis (also referred to as opinion mining) refers to the extraction of subjective
information from textual data by the use of algorithmic approaches [11,12]. Accurate techniques of
sentiment analysis can be a mighty tool, given the huge quantity of available textual data and the time
required to analyze text by human evaluation. While it is rather easy for a human being to understand
opinions or attitudes expressed in written language, it is highly complex to imitate this human skill
computationally in an algorithmic way. Consequently, sentiment analysis is assessed as ”one of the
fastest growing research areas in computer science” [12] (p. 16) that is driven by the “rapid growth of
user generated content on the Web” [11] (p. 122). In a review on sentiment analysis [12], the authors
evaluated the literature until 2016 and found that 99% of the papers on sentiment analysis have been
published after 2004, making it a relatively young field of research. A good reflection of the state of
the art in sentiment analysis is the international SemEval workshop annually announcing current
research tasks related to semantic evaluation. It is evidence that research on semantic evaluation is a
current and high developing research topic which—besides further areas—also focuses on research
with regard to Twitter data [13,14].

In this context, it should be considered whether sports science is a field of research that could
benefit from this development. Several application domains have been identified, namely society,
security, travel, finance and corporate, medical, entertainment and other [12]. While entertainment
also includes sports-related research, no individual sports-related category was identified. Likewise,
the authors of another review [11] neither mention sports science as a subject in which sentiment
analysis research has been done nor sports as an application area. We conducted a search for articles
related to social media analysis by means of sentiment analysis for two well-known multidisciplinary
sports journals: The Journal of Sports Sciences and the European Journal of Sport Science. For both journals,
not a single article title included the terms “sentiment analysis” or “opinion mining.” Even for the term
“social media,” only one survey on the use of social media by sports nutritionists in the Journal of Sports
Sciences [15] and an editorial explaining the increased use of social media by the European Journal of
Sports Sciences [16] were found. A search for the terms “sentiment analysis” or “opinion mining” in the
Web of Science Core Collection resulted in 1114 articles, but not a single article resulted when filtering
for the Web of Science Category “sport sciences.” Nevertheless, some literature linking social media
analysis and sports exists, such as investigations on the use of Twitter by sports journalists, athletes or
fans [17–19], but are not related to algorithmic sentiment analysis. Moreover, a few applications of
sentiment analysis in sports forecasting exist [20–22], however, these studies are focused on applying
sentiment analysis in predictive tasks instead of validating sentiment analysis methods.

In light of the existing literature, algorithmic analysis of social media content can be considered a
widely unused approach in sports science so far, although numerous possible applications exist. Table 1
shows a list of disciplines in sports science that could profit from its potential for several research
questions. Driven by the large body of literature on sentiment analysis in general, but the absence
of articles in sports science, the present study validates the appropriateness of sentiment analysis
approaches in a sports-related context focusing on tweets originating from the microblogging platform
Twitter. Despite all the opportunities, caution and preliminary work is required as most methods of
sentiment analysis have been developed for, validated in and used in other domains such as economics
or politics, and taking over a tool from other domains without proper validation seems unreasonable.
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Table 1. Research questions related to social media analysis that could profit from algorithmic solutions
of sentiment analysis.

Discipline Research Question

Sports ethics
How do fans think about ethical questions related to sports such as corruption in sports,

criticism on Olympic Games, use of performance-enhancing drugs?
How does public opinion change over time or after important events?

Sports economics

How do fans think about clubs and athletes?
How can clubs or athletes optimize their online image in order to improve sponsoring value?
Can social media content be valuable in sports forecasting? (i.e., in-play match forecasting,

forecasting of individual player success)

Sports psychology Which kind of moods or emotions of fans come up during sport competitions?
What focus of attention do fans have when they watch, discuss or reflect sport games?

Computer Science in Sports

How can sports-related online content be efficiently extracted?
What is the validity of sentiment analysis methods when analyzing sports-related content?

Are there improvements in sentiment analysis methods considering the special
characteristics of sports-related content?

Sports journalism How do consumers react to media coverage of sports?
What are current and relevant topics discussed by sports fans?

