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Abstract: As the number of Internet of Things (IoT) devices connected to the network rapidly 
increases, network attacks such as flooding and Denial of Service (DoS) are also increasing. These 
attacks cause network disruption and denial of service to IoT devices. However, a large number of 
heterogenous devices deployed in the IoT environment make it difficult to detect IoT attacks using 
traditional rule-based security solutions. It is challenging to develop optimal security models for 
each type of the device. Machine learning (ML) is an alternative technique that allows one to develop 
optimal security models based on empirical data from each device. We employ the ML technique 
for IoT attack detection. We focus on botnet attacks targeting various IoT devices and develop ML-
based models for each type of device. We use the N-BaIoT dataset generated by injecting botnet 
attacks (Bashlite and Mirai) into various types of IoT devices, including a Doorbell, Baby Monitor, 
Security Camera, and Webcam. We develop a botnet detection model for each device using 
numerous ML models, including deep learning (DL) models. We then analyze the effective models 
with a high detection F1-score by carrying out multiclass classification, as well as binary 
classification, for each model.  

Keywords: internet of things; botnet attacks; N-BaIoT; machine learning; deep learning  
 

1. Introduction 

At the 2016 World Economic Forum (WEF, also known as the Davos Forum), The Fourth 
Industrial Revolution by Klaus Schwab became a turning point in transforming our society from an 
information society into an intelligent information society. The Fourth Industrial Revolution 
represents a fundamental change in the way we live, work, and relate to one another [1]. Key 
technologies leading the fourth industrial revolution include the Internet of Things (IoT), the cloud, 
big data, mobile technology, and artificial intelligence (AI). These intelligent information 
technologies are creating new industries and revolutionizing the ecosystem of existing 
manufacturing industries. The term “Internet of Things” was coined in 1999 by Kevin Ashton to 
describe how data collection through sensor technology has unlimited potential [2]. With the 
inclusion of the IoT in the Gartner Top 10 Strategic Technology Trends in 2020, it was shown that the 
IoT will develop into more than 20 times more smart devices than existing IT roles in 2023 [3]. 
According to Gartner, the overall usage of IoT in various areas, such as utilities, healthcare, the 
government, physical security, and vehicles, is expected to increase [4].  
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As the IoT develops, cyber threats targeting IoT devices are also increasing. Most IoT devices 
are connected to the internet, which facilitates abuse and a lack of security control. The fact that IoT 
manufacturers failed to implement proper security controls to protect these types of devices from 
remote attacks allowed the number of IoT attacks to increase during last year by 217.5%, up from the 
10.3 million attacks logged by SonicWall in 2017, according to its 2019 Cyber Threat Report [5]. 

There are many security threats targeting the IoT, which has many vulnerabilities. Because the 
IoT is subject to many threats, it is important to classify the relevant vulnerabilities and attacks in 
order to study the IoT. Some studies classify such attacks based on the IoT layer [6,7], the attacks 
themselves [8–10], and the vulnerabilities that can lead to the attack [11–13]. Through these studies, 
we found that jamming, DoS, man in the middle, routing, sinkhole, wormhole, flooding, virus, and 
worm attacks are the most likely to occur in an IoT environment. In particular, flooding and DoS 
attacks occur in production IoT environments through botnets.  

Botnet attacks [14–16], according to Owari, Mirai, and Bashlite, are especially surging in 
popularity. A botnet runs a bot on several devices connected to the internet to form a botnet 
controlled by the command and control (C&C) [17]. The botnet causes various types of damage, such 
as resource depletion and service disruption. AI is now widely used to detect these IoT attacks [18–
21]. 

Currently, the IoT is attacked through various channels and methods. However, it is difficult to 
introduce security solutions and determine instances of hacking on the IoT through an analysis of 
security threats using network information. There are many recent security issues related to the IoT, 
which have increased awareness of such problems. Currently, research on IoT security threats is 
focused on analyzing and responding to networks [22,23], but there are limitations that preclude 
detecting direct changes in hardware. Thus, unlike previous studies, we focused on attacks targeting 
IoT devices. In particular, we used deep learning and machine learning algorithms to detect such 
attacks efficiently. 

The remainder of this paper is organized as it follows. We briefly review the trends of IoT 
security threats and deep learning studies used in IoT security in Section 2. We design an IoT attack 
detection model based on five ML algorithms and three DL algorithms in Sections 3 and 4. Finally, 
the conclusions are presented in Section 5. 

2. Related Works 

2.1. IoT Security Threats 

As the IoT evolves, attacks on the IoT and using IoT are becoming more diverse. This section 
describes IoT security threats. First, we look at studies that categorized IoT security threats. Next, we 
explore the types of IoT security attacks and the papers that studied those attacks. 

2.1.1. Classification of Attacks 

The classification that categorizes attacks can be largely divided into three groups. One is 
divided based on the layers of the IoT. Another includes independently suggested classifications 
based on attacks, while the other is based on the attacks themselves. In this section, the classification 
presented in each study is divided into these three groups. 

