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Abstract: This study presents a methodology for constructing groundwater spring potential maps
by kernel logistic regression, (KLR), random forest (RF), and alternating decision tree (ADTree)
models. The analysis was based on data concerning groundwater springs and fourteen explanatory
factors (elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment
transport index, topographic wetness index, distance to streams, distance to roads, normalized
difference vegetation index (NDVI), lithology, soil, and land use), which were divided into training
and validation datasets. Ningtiaota region in the northern territory of Shaanxi Province, China, was
considered as a test site. Frequency Ratio method was applied to provide to each factor’s class a
coefficient weight, whereas the linear support vector machine method was used as a feature selection
method to determine the optimal set of factors. The Receiver Operating Characteristic curve and the
area under the curve (AUC) were used to evaluate the performance of each model using the training
dataset, with the RF model providing the highest AUC value (0.909) followed by the KLR (0.877)
and ADTree (0.812) models. The same performance pattern was estimated based on the validation
dataset, with the RF model providing the highest AUC value (0.811) followed by the KLR (0.797)
and ADTree (0.773) models. This study highlights that the artificial intelligence approach could be
considered as a valid and accurate approach for groundwater spring potential zoning.

Keywords: groundwater spring potential mapping; kernel logistic regression; random forest;
alternating decision tree; China

1. Introduction

As pointed out by many researchers, one of the most important natural resource worldwide is
groundwater, with one third of the world’s population depending on it [1–4]. Several areas in the world
are subject to overexploitation of groundwater, undergoing water shortages as a result of a difference
between water supply and demand [5]. It is also well established that the demand for groundwater
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will increase substantially in the following years, mainly due to the growing population and economic
development [6–10]. According to Curran and de Sherbinin [11], even though the supply of water is
mainly controlled by climatic parameters, the management and the followed practices significantly
influence the availability of water. In the case of groundwater resources, inappropriate management
may result in the deterioration of water resources but also a decrease in the quality of groundwater [12].
Similar with the rest of the world, China faces increasing consumption of groundwater, making
imperative the application of accurate methods for assessing groundwater potential [13–16].

Groundwater spring potential mapping has been recognized as an investigation practice, the
outcomes of which provide useful data inputs concerning groundwater management projects [17].
Identifying areas with high probability concerning the presence of groundwater springs assists
in developing appropriate groundwater exploitation and groundwater resources conservation
programs [18,19]. Over the past two decades, geographical information systems (GIS) and remote
sensing techniques (RS) have been the main investigation tools concerning groundwater spring
potential mapping [4,17,18,20–22]. Successful examples of studies concerning groundwater potential
mapping involve bivariate and multivariate methods and specifically applications of frequency ratio
(FR) [13,17,23], analytical hierarchy process (AHP) [20,24–27], weight of evidence (WofE) [18,23,28,29],
evidential belief function (EBF) [19,30–33], and logistic regression (LR) [28,34,35].

Similar, machine learning methods have been introduced as an alternative option for groundwater
potential, mapping mainly involving tree-based methods, such as classification and regression tree
(CART) [36] and random forest (RF) [19,26,37], and neural network-based methods, such as artificial
neural network (ANN) [18,38,39] and support vector machine (SVM) [40]. Other notable examples of
machine learning methods that have been utilized in groundwater potential mapping assessments are
the implementations of naive Bayes (NB) [41] and K-nearest neighbor (KNN) [42].

Quite recently, new hybrid and ensemble methods have been applied in groundwater
mapping studies, showing in most cases enhanced performance than single predictive models [12].
Chen et al. [43] produced groundwater potential maps integrating WofE with LR and functional tree
(FT) models, the validation of which clearly highlighted the efficacy of the integrated models. The
authors reported that the integrated models provided better results, overcoming the drawbacks of
bivariate statistics and machine learning. Khosravi et al. [44] proposed five hybrid artificial intelligence
methods, integrating an adaptive neuro-fuzzy inference system (ANFIS) and meta-heuristic algorithms.
The outcomes of their study illustrated that by applying the novel hybrid models they could produce
more accurate groundwater potential models. Kordestani et al. [33] proposed an ensemble method,
integrating EBF and boosted regression tree (BRT), reporting that the EBF–BRT model was capable
of providing highly accurate results. The authors suggest that the produced model improves the
weak points of each method, while taking advantage of the ability of the methods to analyze
the relation of groundwater with each groundwater-related variable and with each class of the
groundwater-related variable. In a similar study, Chen et al. [15] integrated an ANFIS model with a
teaching–learning based optimization (TLBO) and a biogeography-based optimization (BBO) model.
According to the authors, the two novel data mining methods could be useful in solving non-linear and
high-dimensional problems and overall could be useful for groundwater management and exploration
development projects.