The discrepancy between extensive research on sentiment analysis methods and rare, if any,
research applying it to sports science is evident and it may be reasoned that sports scientists are either
not aware of the possibilities of sentiment analysis, not convinced by its accuracy, or deterred by its
complexity. In this sense, there exists a trade-off between a high accuracy on the one side and a high
practicability on the other side, as sentiment analysis methods would be used as a tool in sports science
and not as the main subject of investigation. Techniques applicable in sports science consequently need
an acceptable accuracy, however, even the most accurate technique is useless if not accessible or not
possessing a reasonable degree of complexity. The goal is, thus, not to find or develop a gold-standard
sentiment analysis technique in sports, but to validate the current applicability of easily accessible
sentiment analysis tools. Therefore, we chose to limit our study to lexicon-based methods of sentiment
analysis, analyzing and comparing three relatively easily accessible tools. Machine learning approaches
or the development of improved methods of sentiment analysis are not within the scope of this study.

The contributions of this article are the following: 10,000 tweets written by users on Twitter and
related to 10 top-class football matches were evaluated both manually and algorithmically in order to
validate the accuracy of algorithmic sentiment analysis in football-related textual data. To the best of
our knowledge, no study so far has focused on the validation of sentiment analysis tools based on
manually annotated tweets from the sports domain. Moreover, an accuracy measure designed for
real-world applications is introduced and evaluates the accuracy with regard to realistic sets of tweets
instead of single tweets. The transfer of sentiment analysis to sports science, as well as future avenues
and limitations of sentiment analysis in sports are discussed.

2. Methods

2.1. Dataset

Twitter [23] is one of the best known social media websites and can be described as a microblogging
platform. Users can interact with tweets, which are short textual messages that are restricted to
280 characters and usually contain information and opinions on the latest news, current events or
personal and social topics. To simplify the searchability of tweets, users can include so-called hashtags
such as #LIVTOT if the tweet is related to the football match Liverpool vs. Tottenham. Twitter provides
the possibility to obtain tweets containing certain words or hashtags as well as additional metadata
via programming interfaces [24]. Tweets related to 10 football matches in national and international
competitions have been collected in the time period between February and May 2019 via the real-time
streaming API using the R package rtweet [25]. Ignoring retweets (reposted messages from other
users) and non-English tweets, a total of more than 80,000 tweets were collected. Only matches from
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top-class competitions, having a high sporting value and generating huge public interest including a
sufficient number of tweets in the English language were chosen. A summary of the dataset is given in
Table 2. For each match 1000 tweets were chosen randomly to be part of the validation dataset, thus
consisting of 10,000 tweets.

Table 2. Summary information on the dataset.

Date Match Competition Hashtag Number of Tweets

20 February 2019 Atletico Madrid vs. Juventus Turin Champions League #AtletiJuve 5121
24 February 2019 Manchester United vs. Liverpool Premier League #MUNLIV 30,044

7 March 2019 Chelsea vs. Dynamo Kiev Europa League #CHEDYN 3262
31 March 2019 Cardiff City vs. Chelsea Premier League #CARCHE 13,114
31 March 2019 FC Liverpool vs. Tottenham Hotspur Premier League #LIVTOT 17,503
10 April 2019 Ajax Amsterdam vs. Juventus Turin Champions League #AJAJUV 2213
16 April 2019 FC Barcelona vs. Manchester United Champions League #FCBMUN 3615
1 May 2019 FC Barcelona vs. FC Liverpool Champions League #FCBLIV 3603

25 May 2019 RB Leipzig vs. Bayern Munich German Cup #RBLFCB 1252
29 May 2019 Chelsea vs. Arsenal Europa League #UELfinal 5096

2.2. Manual Annotation

Tweets were manually annotated by one of two human annotators classifying each tweet into one
of the following four categories: “positive,” “negative,” “neutral” or “nonsense” [26]. The category
nonsense was clearly defined and includes those tweets that did not have any relation to the match,
were not written entirely in the English language or were incomprehensible. For the other categories,
however, a certain degree of subjectivity cannot be excluded and no detailed formal definition of each
category could be given. Manual annotators were asked to carefully evaluate the sentiment of the
tweet expressed by the writer and categorize the sentiment of the tweet accordingly based on their
understanding of the tweet.