• IoT layer: 

The IoT can be divided into three layers: the perception layer, the network layer, and the 
application layer. The perception layer is the bottom layer of the IoT, which connects physical devices 
to the network. The network layer is the layer in the middle of the IoT that determines the route based 
on information received from the perception layer. The application layer is the top layer of the IoT. It 
receives data from the network layer and sends it to the appropriate service. The potential attacks on 
each layer can be explained according to this taxonomy based on IoT layers. Lin et al. [6] classified 
the security challenges that can occur on each layer of the IoT. Sonar et al. [7] focused on DDoS attacks 
that can occur in the IoT. They categorized the DDoS scenarios that can occur in each layer of the IoT. 
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• Attacks: 

Abomhara et al. [8] classifies attacks into eight common attack types: physical attacks, 
reconnaissance attacks, DoS, access attacks, attacks on privacy, cyber-crimes, destructive attacks, and 
supervisory control and data acquisition (SCADA) attacks. Physical attacks are attacks related to 
hardware components. Reconnaissance attacks involve the mapping of unauthorized systems or 
services using packet sniffers or scanning network ports. DoS is an attack that disables network 
resources or devices. Access attacks are attacks that allow unauthorized users to gain access to a 
network or device. Attacks on privacy involve privacy protection. Cyber-crimes involve using 
Internet or smart devices to take user data to commit a crime. Destructive attacks are attacks that 
harms assets and lives (e.g., terrorism). SCADA systems are vulnerable to many cyber-attacks; such 
a system can be attacked using DoS, a Trojan, or a virus. Andrea et al. [9] divided attacks into four 
categories based on the type of attack: physical attacks, network attacks, software attacks, and 
encryption attacks. Deogirikar et al. [10] used this taxonomy. 

• Vulnerabilities: 

Neshenko et al. [11] categorized the many IoT-related studies from 2005 to 2018 into five classes: 
layers, security impacts, attacks, countermeasures, and situational awareness capability (SAC). 
Layers is a class that determines how IoT components affect IoT vulnerabilities. Security impact is a 
class that represents vulnerabilities based on security elements such as confidentiality, integrity, and 
availability. Attacks describes IoT vulnerabilities that can be exploited. Countermeasures is a class 
for countermeasures that can improve IoT weaknesses. SAC is a class of technology used for 
malicious activities using the IoT. Ronen et al. [12] presented a new classification standard divided 
into four different categories depending on how the attackers deviated from the specific functions of 
the IoT. The four categories are ignoring functionality, reducing functionality, misusing functionality, 
and extending functionality. Ignoring functionality is an attack that ignores the intended physical 
function of the IoT and considers the IoT device as a normal computer device that is connected to the 
internet. Reducing functionality involves limiting or eliminating the original functions of the IoT. 
Misusing functionality entails using a function in an incorrect or unauthenticated way without 
destruction. Extending functionality means expanding a given function to produce different or 
unexpected physical effects. Alaba et al. [13] presented four groups of classification: application, 
architecture, communication, and data. Table 1 provides a summary of classification research 
presented in Section 2.1.1. 

Table 1. Summary of classification works. 

Classification Reference Classes 
Based on the IoT 

layer 
[6,7] Perception layer, network layer, application layer 

Attacks 
[8] 

Physical attacks, reconnaissance attacks, DoS, access attacks, 
attacks on privacy, cyber-crimes, destructive attacks, supervisory 

control and data acquisition (SCADA) attacks 

[9,10] 
Physical attacks, network attacks, software attacks, encryption 

attacks 

Vulnerabilities 

[11] Layers, security impact, attacks, countermeasures, sac 

[12] 
ignoring functionality, reducing functionality, misusing 

functionality, extending functionality 
[13] application, architecture, communication, data 

2.1.2. Attack Works 

By reviewing the various classifications used in each study in Section 2.1.1, we decided to use 
IoT layer classification to categorize the possible attacks on the IoT. Based on the aforementioned IoT 
layers, the most frequently mentioned attacks can be divided into nine types of attacks. We organize 
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these nine types of attacks into the proposed taxonomy and see if they violate the three elements of 
information protection: confidentiality, integrity, and availability. We also look at studies related to 
each attack. 

• Perception: 

The Perception class includes attacks that usually deplete the resource of the devices. 
Jamming: A jamming attack is an attack that interferes with the radio frequency of the sensor 

node. Integrity is violated here because the device’s frequency is changed. When someone cannot 
obtain service due to a jamming attack, availability is also violated. Namvar et al. [24] presented a 
mechanism that can solve a Jamming probe in an IoT system. Dou et al. [25] proposed an ACA model 
that provides adequate resources for anti-jamming on the IoT. Through simulation, they showed that 
the model is suitable for low-power, band-limited IoT networks. 

DoS: A DoS attack is an attack that consumes all available resources and causes the IoT system 
to function abnormally. Here, availability is violated. DDoS is an attack in which many attackers from 
many points attack one target using a very large network. When carrying out a DDoS attack, the 
malicious code that allows an attacker to carry out an attack is called a bot. A botnet that carries out 
a DDoS attack consists of these bots. Angrishi et al. [26] referred the structures of IoT botnets and 
introduced DDoS events using IoT botnets. The authors also presented improved measurements that 
can alleviate the risks related to the IoT. Kolias et al. [27] described botnets that can trigger DDoS 
attacks. They focused on the Mirai botnet and also mentioned other botnets, such as Hajime and 
BrickerBot. 

• Network: 

The Network class mainly categorizes attacks that send or receive incorrect information or 
deplete network resources so that the user cannot obtain normal service. 

Man in the middle attack (MitM): A MitM attack is made by a malicious device inserted by an 
attacker between two normal devices that are communicating in an IoT network environment. Data 
can be stolen or stored on the malicious device. Integrity is violated in this case because the data can 
be changed. Because the unauthorized person is in the middle, it can also be said that confidence is 
violated. Li et al. [28] demonstrated the weakness of the OpenFlow control channel by conducting an 
experiment based on an MitM attack. The authors also suggested a countermeasure called Bloom 
filters and indicated the efficiency of the Bloom filter monitoring system. Cekerevac et al. [29] showed 
a variety of attacks using MitM, including MIT-Cloud (MITC), MIT-Browser (MITB), and MIT-mobile 
(MITMO). They showed that MitM is not uncommon and can damage the IoT, even though it is an 
old attack. 