In this context, the current study presents a novel hybrid integration approach of FR with artificial
intelligence-based kernel logistic regression (KLR), alternating decision tree (ADTree), and RF models
for groundwater spring potential mapping, having as a test site the Ningtiaota region, China. A hybrid
integration approach of FR, KLR, ADTree, and RF is a relatively new contribution that has been seldom
used for modeling of groundwater spring potential areas. It should also be mentioned that limited
studies have been conducted concerning groundwater spring potential mapping in China, therefore,
this research aims to fill this gap in the literature.
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2. Study Area

Ningtiaota region is located in the northern territory of Shaanxi Province, China. The climate
is characterized as dry throughout the year. The maximum and minimum temperatures are 38.9 ◦C
and −29.0 ◦C, respectively, the average relative humidity is 56%, the average wind speed is 13.4 m/s,
and the average annual rainfall is 434.1 mm. The study area, which is a portion of the Ningtiaota
region, defined and limited to the area where data were available, is a geographical area of 119.77 km2,
located within latitudes 38◦57′30′′ to 39◦7′57′′ N and longitudes 110◦9′36′′ to 110◦16′20′′ E (Figure 1).
According to the Soil Map produced by the Institute of Soil Science, Chinese Academy of Sciences [45],
the typical soil types that cover the study region are Calcari-Gypsiric Arenosols (Arc), Haplic Arenosols
(ARh), Calcareous Red Clay (CMe), and Luvi-Calcic Kastanozems (KSk)

Topographically, altitudes vary from 1118 to 1364 m above the sea level, and slope gradients vary
from 0 to 37.88◦ based on a digital elevation model (DEM) with a 30 m regular grid. Approximately
75.38% of the area appears with less than 10◦ slope surface, whereas only 0.097% of the total study area
have slopes greater than 30◦. Areas with the slopes between 10 and 20◦ and 20 and 30◦ account for
21.77% and 2.74%, respectively.

Geologically, the strata of the study area belong to the Ordos Basin stratigraphic subarea in the
North China stratigraphic area. Based on the geological map of China (http://www.cgs.gov.cn), the
strata in the area from old to new are Yan’an formation (J2y), Zhiluo formation (J2z), Anding formation
(J2a), Baode formation (N2b), Lishi formation (Q2l), Salawusu formation (Q3s), Malan formation (Q3m),
Alluvium (Q4al), and Eolian deposit (Q4eol), respectively (Table 1).
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Table 1. Lithology of the study area.

Categories Codes Lithologies

Group A J2y Mudstone, sandy mudstone, arcose sandstone
Group B J2z Mudstone, sandstone, glutenite
Group C J2a Mudstone, sandstone
Group D N2b Clay
Group E Q2l Loess
Group F Q3s Sand
Group G Q3m Loess
Group H Q4al Alluvium
Group I Q4eol Eolian deposit

3. Methodology

The developed investigation approach followed in the present study was a four-step procedure:
(i) data selection, generation of the spring inventory map and selection of nonspring areas, (ii) application
of the Frequency Ration (FR) method and the linear support vector machine (LSVM) as a feature
selection method so as to quantify the contribution of each explanatory factor and determine the
optimal set of factors that have high predictive power, construction of the training and validation
dataset, (iii) application of the Kernel logistic regression (KLR), Random Forest (RF), and Alternating
Decision Tree (ADTree) models, and (iv) validation and comparison of the developed models. Figure 2
highlights the flowchart of the followed methodology, and each method used in our study will be
briefly described in the following paragraphs.
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3.1. Frequency Ratio (FR)

The FR model, as a popular and efficient bivariate statistical techniques, is mainly used to estimate
the potential probabilistic relation between dependent and independent factors but also for the potential
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relation of multi-classified maps [35]. According to the FR model, the following formula (Equation (1))
was used to calculate the FR values for classes of the groundwater spring conditioning factors:

FRi j =

Spri j
Suri j

SprT
SurT

(1)

where FRij is the frequency ratio of a ith class for the jth factor, Sprij is the number of pixels with spring
pixels in the ith class area of the jth factor, SprT is the total number of springs, Surij is the number of
pixels in the ith class area of the jth factor, and SurT is the total number of pixels.