To test for inter-rater agreement, 200 tweets were randomly chosen prior to the manual annotation,
evaluated by both annotators independently and Cohen’s kappa was calculated.

2.3. Preprocessing of Data

Tweets contain a lot of information that cannot be usefully processed by lexicon-based sentiment
analysis tools. Therefore, the following steps to clean the data—being in line with common approaches
in the literature [27,28]—were executed automatically prior to the algorithmic evaluation:

- Removing all URLs (“https://t.co/hSizQPxVFy”) and mentions (“@CardiffCityFC”)
- Removing emoticons not analyzable as provided by the Twitter API in R (“<U+009F>”)
- Removing punctuation characters and digits
- Removing tabs, line breaks and unnecessary spaces
- Removing any non-ascii character
- Changing text to lower case
- Replacing contractions with full forms (“wouldn’t”→ “would not”)
- Replacing acronyms with full forms (“omg”→ “oh my god”)
- Correcting and doubling intentionally misspelled words that express some sort of intensification

(“niiiiiiiiiiiiiiiice”→ “nice nice”)

Although it is not uncommon to completely remove hashtags, we kept them included to consider
those hashtags that express a sentiment such as #boring (i.e., removing the #-sign, but not the word)
at the cost of also including specific hashtags that will not be included in any lexicon such as #livtot.
Intentionally misspelled words repeating the same character various times are interpreted as a sign of
intensification. As lexicon-based methods are used, the word will not be identified if kept in the given
state. Therefore, the word is corrected in order to be identifiable in the lexicon, but doubled to account
for the underlying intensification.

https://t.co/hSizQPxVFy
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As a result of preprocessing, an original uncleaned tweet

“It’s just 38” mins into the match and @ChelseaFCare @ChelseaFC like this I’m sorry to say this Chelsea are
really loosing their standards as a big team Sarri lick <f0><U+009F><U+0091><U+0085>my ass like I care y’all
trash <f0><U+009F><U+0097><U+0091> #CARCHE”

will be changed to this cleaned tweet after preprocessing

“it is just mins into the match and like this i am sorry to say this chelsea are really loosing their standards as a
big team sarri lick my ass like i care you all trash carche”.

2.4. Algorithmic Evaluation

The algorithmic evaluation of tweets can be seen as a classification problem in which the tweets
are assigned to two (positive vs. negative) or more categories. In the literature, the methods
used are commonly divided into two groups: lexicon-based approaches and machine learning
approaches [11,28,29]. Lexicon-based methods rely on a predefined list of words (lexicon) defining
the semantic orientation of each word, such as positive and negative words or words with a specific
positivity and negativity score. This can be considered rather simplifying as the sentiment of a piece
of text is directly derived from the set of contained words by a rule-based approach. In machine
learning approaches, representation of text can contain several features including single words or
longer sequences of words (also referred to as n-grams) and the sentiment of a piece of text is derived
by using this representation as an input for machine learning techniques such as Support Vector
Machines. We focus on lexicon-based approaches within this study, as our primary aim is to validate
the transferability and feasibility of sentiment analysis as a tool in the domain of sports science and
currently, lexicon-based tools are still easier accessible.

In its simplest form, lexicon-based approaches [28,29] are based on the idea of having an extensive
list of words that are either considered to have a positive or a negative meaning. Given the textual
data of a tweet, the total number of words as well as the number of positive and negative words
can be counted. By dividing the number of positive (negative) words by the number of total words,
a positivity (negativity) score of the tweet is determined. The total sentiment of the tweet is calculated
by subtracting positivity and negativity. By performing a median split, the tweets having different
decimal sentiment scores can then be classified into the two categories of positive and negative.