Routing attack: A routing attack is an attack based on the routing protocol of the IoT system. It 
causes a delay in the IoT network by creating a routing loop that manipulates routing. Integrity is 
violated because information can be manipulated. Wallgren et al. [30] presented several well-known 
routing attacks and emphasized the importance of security in routing protocol low power and lossy 
networks (RPL)-based IoT. Yavuz et al. [31] presented a deep learning-based machine learning 
method that can detect IoT routing attacks with high accuracy by determining the attack detection 
method based on deep learning. 

Sinkhole: A sinkhole attack occurs when an abnormal device makes an exceptional request that 
is forwarded to another abnormal device. By requiring two abnormal devices continuously, 
confidentiality is compromised. Shiranzaei et al. [32] proposed an intrusion detection system (IDS) 
that can defend a 6LowPAN network from a sinkhole or forwarding attack. Soni et al. [33] explored 
the trends in the countermeasure technology against sinkhole attacks. 

Wormhole: A wormhole is an attack that can occur when two malicious devices exchange 
routing information over a private link so that other devices think that there is only one hop between 
the two. When someone is present in the middle, it can be said that confidentiality is violated. 
Integrity can also be violated when other devices have the wrong information due to a wormhole 
attack. Palacharla et al. [34] examined various mechanisms for detecting wormholes and suggested 
new methods. The proposed method uses cryptography to detect a wormhole attack. Because the 
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path is dynamically checked, the transfer between the two can be detected without looking at all the 
nodes. Lee et al. [35] studied the effects of wormhole attacks on network flow and proposed a 
passivity-based control-theoretical framework to model a wormhole attack. 

Flooding: Flooding is a type of DoS attack. DoS can exhaust not only perception resources but 
also network resources in the IoT environment. Flooding depletes bandwidth by sending massive or 
abnormal traffic and results in service disruption at the network layer. Availability is violated because 
users cannot obtain a connection when desired. Rizal et al. [36] conducted network forensic research 
that can detect IoT flooding attacks. The authors proposed a network forensics model and 
successfully detected attacks. Campus et al. [37] described how flooding attacks affect routing on the 
IoT. 

• Application: 

The application class classifies attacks that can occur on the application side. 
Virus: A virus is cloned and infected but is not propagated by itself. Confidentiality, integrity, 

and availability are all violated by a virus. Because information can be given to an unauthorized user, 
data can be changed and made unavailable to an authorized user. Azmoodeh et al. [38] proposed a 
machine learning-based approach to detect ransomware attacks, which are a type of virus. Dash et 
al. [39] used network traffic flow analysis to access ransomware. They showed that machine learning 
is a very efficient approach to detect ransomware. 

Worm: Unlike a virus, a worm can spread itself. When someone destroys their victim with a 
worm, integrity is violated. When service is denied due to a worm, availability is violated. Wang et 
al. [40] proposed a new worm detection method based on mining dynamic program execution. The 
authors showed that the proposed method has high detection and low detection rates. Yu et al. [41] 
studied a new type of worm called a self-disciplinary worm. This worm changes its breeding patterns 
to become less detectable and allow more computers to become infected. The authors used a game-
theoretic formulation to propose the corresponding countermeasures. Table 2 shows a summary of 
these attacks and their relevant research. 

Table 2. Summary of attacks. 

Layer Attack Confidentiality Integrity Availability Reference 

Perception 
Jamming  O O [24,25] 

DoS   O [26,27] 

Network 

MITM O O  [28,29] 
Routing attack  O  [30,31] 

Sinkhole O   [32,33] 
Wormhole O O  [34,35] 
Flooding   O [36,37] 

Application 
Virus O O O [38,39] 
Worm  O O [40,41] 

2.2. Existing AI-Based IoT Studies 

Next, we briefly review the trends of IoT studies based on deep learning and machine learning.  

2.2.1. IoT Using AI 

Mohammed et al. [42] suggested that basic deep learning could provide services like image 
recognition, voice recognition, localization, detection, and security. The authors summarized the 
areas in which the IoT is used and what studies have been done in each area. Xiaofeng et al. [43] 
showed how data are collected through smart cities, sensors, and humans. They suggested using 
anomaly detection model-based machine learning with annual power data, loops, and land sensor 
data. They used long short-term memory-neural network (LSTM-NN) and MLP models. Among the 
models, LSTM-G-NB has the highest accuracy. Furqan Alam et al. [44] suggested a classifier based 



Appl. Sci. 2020, 10, 7009 6 of 22 

 

on eight algorithms such as support vector machine (SVM), K-nearest neighbor (KNN), naïve Bayes 
(NB), latent Dirichlet allocation (LDA) using IoT device data. NB and LDA offer better accuracy, 
while LDA provides quicker processing speed. The DLANN algorithm requires the longest time 
because it features a complex structure and requires many system resources. Mohammadi et al. [45] 
also applied deep learning and machine learning to the IoT. They introduced the concepts of security 
threats and artificial intelligence techniques in many fields. In particular, 60% of devices in healthcare 
are considered Internet of Medical Things (IoMT), which is expected to grow to 20 to 30 billion 
devices in 2020.  

2.2.2. IoT Security Using AI  

• Malware Classifier: 

As IoT malware is widespread and a major source of DDoS traffic, IoT security has become 
increasingly more important. Since most IoT devices have no existing mechanism to automatically 
update themselves, malware detection in the network layer is necessary [46]. Hamed et al. [47] 
studied Advanced RISC Machine (ARM)-based IoT applications. The dataset used in their study 
includes 280 examples of 32-bit malicious code based on ARM and 271 examples of benign data. They 
used the object dump tool to decompile all samples and abstract the sequences of the opcodes. The 
final output vector consisted of 681 possible opcode indices. To test the LSTM classifier, the authors 
used 100 examples of malware data not used in model training. The proposed model offered 97% 
average accuracy. 