3.2. Selection of Spring Explanatory Factors Using an SVM Classifier

The quality of groundwater spring potential mapping is influenced by the quality and quantity of
the input data and also the predictive models that were used [15]. It is well known that groundwater
spring explanatory factors may have unequal predictive capability in groundwater spring potential
modeling. Therefore, groundwater spring explanatory factors that are characterized by negligible
predictive capability should be not included in the analysis as they may produce less accurate results.
Feature selection methods and specifically the gain ratio [46] and information gain ratio [47] are mainly
used for estimating the predictive capability, however, in our case, the linear support vector machine
(LSVM) method was used [48]. The determination of the contributions of the 14 groundwater spring
explanatory factors was carried out as follows (Equation (2)) [49,50]:

g(x) = sgn
(
wTm + n

)
(2)

where m = (m1, m2, m3, . . . , m12) is the input vector, wT is the inverse matrix, and n is the offset from
the origin of the hyper-plane.

3.3. Kernel Logistic Regression (KLR)

Kernel logistic regression is considered as a powerful discriminative method, described as the
kernel version of logistic regression capable of transferring into a high-dimensional feature space the
original input feature space by using kernel functions [51]. The following kernel function (Equation
(3)) is the basic function in which ϕ is assumed to be unknown:

K(x, x′) = ϕ(x)Tϕ(x′) (3)

where T is the inner product in the Z space.
The training dataset has n vector input samples (xi, Yi) with xi belonging to Rn and Yi belonging to

{−1, 1}, where xi is the ith input vector sample and Y is the target value. For Yi = 1, the xi is characterized
as class 1, whereas for Yi = −1, xi is characterized as class 2. Let Zi = ϕ(xi) . Hence, the kernel-based
method will solve the following optimization problem (Equation (4)):

mink,bE =
1
2
||k||2 + C

∑
i

g(−yi(k ∗ zi − b) (4)

where C corresponds to a regularization parameter, the optimal value of which is estimated by using
techniques such as cross validation or a grid search technique. For the KLR function, the g is estimated
by the following (Equation (5)):

g(λ) = log
(
1 + eλ

)
(5)
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The goal of KLR is to estimate a discrimination function that distinguishes the two classes perfectly,
in our case, spring from non-spring areas:

log(p) = log
(

p
1− p

)
=

n∑
i=1

aiK
(
xi, x j

)
+ b (6)

where p is the logistic function with values ranging between −1 and 1, K(xi, xj) is the kernel function
that takes into consideration the Mercer’s condition [52], αi is a vector of dual parameters and b is
the intercept.

Several kernel functions can be used, such as the linear kernel, the polynomial, and normalized
polynomial [53]. However, in our case, the radial basis function (RDF) kernel was considered to be
carried out:

K
(
xi, x j

)
= exp

−xi − x j
2

2σ2 (7)

where σ is a tuning parameter.

3.4. Random Forest (RF)

RF is an ensemble method of binary decision trees that are trained separately, and it is appropriate
for classification and regression problems [54]. The fundamental approach used for classification
problems by RF is based on training separately each decision tree, whereas the final outcome is
estimated by taking into account the results obtained by each decision tree [55].

RF models have the ability to generalize and minimize the risk of over fitting, without having to
undergo any pruning process. The training involves creating a number of different bootstrap samples
from the original dataset, with one-third being left out of the process to act as test cases and based on
this test cases to estimate an unbiased test error, referred to as the out-of-bag-error, that expresses the
predictive ability of the RF model [56].

3.5. Alternating Decision Tree (ADTree)

ADTree is a combination of a decision tree and boosting techniques that generates classification
rules with less nodes, is easier to explain, and provides a measure of confidence that is called the
classification margin [57].