Three easily accessible tools of lexicon-based sentiment analysis are used within this study.
The commercial LIWC 2015 software [30] (referred to as LIWC throughout the remaining paper)
and the SentimentAnalysis package [31] available for the open source software R [32] and using the
QDAP dictionary [33] (referred to as QDAP throughout the remaining paper), as well as a lexicon
from the R lexicon package [34] based on the SenticNet4 lexicon going back to the work of Cambria
et al. [35] (referred to as SN throughout the remaining paper). Moreover, a combined evaluation
considering the averaged results of all three tools is calculated and referred to as COMB throughout
the remaining paper. Please note that only the capability of these tools in identifying positive and
negative words and deriving the total sentiment of a tweet using a rule-based approach is tested.
In particular, no conclusions should be drawn on the general usefulness of the LIWC software having
more functions than the ones considered here or on the SenticNet4 approach possessing a far more
complex methodological procedure than just the lexicon itself used here. The following example tweet
(after preprocessing) is used to demonstrate how the lexicon-based and rule-based methods work.

“should have lost but won champion material livtot”

The algorithm underlying the QDAP_tool identifies all words categorized as positive in the
lexicon (“won”, “champion”), all words categorized as negative in the lexicon (“lost”) and all words
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being in none of these categories (“should,” “have,” “but,” “material,” “livtot”). The tweet consists of
eight words including two positive and one negative word, thus yielding a positivity of 2/8 = 0.25,
a negativity of 1/8 = 0.125 and a total sentiment of 0.25 − 0.125 = 0.125.

2.5. Negation Handling

Negation handling is a critical point in lexicon-based sentiment analysis as expressions like “this is
not a good match” will lead to positive sentiment just by the presence of the word “good.” However, it
is a complex topic as negation can apply to some parts of a statement while not applying to others.
In line with our reasoning on the trade-off between accuracy and practicability, a very basic rule of
negation flipping is used. If the tweet contains the negating word “not,” then the full sentiment of the
tweet is reversed, i.e., positivity and negativity are flipped.

2.6. Accuracy Measures

A straightforward and common measure in sentiment analysis is the accuracy of sentiment
classification with regard to a dataset of positive and negative tweets, which is—roughly speaking—the
proportion of correct classifications. It is defined as “Accuracy = (TP + TN)/(TP + TN + FP + FN)” [28]
(p. 11) where TP (true positives) and TN (true negatives) refer to the number of tweets correctly
classified (i.e., in line with the manual evaluation) as positive or negative by the algorithmic evaluation.
FP (false positives) and FN (false negatives) refer to the number of tweets classified as positive or
negative in contradiction to the manual evaluation. We excluded neutral and nonsense tweets from
the test dataset and balanced the dataset in order to have the same number of positive and negative
tweets [26]. The advantage of a balanced dataset is that the lower benchmark of accuracy is exactly
50% with reference to a random classification.

This approach of creating a validation dataset [26] and assessing the accuracy [28,29,36] is common
in the literature and the natural choice when sentiment analysis techniques are the main subject of
investigation as its accuracy can be expressed in a single straightforward value. However, it cannot
be considered sufficient with regard to testing the applicability of sentiment analysis in the sports
domain for two reasons: First, the exclusion of neutral and nonsense tweets creates an artificial
validation dataset that does not correspond exactly to real-world datasets. Second, in real-world
applications, there is no need to correctly classify the sentiment of a single tweet, but to classify the
general sentiment of a set of hundreds or potentially thousands of tweets with a reasonable degree of
accuracy. With regard to the aims of this study, more insights into the accuracy of classifying realistic
sets of tweets as well as knowledge on how the accuracy depends on the structure of the tweet sets
is needed.

In line with the objectives of this study, an alternative and more suitable accuracy measure
denoted as set accuracy is introduced and calculated. Test sets of n tweets with a predefined number of
tweets from each category are created. The proportion of neutral and nonsense tweets in the test sets
equals the proportion in the validation dataset. For the remaining tweets in the test set, a predefined
proportion p has the same polarity (either positive or negative). The tweets in the test dataset are
randomly chosen from the validation dataset, taking into account the predefined distribution of tweets
from the different categories, resulting in test sets with a predominantly positive or predominantly
negative sentiment. Then, these test sets are classified as either positive or negative, based on the
average sentiment of all tweets and this procedure is repeated m times. The calculation of the set
accuracy follows the same formula as for the accuracy; however, TP and TN now refer to the number
of test sets correctly classified by the algorithmic evaluation, and FP and FN refer to the number of test
sets of tweets classified incorrectly.
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3. Results