• Network Anomaly Detection: 

Network malware detection has also been studied. Mcdermott et al. [18] proposed a description 
of deep learning and a network botnet attack detection model based on deep learning. The Mirai 
botnet was used in this study. The authors proposed a detection model based on bidirectional long 
short-term memory (BLSTM) using a recurrent neural network (RNN) that consists of an Adam 
optimizer and a sigmoid function. With the dataset made by capturing packets, the model-based 
LSTM provided 99.571% accuracy, and the model–based BLSTM offered 99.998% accuracy. Olivier et 
al. [19] suggested an attack detection model based on Dense RNN. This model can detect UDP 
flooding, TCP SYN flooding, sleep deprivation attacks, barrage attacks, and broadcast attacks. 
Captured packets extract statistical sequence data. In the study, the gateway was connected to the 
Internet via 3G SIM cards. Several IoT devices and Wi-Fi connections were also connected to the 
gateway. The proposed model showed similar performance to the threshold method. Yair et al. [20] 
used packet-captured data with port mirroring in a network including IoT devices. The IoT devices 
used in the study were of nine types: a baby monitor, motion sensor, refrigerator, security camera, 
smoke detector, socket, thermostat, TV, and a watch. They introduced unauthorized IoT device 
classifier model-based random forest learning. On average, the model shows an accuracy of 94% and 
has higher accuracy than the white list method. This study shows the same result with network 
changes. Doshi et al. [21] suggested a DoS attack traffic detection model for IoT devices. They used 
KNN, Lagrangian support vector machine (LSVM), decision tree (DT), random forest (RF), and 
neural network (NN) for model training. The dataset was generated with captured packets and 
grouped by device and time zone. The extracted features were divided into stateless and stateful 
features. The stateless category includes packet size, the inter-packet interval, and the protocol 
features. The stateful category includes bandwidth and destination IP address cardinality and 
novelty features. As a result, using all features was more accurate than using only stateless features. 
Hodo et al. [48] described the characteristics of host-based IDS and network-based IDS. They 
suggested using a DDoS/DoS attack detection model using ANN. The proposed model provided 99.4% 
accuracy. 

• Network Anomaly Detection using N-BaIoT: 

Meidan et al. [49] used the N-BaIoT dataset, which is described in Section 3. The authors 
proposed an anomaly detection model based on a deep autoencoder. They separated the model for 
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each IoT device and user datum during training. After training, the anomaly threshold was set. The 
Mirai and Bashlite botnet environments were built and used. The proposed model was compared to 
the local outlier factor (LOF), one-class SVM, and isolation forest. The proposed model provided the 
best performance of the four models. Shorman et al. [50] proposed an IoT botnet detection model. 
The authors used data pfreprocessing in four levels: data cleaning, data migration, and data rescaling 
and optimizing. With pre-processed N-BaIoT, the authors trained the intrusion detection model 
based on the Grey Wolf optimization one-class support vector machine (GWO-OCSVM) algorithm. 
Compared to OCSVM, isolation forest (IF), and LOF, the proposed model provides a faster detection 
time and higher accuracy. Table 3 shows a summary of Section 2.2 (i.e., which dataset(s) and 
algorithm(s) are used in each reference). 

Table 3. Dataset(s) and algorithm(s) used in each reference. 

Algorithm Standard Dataset Original Dataset N-BaIoT 
Reference [43] [47] [44] [18] [19] [20] [48] [49] [50] 

ML 

Random forest       O   
Decision tree      O O   

BLSTM    O      
MLP O         

Naïve Bayes   O       
KNN   O    O   
LDA   O       
ANN   O       
SVM          

OCSVM        O  
IF        O  

LOF        O  

DL 

DLANN   O       
LSTM O O  O   O   

deep autoencoder        O  
Dense RNN     O     

RNN          
CNN          

3. Methodology 

We built a framework for developing an IoT botnet detection model. Our framework includes 
the entire process from defining the botnet dataset to detecting botnets. In this section, we describe 
the N-BaIoT dataset used in our framework and design the proposed framework. 

3.1. N-BaIoT Dataset 

The N-BaIoT dataset was generated by Mohammed et al. [42] and consists of data samples with 
115 features. The datasets were collected through the port mirroring of IoT devices. The benign data 
were captured immediately after setting the network to ensure that the data was benign. For two 
types of packet sizes (only outbound/both outbound and inbound), packet counts, and packet jitters, 
the times between packet arrival were extracted for each statistical value. A total of 23 features were 
extracted for each of the 5 time windows (100 ms, 500 ms, 1.5 s, 10 s, and 1 min), for a total of 115 
features. We use all of the 115 features in our framework. Table 4 shows the detailed features of the 
dataset. 
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Table 4. Detailed features of the N-BaIoT dataset. 

Aggregated 
by 

Value Statistic Total No. of 
Features 

Source IP 
Packet size  

(only outbound) Mean, variance 
3 

Packet count Integer 

Source MAC-
IP 

Packet size  
(only outbound) Mean, variance 

3 
Packet count Integer 

Channel 

Packet size  
(only outbound) Mean, variance 

10 
Packet count Integer 

Amount of time between 
packet arrivals 

Mean, variance, integer 

Packet size (both inbound 
and outbound) 

Magnitude, radius, covariance, 
correlation coefficient 

Socket 

Packet size 
(only outbound) 

Mean, variance 

7 Packet count Integer 
Packet size (both inbound 

and outbound) 
Magnitude, radius, covariance, 

correlation coefficient 
Total 23 

The datasets were collected by injecting two types of attacks into various types of IoT devices, 
as shown in Table 5.  

Table 5. Specific device type and model name in the N-BaIoT dataset. 