ADTree are similar to the option trees first described by Buntine [58] and further developed by
Kohavi [59]. Compared to a single decision tree, option trees achieve a significant improvement in
classification error. The ADTree’s structure is similar to option trees since they also use a boosting
technique and achieve better performance levels [60]. Because of the boosting iteration process, which
adds three more nodes (one splitter node and two prediction nodes) to the tree, more boosting iterations
will produce larger and more accurate trees. Different from original decision trees, ADTrees perform
classification for a sample by mapping all possible paths for which all decision nodes are true, while
summing up any prediction nodes that are traversed. In the case of unknown feature values, the
ADTree algorithm only considers the reachable decision nodes. That is the reason why the ADTree
algorithm can be applied widely in classification.

3.6. Validation and Comparison of the Results Obtained by the Models

The validation of the success and predictive performance of the three models was performed
based on the receiver operating characteristic (ROC) curves [61–65]. The estimated AUC values range
between 0.50 and 1.00 and can be classified based on a quantitative–qualitative classification scheme as
follows: 0.5–0.6 (poor), 0.6–0.7 (average), 0.7–0.8 (good), 0.8–0.9 (very good), and 0.9–1 (excellent) [66].
In addition to the AUC values, two evaluation statistics, namely standard error (SE) and confidence
interval (CI) at 95%, were also estimated. The best model has the smallest standard error, and the
narrowest CI [67,68].
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4. Data Used

A crucial aspect in groundwater spring potential mapping process is to identify spring locations.
Based on extensive field surveys conducted during 2006–2017, 66 springs were detected in the study
area (Figures 1 and 3a,b). An equal number of 66 nonspring locations were randomly selected from the
free of spring’s space by applying the Create Random Points function found in the Data Management
Tools in the ArcGIS platform [69]. The spring and nonspring locations were randomly divided into two
subsets, by using the Subset tool in the Geo statistical extension package of the ArcGIS platform [69].
The first subsets consisted of 46 spring and 46 nonspring locations, 70% of the total number of springs
and nonspring areas and were used for training, whereas the second subset consisted of the remaining
30% (20 spring and 20 nonspring locations) and were used for validation.
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Generally, several spring explanatory factors may influence spring occurrence, however, there are
no guidelines for the selection of spring explanatory factors. Therefore, in the present study and based
on the experienced gained from previous studies, 14 spring explanatory factors, including slope aspect,
slope angle, plan curvature, profile curvature, elevation, stream power index (SPI), sediment transport
index (STI), topographic wetness index (TWI), distance to streams, distance to roads, normalized
difference vegetation index (NDVI), lithology, soil, and land use, were selected and prepared for
further analysis within a GIS environment [43,70,71]. Eight geomorphometric factors, including slope
aspect, slope angle, plan curvature, profile curvature, elevation, SPI, STI, and TWI, were extracted
from the ASTER GDEM version 2 sensor (http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html)
with a resolution of 30 m. These spring explanatory factors were reclassified into categories (Table 2)
based on the outcomes of frequency analysis concerning spring occurrence and also characteristics
of the study area. The distance-to-streams and distance-to-roads maps were produced using the
topographic maps at 1:10,000-scale. The NVDI was calculated using Landsat 8 OLI (path/row 126–33)
obtained on 4 November 2017 (available at http://www.gscloud.cn). A lithological map was extracted
from the geological map at a scale of 1:10,000 and constructed with nine classes based on lithological
similarities [43,72]. The soil types were extracted from soil maps at 1:1,000,000-scale in the study area
and were classified into four classes [43,73]. In addition, the land use map was extracted from land
use maps at 1:100,000-scale with six land use types based on the supervised classification method and
maximum likelihood algorithm [19]. All the spring explanatory factors were finally converted into the
same spatial resolution of 30 × 30 m2 (Figure 4).

http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html
http://www.gscloud.cn
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5. Results

5.1. Results of Explanatory Factors Selection

Table 2 illustrates the average merit (AM) values of the 14 spring explanatory factors based on the
LSVM algorithm classifier using a 10-fold cross-validation method [53]. The results of the performed
LSVM analysis revealed that lithology had the highest predictive power (14.0), followed by elevation
(12.8), SPI (12.2), and soil cover (10.6), thus being the most significant factors that contribute to the
predictive performance of a model. Since, all spring explanatory factors appear to have a positive
predictive value, none of them were excluded from the analysis that followed.