3.1. Manual Annotation

In terms of accuracy, the agreement between both annotators was 82.5% when considering all
four categories and 94.5% when considering only those tweets judged as either positive or negative
by both annotators. The inter-rater reliability based on 200 pre-annotated tweets was found to be
Kappa = 0.76 (95% CI (0.69, 0.83); p < 0.001) which is considered to be a substantial agreement with
reference to Landis and Koch [37] and even an excellent agreement with reference to Fleiss et al. [38].
A further improved agreement might be achievable when providing detailed formal definitions for the
categories “positive,” “negative” and “neutral.” However, strict rules were deliberately not introduced,
as the intention was to reflect human understanding and a higher agreement might thus come at the
cost of artificially introducing biases to the understanding of the annotators.

Manual annotation of the validation dataset resulted in 3184 positive, 2283 neutral and
3288 negative tweets. The remaining 1245 tweets were categorized as nonsense. Table 3 gives
examples for tweets that were categorized in each of the categories.

Table 3. Example tweet in each category of the manual annotation.

Category Tweet

Positive

“Messi is anything but human. #FCBLIV”

“What a save @Alissonbecker #MUNLIV #pl #lfc”

“C’mon United. #GGMU #MUNLIV”

Negative

“Stupidity from Ole for putting Lingard instead of Sanchez #MUNLIV”

“Never a pen, minimal contact outside box on Costa, Atletico lucky to get a free kick #AtletiJuve #ucl”

“Liverpool BATTERED #lfc #FCBLIV @btsportfootball”

Neutral

“VAR overrules ref. Freekick rather a pen #AtletiJuve”

“Bit surprised Klopp has broken up the Milner/Henderson/Wijnaldum midfield that’s played in most
of the big games this season if it is Milner at right back today #MUNLIV”

“Barcelona vs. Liverpool: Messi scores two goals in seven minutes #FCBLIV https://t.co/sZWqueaNlL”

Nonsense

“Looking for professional business flyer designer? Please contact following link. Messi #MUNLIV
#AtikuIsWinning HOLD THE DATE #SundayMorning #FelizDomingo https://t.co/jvMrrxjN4D”

“INVIOLABLE LE BUT DE TER STEGEN #FCBLIV”

“@TheSportsman The Savior has emerged... Imam #Ahmedalhasan (as). The Messenger from Imam
Mahdi (as). The Mahdi (as) that is born during the end of time...

The Messenger from Jesus (as). The Messenger from Elijah (as) #AtletiJuve #skamfrance
https://t.co/Qq8eA54ESE https://t.co/6bGIO6DNEw”

3.2. Accuracy Measures

Accuracy was found to be 61.0% for LIWC, 63.6% for QDAP, 62.6% for SN and 67.4% for COMB.
Accuracies are significantly higher than 50% according to one-sided binomial tests (p < 0.001 for all
four methods). A total of 43.4% of tweets for LIWC (25.0% for QDAP, 7.8% for SN) included neither an
evaluable positive nor an evaluable negative word, which is further evidence for the limited informative
value of analyzing single tweets. Figure 1 illustrates the set accuracy for various proportions p, various
test set sizes n and m = 10,000 test sets each. Results show that for sets of 50 or 100 tweets, even tweet
sets with a clear imbalance in sentiments (75% of one polarity) are not sufficient to enable set accuracies
to exceed 95% for any method. However, for the best-performing methods and sets of 500 tweets, a
proportion of 65% from the same polarity is sufficient to correctly classify more than 95% of sets for
both methods. For sets of 1000 tweets, even a proportion of 60% of one polarity is sufficient.

https://t.co/sZWqueaNlL
https://t.co/jvMrrxjN4D
https://t.co/Qq8eA54ESE
https://t.co/6bGIO6DNEw
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3.3. Qualitative Observations

Algorithmic sentiment analysis is a challenging task and several general issues have been
mentioned in the literature, such as sarcasm detection and order dependence [28], handling of spelling
mistakes and slang [39] or intensification and negation [29].