Device Type Device Model Name 

Doorbell Danmini 
Ennio 

Thermostat Ecobee 
Baby monitor Philips B120N/10 

Security camera 

Provision PT-737E 
Provision PT-838 

SimpleHome XCS7–1002-WHT 
SimpleHome XCS7-1003-WHT 

Webcam Samsung SNH 1011 N 

Each dataset was generated by injecting various Bashlite and Mirai attacks. Bashlite, also known 
as gafgyt, was written by Lizard Squad in C. This botnet is used for DDoS attacks by infecting Linux-
based IoT devices. Various types of flooding attacks are used, such as UDP and TCP attacks. Mirai, 
which was written by Paras, is used for large-scale attacks using IoT devices. Mirai was discovered 
in August 2016. Since 2016, the botnets have evolved significantly and have become more proficient 
[51,52]. Mirai is now available as open source [53]. Bastos et al. [54] suggested a framework to identify 
Mirai and Bashlite C&C servers by combining 4 heuristic algorithms. Table 6 shows the 10 specific 
attack types of Bashlite and Mirai. 
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Table 6. Botnet and attack types used in this study. 

Botnet Attack Explanation 

Bashlite 

Scan Scans the network for vulnerable devices 
Junk Sending spam data 
UDP UDP flooding 
TCP TCP flooding 

COMBO Sends spam data and open connection of IP, port 

Mirai 

Scan Automatic scanning for vulnerable devices 
Ack ACK flooding 
Syn SYN flooding 
UDP UDP flooding 

Plain UDP Less of an option of UDP flooding for higher packet per second 

3.2. Proposed Framework 

Our framework comprises a botnet dataset, botnet training models, and botnet detection models. 
The botnet dataset consists of four subdatasets of N-BaIoT. We select devices that include all 10 attack 
samples described in Table 6 in the N-BaIoT, such as a doorbell (Ennio), baby monitor (Philips 
B120N/10), security camera (Provision PT-838), and webcam (Samsung SNH 1011 N). Table 7 shows 
the number of samples in the four datasets according to the device type we used. 

Table 7. Number of samples used in this paper. 

Botnet Attack Type Doorbell Baby Monitor  Security Camera  Webcam  
Benign 14,954 52,369 29,668 5852 

Bashlite 

COMBO 17,866 17,241 17,352 17,923 
junk 8624 8638 8788 8248 
Scan 8960 8286 8329 8624 
TCP 27,574 27,886 26,770 29,217 
UDP 31,932 31,779 31,371 30,852 

Mirai 

Ack 30,754 27,587 17,449 32,505 
Scan 32,359 31,037 29,123 13,164 
Syn 36,788 35,525 18,653 36,507 
UDP 71,330 64,998 47,514 47,273 

Plain UDP 24,349 24,258 16,051 25,083 
Total 305,490 329,604 251,068 255,248 

As botnet training models, we use most widely used ML and DL algorithms. We employed not 
only five types of ML models (naïve Bayes (NB), K-nearest neighbors (KNN), logistic regression (LR), 
decision tree (DT), and random forest (RF)) but also three types of DL models (convolutional neural 
network (CNN), recurrent neural network (RNN), and long short-term memory (LSTM)). There are 
two types of botnet detection models: binary classification and multiclass classification. The binary 
classification classifies the N-BaIoT dataset into two categories: attack and benign. This classification 
does not consider different types of protocols that can be used for botnet attacks, while the multiclass 
classification distinguishes each of protocol used for the Bashlite and Mirai. Figure 1 shows our 
framework for developing ML- and DL-based IoT botnet detection models. 
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Figure 1. Our proposed framework for IoT botnet detection. 

4. Experimental Evaluation 

In this Section, we find out the most effective model for IoT botnet detection by analyzing 
performance differences depending on the type of IoT devices as well as the type of ML and DL 
models. We first develop an IoT botnet detection model based on the proposed framework. Among 
the samples of the N-BaIoT dataset, we randomly divide the training and testing samples by 70 to 30 
using a dataset split function of Scikit-learn, an open source ML library for supervised and 
unsupervised learning, so the training and testing sets are independent each other. In order to 
prevent overfitting, furthermore, we use 20%of the training set as a validation set. We calculate the 
validation loss during training to monitor whether the validation loss does not increase while the 
training loss decreases.  

In this section, we carry out multiclass classification as well as binary classification. Multiclass 
classification classifies not only benign but also fine grains of attacks by learning them, while binary 
classification categorizes N-BaIoT only into benign and attack. We then verify our ML and DL models 
using the testing sets. 

4.1. Binary Classification 

The binary classification model considers 10 different detailed Bashlite and Mirai attacks injected 
into IoT devices as one attack. It also distinguishes between attack or benign states, the latter of which 
means that the attack is not injected. We train our model using the dataset collected from each device 
based on the ML and DL models. We design these models using Keras, as well as Scikit-learn. Table 
8 describes the design of our models. 
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Table 8. Design of our ML and DL models. 

Models Description 

ML 

Naïve Bayes 
(NB) 

Gaussian NB · Portion of the largest variance of all features: 10-9 
BernoulliNB and 
Multinomial NB 

· Additive smoothing parameter: 1.0 
· Learning class prior probabilities: True 

K-nearest neighbors (KNN) 
· Number of neighbors: 5 
· Weight function: uniform 

Logistic regression (LR) 
· Penalty: l2 
· Tolerance for stopping criteria: 10-4 

Decision tree (DT) 
· Impurity measure: entropy 
· Splitter: best 

Random forest (RF) 
· Number of trees: 100 
· Impurity measure: Gini 

DL 

CNN  
· 2 convolution layers and 1 fully connected layer 
· Kernel size: 3 × 3 
· Number of kernels: 16, 32 and 64 for each layer 

RNN and LSTM 
· Dimensionality of the output space: 10 
· Rernel_initializer: glorot_uniform 
· Recurrent_initializer: orthgonal 

We then analyze the performance of the models through their F1-score measurements. The F-
score is an index expressed as a single value considering both precision and recall, and the F1-score 
is the value that is given a weighted beta value of 1 for precision when calculating the F-score. The 
F1-score can be expressed by the following equation: 

F1-score = 
2 × precision × recall

precision + recall   

where 

precision = 
TP

TP + FP  and recall =
TP

FN + TP.  