Table 2. Predictive capabilities of spring explanatory factors using the LSVM algorithm. AM:
average merit.

No. Explanatory Factors AM Standard Deviation

1 Lithology 14.0 ±0.000
2 Elevation 12.8 ±0.400
3 SPI 12.2 ±0.400
4 Soil cover 10.6 ±0.490
5 Distance to roads 9.9 ±0.831
6 Slope aspect 9.3 ±0.900
7 TWI 7.4 ±1.020
8 Slope angle 6.2 ±1.327
9 STI 5.6 ±1.685
10 Land use 4.9 ±1.758
11 Distance to streams 4.7 ±1.487
12 Profile curvature 3.0 ±1.789
13 Plan curvature 2.5 ±0.671
14 NDVI 1.9 ±1.814
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5.2. Correlation Analysis between Springs and Explanatory Factors Using FR

The correlation between groundwater springs and explanatory factors using the FR values is
illustrated in Table 3. Based on the results, springs are found more frequently in southeast-facing
(1.989) and south-facing (1.338) slopes. Flat slopes, with no springs occurrence, have the lowest FR
value (0.000). For slope angle, FR values increase with the increasing slope angles and then decrease
when slope angles are larger than 25◦ in the study area, and the class of 20–25 has the highest FR value
(1.956), followed by the classes of 15–20 (1.955), 10–15 (1.296), 5–10 (1.248), and <5 (0.483). In the case
of plan curvature, the FR value is the highest for the class of −0.77 to −0.28 (2.084), followed by the
classes of 0.60–3.09 (1.200), 0.11–0.60 (0.989), −3.15 to −0.77 (0.856), and −0.28–0.11 (0.419). The FR
values concerning the profile curvature indicate a decrease with the increasing profile curvature values.
However, when the profile curvature values are higher than -0.22, the FR values show an increase. The
class of 0.72–4.07 has the highest FR value (2.778). For elevation, the FR values decrease with increasing
elevation. The class that is characterized by elevation greater than 1150 m has the highest FR value
(6.914), followed by the class of 1150–1200 (2.592). Concerning SPI, the FR values show an increasing
trend with the increasing SPI values. The class of 30–40 shows the highest FR value (4.524), whereas
the class of 10–20 shows the lowest FR value (0.531). For STI, the class of >8 exhibits the highest FR
value (2.246). In the case of TWI, the FR values decrease and then increase with the increasing TWI
values. The class of <2 shows the highest FR value (2.429), followed by the class of >3.5 (1.539). For
the factor distance to rivers, the class 150–200 m was found to have the highest FR value (1.759). For
the factor distance to roads, the FR values indicate that the class of 150–200 m (2.226) has the strong
influence of road proximity to spring occurrence. For NDVI, FR values are relatively equal for different
NDVI classes except for the class of 0.19–0.26. The highest FR values are estimated for the classes of
−0.16–0.04 (1.296) and 0.26–0.54 (1.263). Concerning lithology, the FR values are estimated to be the
highest for the lithology groups of F (10.155), B (7.227), C (6.656), and A (5.793). In the case of soil, the
ARh soil exhibits the highest FR value (1.902), followed by KSk soil (1.473). Finally, for the land use
factor, the highest FR value (0.330) is estimated for the land use type of others (1.373), grassland (1.104),
and farmland (0.984).

Table 3. Spatial relationship between springs and factors by FR model.

Explanatory Factors Classes No. of Pixels
in Domain

No. of
Springs FR

Slope aspect

Flat 160 0 0.000
North 20,781 7 1.110

Northeast 23,407 3 0.422
East 18,904 5 0.871

Southeast 16,567 10 1.989
South 19,695 8 1.338

Southwest 19,789 6 0.999
West 15,924 3 0.621

Northwest 16,327 4 0.807

Slope angle (◦)

<5 61,434 9 0.483
5–10 52,808 20 1.248

10–15 22,886 9 1.296
15–20 10,114 6 1.955
20–25 3368 2 1.956
25–30 797 0 0.000
>30 147 0 0.000

Plan curvature

−3.15 to −0.77 7701 2 0.856
−0.77 to −0.28 28,451 18 2.084
−0.28–0.11 55,026 7 0.419
0.11–0.60 46,644 14 0.989
0.60–3.09 13,732 5 1.200
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Table 3. Cont.