We will not repeat these known issues, but will demonstrate some qualitative observations
and resulting challenges in sports-related Twitter data in line with the argument of Kharde and
Sonawane [28] (p. 13) on the issue of domain dependence in sentiment analysis: “The same sentence
or phrase can have different meanings in different domains. For example, the word ‘unpredictable’ is
positive in the domain of movies, dramas, etc., but if the same word is used in the context of a vehicle’s
steering, then it has a negative opinion.” Just as every other domain, sports in general and football
in particular have their own vocabulary. We use the QDAP method to demonstrate some issues of
football-related textual data being a consequence of not using a football-specific sentiment lexicon.
Mentions of popular players such as Eden Hazard are categorized as negative due to the meaning
of his last name. The terms “free kick” and “champions league” are categorized as positive and the
term “penalty shootout” as negative, although in football-related communication none of these terms
expresses any sentiment by itself. At the same time, terms with a clear connotation such as the negative
term “diving” or the positive term “Mexican wave” will be categorized as neutral. Sports-specific
lexica would help to overcome these domain-specific problems, yet not the general limitations in
sentiment analysis. So far, the applicability has been investigated in various domains including banks,
cars, computers, cookware, hotels/travel destinations, movies, music and phones [29,36], but we are
not aware of any prior study focusing on the validation of manually annotated textual data from the
sports domain.

Another sports-specific issue is the length of tweets. The database contains a significant quantity
of tweets consisting of only a few words, such as the following examples:

“Epic #LIVTOT”
“Gol please. #MUNLIV”
“Lionel!!! #FCBLIV”



Appl. Sci. 2020, 10, 431 9 of 12

It may be presumed that in other domains, such as politics or finance, the average tweet length is
higher than in the sports domain. To test this empirically, two comparative datasets were collected
using a selection of politics-related hashtags (#brexit, #generalelection2019, #vote) and a selection of
finance-related hashtags (#dowjones, #wallstreet, #stocks, #bitcoin). The average tweet length for
cleaned tweets was 13.3 words for the football-related tweets, 20.8 words for politics-related tweets
and 18.0 words for finance-related tweets. For the football-related data, a proportion of 49.3% of tweets
contained ten or less words (politics: 28.1%, finance: 31.6%), and 21.6% of all cleaned tweets contained
even five or less words (politics: 11.8%, finance: 8.8%). This is evidence that the tweet length can vary
widely and—at least with regard to the investigated selection of hashtags—football-related tweets are
rather short. The low number of words, and even lower number of evaluable positive or negative
words, makes a correct classification difficult. The rather low accuracy of classifying single tweets thus
might, to some extent, be an artefact of the low number of words in each tweet.

4. Discussion

Based on the set accuracy, it can be said that the tools are accurate enough to correctly classify sets
of a few hundreds or thousands of tweets. As an example, sets of 1000 tweets, where a proportion of
60% have the same polarity, are correctly classified in more than 95% of all cases. As a high number of
tweets is by no means a problem in usual real-world applications, this result proves the validity of
sentiment analysis methods in such applications.

As argued in the Methods section, the accuracy of classifying sets of tweets does have a higher
relevance in real-world applications than the classification of single tweets, and a high set accuracy is
achieved, although the accuracy with regard to single tweets is rather limited. The accuracy of the
sentiment analysis methods (63.6% for the best performing method and 67.4% when combining all
methods) were significantly higher than 50%. This shows the general capability to identify sentiments
correctly in single tweets as well, but still appears to be a rather weak result, given that the lower
benchmark of 50% would be achieved by guessing. To make a fair assessment of this result, it needs
to be discussed in light of the experimental set-up and the existing literature. As the algorithm is
intended to have the highest possible agreement to human evaluation, an upper benchmark of 100%
is unreachable, given the fact that even manual annotators will not reach full agreement due to the
influence of subjectivity. As demonstrated in the Results section, the inter-rater-agreement in terms of
accuracy was 94.5%, if considering only those tweets judged as either positive or negative by both
annotators. Comparability to results stated in the literature is highly limited, as the accuracy does not
only depend on the method, but also on the domain and the type of textual data [29]. Longer pieces of
text, for example, imply an easier task for correct sentiment classification, while tweets are very short
pieces of text and thus only comparison to literature reporting sentiment classification tasks of Twitter
data seems reasonable. Accuracies around 75% have been reported for such tasks [26,28], showing the
general difficulty and relativizing the result found. Moreover, the aforementioned studies use machine
learning techniques such as Support Vector Machines while the present study focused on techniques
and tools that are purely lexicon-based and thus, easily available and feasible for non-computer
scientists. The short length of football-related tweets, as described in the Results section, and further
influence of domain dependence, as explained in the Methods section, could be other reasons for
falling short of the accuracies reported in other domains. One area of future research could, therefore,
be the improvement of methods and lexica for sports-related content.