True positive (TP) is the number of samples that are properly classified as benign. False negative 
(FN) is the number of samples that falsely detect benign data as a botnet. False Positive (FP) refers to 
a sample that incorrectly predicts an actual botnet as benign. A True Negative (TN) indicates the 
number of samples that are properly detected as a botnet. Table 9 shows the detailed detection results 
of precision, recall, and F1-score for each ML model. 

Table 9. Detection results of the five ML models. 

ML models Index 
Doorbell Baby Monitor Security Camera Webcam 

Benign Attack Benign Attack Benign Attack Benign Attack 

NB 
Precision 0.99 1 1 1 1 1 0.98 1 

Recall 1 1 1 1 0.99 1 0.99 1 
F1-score 0.99 1 1 1 1 1 0.98 1 

KNN 
Precision 0.99 1 0.99 1 0.98 1 0.96 1 

Recall 0.99 1 0.97 1 0.97 1 0.96 1 
F1-score 0.99 1 0.98 1 0.98 1 0.96 1 

LR 
Precision 0.03 0.94 0.17 0.85 0.21 0.92 0.79 0.98 

Recall 0.22 0.62 0.46 0.59 0.55 0.73 0.01 1 
F1-score 0.05 0.75 0.25 0.7 0.31 0.81 0.01 0.99 

DT 
Precision 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 
F1-score 1 1 1 1 1 1 1 1 

RF 
Precision 1 1 1 1 1 1 1 1 

Recall 1 1 1 1 1 1 1 1 
F1-score 1 1 1 1 1 1 1 1 
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In Table 9, all models except logistic regression (LR) are able to classify benign and botnet 
samples with very high performance. For LR, the precision, recall, and F1-score of benign samples 
are significantly lower than that of attack on all the devices. Thus, errors occur frequently in benign 
classification.  

In addition, the naïve Bayes (NB) classification in Table 9 corresponds to multinomial NB, which 
has the best performance out of Gaussian NB, Bernoulli NB, and multinomial NB. As shown in Table 
10, Gaussian and Bernoulli NB have a lower detection F1-score than multinomial NB. Therefore, we 
also used multinomial NB for multi-classification because multinomial NB provides high detection 
F1-score. 

Table 10. Detection F1-score of each naïve Bayes on 4 different devices. 

Type of NB Doorbell Baby Monitor Security Camera Webcam 
Gaussian NB 0.95 0.84 0.88 0.98 
Bernoulli NB 0.91 0.93 0.83 0.99 

Multinomial NB 1 1 1 1 

Figure 2 shows the results of binary classification based on the three DL models. It can be seen 
that the CNN model has more than 0.99 F1-score on all devices and offers higher performance than 
the RNN and LSTM models. LSTM, which has the second highest performance, yields more than 0.99 
F1-score for the baby monitor, security camera, and webcam, but only 80% for the doorbell. In the 
doorbell results, all botnets were accurately detected (except for 2) out of 290,000 botnet samples. 
However, for benign samples, 5000 samples (comprising about 61% of the 15,000 samples) were 
incorrectly detected as botnets. This is because the number of benign samples for learning was 
significantly less than the number of botnet samples, thereby producing several false positive with a 
benign classification. Using RNN, the F1-score was 0.57 for the baby monitor, about 0.815 for the 
webcam, and 0.905 for the doorbell and security camera, thus offering the lowest average F1-score 
compared to CNN and LSTM. Notably, the RNN result for the baby monitor showed high F1-score 
in benign classification, but about 80% of the samples incorrectly classified the botnet samples as 
benign during botnet detection. In Section 4.2, using the results of multiclass classification, we 
determine what specific botnet attacks provide the highest false positive rates.  

 
Figure 2. Result of binary classification based on the three DL models. 

4.2. Multiclass Classification 

The multiclass classification model considers 10 attacks injected into each device as individual 
attacks and classifies them into 11 groups, including benign. The F1-score of each model as a result 
of training each device dataset using the five ML models and performing multiple classifications is 
shown in Table 11. 
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Table 11. F1-score of each model based on the ML model. 