Explanatory Factors Classes No. of Pixels
in Domain

No. of
Springs FR

Profile curvature

−4.21 to −0.74 9855 4 1.337
−0.74 to −0.22 37,272 8 0.707
−0.22–0.20 56,394 14 0.818
0.20–0.72 37,360 11 0.970
0.72–4.07 10,673 9 2.778

Elevation (m)

<1150 1906 4 6.914
1150–1200 13,983 11 2.592
1200–1250 46,890 22 1.546
1250–1300 61,507 9 0.482

>1300 27,268 0 0.000

SPI

<10 112,248 29 0.851
10–20 18,612 3 0.531
20–30 7174 2 0.918
30–40 3641 5 4.524
>40 9879 7 2.335

STI

<2 83,093 16 0.634
2–4 31,339 12 1.262
4–6 14,344 4 0.919
6–8 8108 4 1.625
>8 14,670 10 2.246

TWI

<2 13,564 10 2.429
2–2.5 62,484 10 0.527
2.5–3 43,231 13 0.991
3–3.5 17,294 6 1.143
>3.5 14,981 7 1.539

Distance to streams (m)

<50 22,376 10 1.472
50–100 19,583 10 1.682
100–150 18,591 6 1.063
150–200 13,111 7 1.759

>200 77,893 13 0.550

Distance to roads (m)

<50 36,659 14 1.258
50–100 26,995 11 1.343
100–150 22,234 6 0.889
150–200 13,323 9 2.226

>200 52,343 6 0.378

NDVI

−0.16–0.04 10,165 4 1.296
0.04–0.13 50,750 18 1.169
0.13–0.19 46,711 17 1.199
0.19–0.26 33,496 3 0.295
0.26–0.54 10,432 4 1.263

Lithology

A 2275 4 5.793
B 4103 9 7.227
C 495 1 6.656
D 24,980 8 1.055
E 26,024 4 0.506
F 2271 7 10.155
G 2895 3 3.414
H 3653 1 0.902
I 84,858 9 0.349
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Table 3. Cont.

Explanatory Factors Classes No. of Pixels
in Domain

No. of
Springs FR

Soil

Calcari-Gypsiric Arenosols (Arc) 67,657 10 0.487
Haplic Arenosols (ARh) 17,325 10 1.902

Calcareous red clay (CMe) 8418 0 0.000
Luvi-Calcic Kastanozems (KSk) 58,154 26 1.473

Land use

Farmland 33,485 10 0.984
Forest 5148 0 0.000
Grass 89,545 30 1.104
Water 743 0 0.000

Residential areas 13,036 2 0.505
Others 9,597 4 1.373

5.3. Application of KLR, RF, and ADTree Models

Figure 5 illustrates the spring potential map constructed by the KLR method. Based on the visual
inspection of the produced spring potential maps, the occurrence of spring appears to follow the
spatial distribution of elevation and the factor distance to streams. The high and very high potential
groundwater spring zones cover mainly the central and north areas, whereas the south area exhibits
low to very low values. The high spring potential class was estimated to cover 5.02% of the study area,
whereas low and very low spring potential classes cover 77.71% of the area (Table 4).
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Table 4. Percentages of groundwater spring-potential classes.