With regard to the different tools used, QDAP was able to slightly outperform LIWC and SN in
terms of accuracy. To make a fair assessment of this result, it needs to be said that the SentimentAnalysis
package in R and the QDAP lexicon are specifically provided for sentiment analysis as performed
within this study. LIWC is a software for text analysis that has a broad scope of functions and only
one aspect (positive and negative emotions) was used within the study. Moreover, the difference
in accuracy seems to be partly attributable to the rather high number of tweets not containing any
evaluable positive or evaluable negative word identifiable by LIWC. Regarding SN, we did not test the
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more complex SenticNet4 method as proposed by Cambria et al. [35], but just made use of a binary
polarity lexicon (i.e., list of positive and negative words) deduced from their work.

With reference to the set accuracy, it can be said that all tools perform comparably in real-world
applications and that the number of tweets, as well as the polarity in the test data set, had a higher
influence on the set accuracy than the choice of the tool.

Sentiment analysis could have a significant impact in sports. Applications, as outlined in Table 1,
are possible right now and—as shown within the present study—can be approached with easily
accessible tools possessing a reasonable degree of complexity. In the future, opportunities of sentiment
analysis might become even broader. Cambria, Schuller, Xia and Havasi [40] point out that sentiment
analysis does not need to be bound to textual data and mention further applications of automatically
extracting opinions from data such as “facial expression, body movement, or a video blogger’s choice
of music or color filters” (p. 19). This is yet another link to sports science where body language plays
a large role, however, not analyzed algorithmically so far. Other visions of sentiment analysis refer
to the use of questionnaires: The necessity to find participants to fill out questionnaires and ask for
their opinion might be avoidable as a virtually endless number of people give away their opinion
on the internet voluntarily. The necessity to ask for recreational behavior in questionnaires might be
avoidable if the data can be extracted from social media or related online data without having the
problem of social desirability in questionnaires [41].

However, technological, methodological and ethical questions will need to be overcome in order
to establish social media analysis in general and sentiment analysis in particular as a tool in sports
science. Technical feasibility for non-computer scientists is crucial as tools need to be manageable.
We addressed this issue by testing easily accessible tools possessing a reasonable degree of complexity.
The possibly most serious methodological issues concern representativeness, as users of social media
cannot be assumed to be a representative sample of the population, e.g., in terms of demographic
groups or age, as has been criticized in the domain of election forecasting [7]. While studies like this one,
analyzing existing textual data for sentiments excluding any personal data are unproblematic in terms
of ethical questions, such questions would become relevant if metadata like personal characteristics or
geographical information would be analyzed. Carrying out experiments manipulating the behavior of
users in social media deliberately, would impose even further issues with regard to informed consent.

5. Conclusions

Being a rapidly growing research area in computer science, sentiment analysis is still pioneer work
in sports science. The present approach has shown the potential impact of algorithmically analyzing
textual online data in general and social media data such as Twitter in particular on sports science.
The accuracy of classifying single tweets or small sets of tweets is not satisfactory and could profit
from sports-specific lexica and the presence of more sophisticated sentiment analysis tools. However,
despite domain-specific characteristics, easily accessible tools of lexicon-based sentiment analysis are
capable of classifying the polarity of realistic sets of tweets (e.g., 1000 tweets, with a proportion of
60% having the same polarity) with an accuracy of more than 95%, thus being accurate enough in
real-world applications when analyzing hundreds or thousands of tweets. We hope that our approach
will stimulate the increased use of sentiment analysis as a tool in sports science.
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