Device ML Benign 
Bashlite Mirai 

Combo Junk Scan TCP UDP ACK Scan SYN UDP Plain UDP 

Doorbell 

NB 0.99 0.97 0.08 0.7 0 1 0 1 0 0.99 0.78 
KNN 0.99 1 0.99 0.98 1 1 0.73 1 0.77 0.81 0.91 

LR 0.32 0 0 0.98 0 0 0 0 0 0 0 
DT 1 1 1 1 1 1 1 1 1 1 1 
RF 1 1 1 1 1 1 1 1 1 1 1 

Baby Monitor 

NB 0.99 0.98 0.12 0.64 0 1 0 1 0.01 0.99 0.82 
KNN 0.98 1 1 0.97 1 1 0.75 1 0.77 0.79 0.91 

LR 0.36 0 0 0.63 0 0 0 0 0 0 0 
DT 1 1 1 1 0.97 1 1 1 1 1 1 
RF 1 1 1 1 0.98 0.99 1 1 1 1 1 

Security Camera 

NB 0.99 0.93 0.17 0.67 0 1 0 0.99 0.07 1 0.49 
KNN 0.98 1 1 0.98 1 1 0.79 0.99 0.71 0.92 0.84 

LR 0.82 0 0 0.64 0 0 0 0 0 0 0 
DT 1 1 1 1 1 1 1 1 1 1 1 
RF 1 1 1 1 1 1 1 1 1 1 1 

Webcam 

NB 0.99 0.99 0.04 0.68 0 1 0.02 0.99 0.21 0.97 0.83 
KNN 0.96 1 1 0.98 1 1 0.72 1 0.76 0.69 0.89 

LR 0.95 0 0 0.64 0 0 0 0 0 0 0 
DT 1 1 1 1 0.94 1 1 1 1 1 1 
RF 1 1 1 1 0.97 0.97 1 1 1 1 1 

Compared to the binary classification in Table 8, DT and RF still provide F1-score closes to 1 for 
all devices, but NB and KNN show lower F1-scores. To determine why the F1-scores decreased in the 
NB model, the results of analyzing the F1-scores by attack type are shown in Figure 3. 

 
Figure 3. The F1-score of each attack type in naïve Bayes-based model. 

As shown in Figure 3, for NB based botnet detection under Bashlite attacks, junk, scan, and TCP 
detection have low F1-score, and for Mirai attacks, ACK, SYN, and Plain UDP detection show low 
F1-score. This occurs because, as shown in Table 12, the Junk of Bashlite was mis-detected as a 
COMBO (SYN+UDP) of Bashlite, the scan of Bashlite was mis-detected as a scan of Mirai, and the 
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TCP of Bashlite was mis-detected as the UDP of Bashlite. There were also several samples that were 
mis-detected as the UDP of Mirai from the ACK of Mirai and as a COMBO of Bashlite or a scan of 
Mirai from the SYN of Mirai and the UDP of Mirai from the Plain UDP of Mirai. 

Table 12. Detailed results of the naïve Bayes-based botnet detection. 

Botnet Attack Device Benign 
Bashlite Mirai 

COMBO Junk Scan TCP UDP1 ACK Scan SYN UDP1 Plain UDP2 

BASHLITE 

Junk 

Doorbell 0 7872 717 10 1 0 2 0 13 9 0 
Baby Monitor 6 7574 1005 11 1 0 2 1 31 7 0 

Security Camera 6 7259 1490 8 1 0 0 0 16 8 0 
Webcam 4 7824 353 10 0 0 2 0 49 5 1 

Scan 

Doorbell 122 0 0 6277 1 0 5 2508 0 35 12 
Baby Monitor 179 0 0 5333 0 0 12 2747 0 15 0 

Security Camera 144 0 0 5587 2 0 5 2572 0 19 0 
Webcam 44 0 0 5875 6 0 16 2675 0 7 1 

TCP 

Doorbell 7 0 0 5 1 27,538 6 0 0 10 7 
Baby Monitor 25 0 0 3 1 27,853 3 0 0 0 1 

Security Camera 11 0 0 1 1 26,748 1 0 0 8 0 
Webcam 17 0 0 7 0 29,187 1 0 0 0 5 

Mirai 

ACK 

Doorbell 0 0 0 1 0 0 2 0 0 29,856 895 
Baby Monitor 1 0 0 1 0 0 0 0 0 25,858 1727 

Security Camera 0 0 0 0 0 4 4 0 0 17,441 0 
Webcam 5 0 0 2 0 0 628 0 0 30,584 1286 

SYN 

Doorbell 0 25,415 0 4 0 1 0 11,198 170 0 0 
Baby Monitor 1 23,909 0 5 0 0 0 10,823 787 0 0 

Security Camera 0 9066 23 14 0 4 0 8155 1391 0 0 
Webcam 0 20,428 0 20 0 0 0 8413 7646 0 0 

Plain UDP2 

Doorbell 2 0 0 1 0 0 1 0 0 5344 19,001 
Baby Monitor 2 0 0 4 0 0 0 0 0 4354 19,898 

Security Camera 0 0 0 1 0 0 0 0 0 8216 7834 
Webcam 1 0 0 5 0 0 0 0 0 4250 20,827 

 The red bolded numbers are large numbers of misclassified samples; Gray shaded numbers indicate 
samples that are correctly classified; 1 UDP: UDP flooding; 2 Plain UDP: Less of an option of UDP 
flooding for higher packets per second. 

In KNN-based detection, the F1-score was universally high for Bashlite attacks, as shown in 
Figure 4, but in the case of the Mirai attack, the F1-score was always about 0.7 to 0.9, except for scan.  

 
Figure 4. The F1-score of each attack type in the KNN-based model. 
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Detection results by attack type, as shown in Table 13. The ACK of Mirai was mis-detected as 
UDP of Mirai, the SYN of Mirai was mis-detected as a COMBO of Bashlite and a scan of Mirai, and 
the UDP of Mirai was mis-detected as a Plain UDP of Mirai. Because of this, false positives occurred 
frequently. 

Table 13. Detailed results of the KNN-based botnet detection. 