Classes KLR (%) RF (%) ADTree (%)

Very low 58.80 46.90 76.66
Low 18.91 21.57 5.90

Moderate 10.10 13.77 4.04
High 7.18 10.76 4.25

Very High 5.02 7.01 9.15

To enhance the performance of the RF method, a tuning process that is based on the grid search
method was necessary [74]. The results of the tuning process indicated the optimal parameters to
be for ntree 1500 trees and for the mtry parameter of 11. The implementation of RF also provided
some extra information concerning the importance of the spring explanatory factors on the overall
spring potential mapping. This was achieved by calculating the mean decrease accuracy and the mean
decrease Gini [75] (Figure 6). Higher values for both measures indicate that the factor is relatively more
significant [76]. According, to those two metrics, the most important factor was lithology, followed
by elevation.
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Figure 7 illustrates the groundwater spring potential map constructed by the RF model. Based
on the visual inspection of the spring potential map, it could be concluded that spring occurrence
follows in this case the spatial pattern of the stream network, with high and very high potential zones
covering mainly the central area, whereas the south area illustrates low to very low values. The high
spring potential class covers 7.01% of the area, whereas low and very low spring potential classes cover
68.47% of the area (Table 4).

Figure 8 shows the spring potential map constructed by the ADTree model based on the natural
break method [77,78]. Compared to the previous methods, the ADTree method provides a rather
different spatial distribution. The high spring potential class covers 9.15% of the area, whereas low
and very low spring potential classes cover 82.56% of the area. It seems that the ADTree method
distinguishes with clarity the potential nonspring and spring areas compared to the other two methods.
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5.4. Validation and Comparison

Figure 9a,b illustrates the ROC plot assessment results based on the training and validation
subsets. The AUC value for the success rate curve using the RF model was estimated to be 0.909,
which corresponds to a prediction accuracy of 90.90%, followed by the KLR (0.877) and ADTree
(0.812) models.
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RF showed the lowest SE value (0.0225), followed by KLR (0.0294) and ADTree (0.0341), and also
the shorter CI value (0.088) followed by KLR (0.1) and ADTree (0.118) (Table 5). Similar performance
patterns were estimated when using the validation subset, with the AUC value for the predictive rate
curve using the RF model estimated at 0.811, followed by the KLR (0.797) and ADTree (0.773) models.
Again, the RF model showed the lowest SE (0.0526), followed by ADTree (0.0578) and KLR (0.0591). As
for the CI values, RF showed the shortest interval (0.183), followed by KLR (0.188) and ADTree (0.195)
(Table 6). Based on the validation analysis, all three models appear to provide good accuracy, with the
RF model producing slightly better results in term of AUC values, low SE, and short CI values for both
the training and validation subsets. Concerning the performance of KLR based on the training subset,
it was found that it provides results relatively close to the RF model AUC, SE, and CI values.

Table 5. Parameters of AUC values using training dataset. SE: standard error; CI: confidence interval.

Models AUC SE 95% CI

KLR 0.877 0.0294 0.821 to 0.921
RF 0.909 0.0225 0.858 to 0.946

ADTree 0.812 0.0341 0.748 to 0.866

Table 6. Parameters of AUC values using validation dataset.

Models AUC SE 95% CI

KLR 0.797 0.0591 0.691 to 0.879
RF 0.811 0.0526 0.707 to 0.890

ADTree 0.773 0.0578 0.665 to 0.860

6. Discussion

As several studies report, the significance and predictive power of spring related factors that are
used in groundwater spring potential assessments are controlled by the geological, morphological,
hydrological, and climatic settings of the area [19,22,79–81]. According to Ozdemir [35], topographic
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features, such as elevation and slope, have a negative influence with groundwater spring potential,
and on the other hand TWI and drainage density have a positive influence. Similar studies, report that
topographic features along with the characteristics of the soil cover, tectonic features (fault density and
distance to faults), and also hydrological features (drainage density) influence the rainfall-runoff rate
and also the infiltration rate, thus possibly affecting the groundwater spring potential occurrence [19,35].
Chen et al. [43] reported that lithology, elevation, and distance to streams had a greater influence,
whereas land use, NDVI, plan, and profile curvature appear to have the least influence.

During the present study, the implementation of LSVM revealed that lithology had the highest
predictive power, followed by elevation, SPI, and soil cover. Concerning the lithology factor, lithological
and structural differences lead to variations in the durability and permeability of rock and soil formations,
and thus the presence of springs [35]. Based on the FR analysis, groundwater springs are more probable
to be found in southeast facing slopes, in areas with slopes angles ranging between 15 to 25 degrees and
elevation lower than 1150 m. Concerning slope angles, the outcomes of the study are persistent with
previous studies that report that areas with slopes greater than 35◦ are considered unfavorable since as
the slope increases so too does runoff, having as a result reduced infiltration rates [82,83]. Moreover, the
most spring-probable areas are covered by Haplic Arenosols (ARh) soils, which are coarsely textured
sandy soils, permeable to water, and Calcic Kastanozems (KSk) soils, which are characterized by a
rather restricted water transmission with higher portions of clay particles. According to Srivastava and
Bhattacharya [84], sandy soils and coarse sandy clays appear as potential favorable storage bodies due
to their light texture and excellent rate of infiltration, which is persistent with the findings of our study.

Within the research area, sand, mudstone, and sandstone formations appear to be more likely to
contain springs. Similar findings were found by the authors in a previous study concerning the area
of research [43]. Mudstone layers, which could be defined as formations with very low infiltration
capacity, form an impermeable layer while sand and sandstone formations act as permeable layers
allowing the concentration of surface water within their mass. The alternation of these layers permits
the formation of groundwater springs as can be found in the area of research.

An interesting point that should be mentioned is the high predictive value of the factor distance
to roads. The distance-from-road network is considered to have an influence on the occurrence of
groundwater springs since its presence can cause local hydrological and erosion issues while affecting
indirectly the groundwater table [85]. Also, the presence of a road may influence the amount of soil
moisture but also the infiltration rate as a result of the removal of geological formations and the
disturbance of the surface during of the construction phase [43,85].

Concerning the validation and comparison of the three models (KLR, RF, and ADTree), the RF
model appears to provide slightly higher AUC values, lower SE values, and shorter CI intervals than
the other two methods. Several studies have indicated that RF models have higher accuracy, compared
to other models. According to Naghibi et al. [12], who applied support vector machine (SVM), RF,
and genetic algorithm optimized RF (RFGA) methods to assess groundwater potential by spring
locations, RF and optimized RF models outperformed SVM models. According to Golkarian et al.
(2018) [86], this could be attributed to the methodological approach they followed, which involves
aggregating the outcomes of many decision trees in order to limit overfitting effects as well as to limit
error due to bias and error due to variance, thus producing more accurate predictions. However, other
studies report that the performance of RF models could be influenced by the presence of datasets with
noisy data and by the presence of data that includes categorical variables with different numbers of
levels where, in such a case, RF models are biased in favor of those variables that appear with more
levels [36]. In the present study, KLR gave more accurate results than those from the ADTree model. In
similar studies concerning landslide susceptibility assessments, which implemented KLR and ADTree
methods, it was found that KLR produced more balanced results for the training and validation
datasets in terms of the statistical index, while the ADTree models showed significant variance [74].
Finally, although the presented models appear to have satisfactory predictive performance, it must
be kept in mind that their results are influenced by the quality and quantity of the available input,
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and also the identification of nonspring areas. Concerning future work, the presented approach could
be applied to an area with different geo-environmental settings or include in the analysis dynamic
variables, such as precipitation and temperature, that may vary over short timeframes, so as to estimate
the efficiency of the proposed models.

7. Conclusions

In the present study, three artificial intelligence methods (KLR, RF, and ADTree) were utilized for
the generation of a groundwater spring potential map for the Ningtiaota region, which is located in
the northern territory of Shaanxi Province, China. A linear support vector machine method was used
as a feature selection method so as to determine the optimal set of factors, which included fourteen
explanatory factors (elevation, slope, aspect, plan curvature, profile curvature, stream power index,
sediment transport index, topographic wetness index, distance to streams, distance to roads, NDVI,
lithology, soil, and land use). The performed analysis highlighted the higher predictive power of the
spring explanatory factors lithology, elevation, SPI, and soil cover. These four factors significantly
influence the prediction accuracy. The comparison between the performances of KLR, RF, and ADTree
models revealed that the RF model had higher prediction accuracy than the other two models, based
on the results of higher values of AUC metric, lower SE values, and shorter CI intervals. The RF
model’s ability to limit overfitting effects may be the reason for its higher predictive performance.
While remembering that the results obtained by tree-based artificial intelligence approaches could
be influenced by the quality and quantity of data, overall they could be appreciated as accurate and
reliable investigation tools in groundwater spring potential assessments.
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