Botnet Attack Device Benign 
Bashlite Mirai 

COMBO Junk Scan TCP UDP1 ACK Scan SYN UDP1 Plain UDP2 

Mirai 

ACK 

Doorbell 0 0 0 1 0 0 2 0 0 29,856 895 
Baby Monitor 1 0 0 1 0 0 0 0 0 25,858 1727 

Security Camera 0 0 0 0 0 4 4 0 0 17,441 0 
Webcam 5 0 0 2 0 0 628 0 0 30,584 1286 

SYN 

Doorbell 0 25,415 0 4 0 1 0 11,198 170 0 0 
Baby Monitor 1 23,909 0 5 0 0 0 10,823 787 0 0 

Security Camera 0 9066 23 14 0 4 0 8155 1391 0 0 
Webcam 0 20,428 0 20 0 0 0 8413 7646 0 0 

UDP1 

Doorbell 0 0 0 0 0 4 2 0 0 70420 904 
Baby Monitor 0 0 0 0 0 3 0 0 0 64477 518 

Security Camera 0 0 0 2 0 2 0 0 0 47510 0 
Webcam 0 0 0 5 0 3 630 0 0 45624 1011 

Plain UDP2 

Doorbell 2 0 0 1 0 0 1 0 0 5344 19,001 
Baby Monitor 2 0 0 4 0 0 0 0 0 4354 19,898 

Security Camera 0 0 0 1 0 0 0 0 0 8216 7834 
Webcam 1 0 0 5 0 0 0 0 0 4250 20827 

 The red bolded numbers are large numbers of misclassified samples; Gray shaded numbers indicate 
samples that are correctly classified; 1 UDP: UDP flooding; 2 Plain UDP: Less of an option of UDP 
flooding for higher packets per second. 

The average F1-score of each model as a result of training the dataset for each device using the 
three DL models and performing multiple classification is shown in Table 14. According to Table 14, 
CNN has the highest F1-score. Compared to CNN, RNN and LSTM have lower F1-score.  

Table 14. Average F1-score of the DL models. 

DL model Doorbell Baby Monitor Security Camera Webcam 
CNN 0.91 0.91 0.85 0.82 
RNN 0.41 0.44 0.37 0.55 
LSTM 0.62 0.54 0.25 0.43 

For the CNN, although most of the detailed attacks were accurately detected, the detection F1-
score for the TCP attack of Bashlite was 0%, as shown in Figure 5. According to the confusion matrix 
results (which is the table showing whether the class predicted by the model matches the original 
class of the target), the CNN model consistently detected the TCP attack of Bashlite as a UDP attack 
of Bashlite on all devices. In addition, for the security camera and webcam, the model detected the 
Plain UDP attack of Mirai as a UDP attack of Mirai. The model also mis-detected the ACK and scan 
of Mirai. 
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Figure 5. F1-score of each specific attack in the CNN. 

For RNN, the F1-score of each specific attack is shown in Table 15. The model correctly detected 
the benign and UDP of Mirai. For Bashlite attacks, the model mis-detected COMBO as benign 
(security camera). It mis-detected Junk as a scan of Bashlite (doorbell), the UDP of Mirai (baby 
monitor), benign (security camera), and a COMBO of Bashlite (webcam). It mis-detected scan as 
benign (baby monitor, security camera), TCP as the UDP of Mirai (doorbell), the UDP of Bashlite 
(baby monitor), benign (security camera), and the UDP of Bashlite (webcam). It also mis-detected 
UDP as the UDP of Mirai (doorbell) and benign (security camera). For Mirai attacks, the model mis-
detected ACK as a COMBO of Bashlite (webcam) and scan as the Ack of Mirai (doorbell) and the scan 
of Mirai (baby monitor). It mis-detected SYN as the scan of Mirai (doorbell), the COMBO of Bashlite 
(baby monitor), and benign (security camera, webcam). It also mis-detected Plain UDP as the UDP of 
Mirai (doorbell, security camera) and benign (webcam). 
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Table 15. F1-score of each specific attack for the RNN. 

Device Botnet Attack Benign 
Bashlite Mirai 

COMBO Junk Scan TCP UDP1 ACK Scan SYN UDP1 Plain UDP2 

Doorbell 

Benign 12,218 83 17 2360 0 28 27 27 85 17 2 

Bashlite 

COMBO 10 13,940 472 3134 1 1 0 6 0 341 10 
Junk 8 3093 1013 4541 0 1 0 1 2 49 12 
Scan 57 679 62 7442 0 9 5 7 1 12 681 
TCP 7 2 0 6 1 2 0 0 0 27,624 0 

UDP1 4 0 1 13 0 5 1 4 0 31,734 0 

Mirai 

ACK 14 6 6 1328 0 7 19,344 83 2 9847 22 
Scan 0 3 0 8 0 2 29,403 404 0 2461 25 
SYN 981 35 256 12,348 183 590 31 19,279 41 2271 757 
UDP1 0 1 0 8 2 5 5 9 0 71,249 21 

Plain UDP2 0 1 0 2 49 1 4120 924 0 12,199 7299 

Baby Monitor 

Benign 50,872 33 0 5 1 19 898 56 502 106 42 

Bashlite 

COMBO 225 9954 3 0 0 0 6 2 15 7301 0 
Junk 273 538 0 0 0 0 3 1 15 7724 0 
Scan 8243 3 2 28 0 0 6 12 29 68 1 
TCP 11 3 0 0 0 27,809 5 0 1 0 1 

UDP1 20 0 0 0 0 31,676 5 1 2 3 0 

Mirai 

ACK 6 0 0 0 0 0 17,598 9507 342 0 4 
Scan 13 6 0 0 0 4 0 7284 23,878 1 9 
SYN 5768 15,818 0 0 0 0 16 11 10,656 3159 4 
UDP1 14 0 0 0 0 37 0 22,230 2 42,339 73 

Plain UDP2 2 20 0 0 0 736 0 9926 6 1287 12,325 

Security Camera 

Benign 28,931 47 9 20 6 18 65 158 136 144 31 

Bashlite 

COMBO 9062 8071 151 0 0 0 1 0 3 1 1 
Junk 4812 3264 572 0 2 1 14 1 1 47 4 
Scan 8427 29 2 9 0 1 2 0 9 0 8 
TCP 26,798 4 1 0 0 0 1 1 1 0 0 

UDP1 31,424 1 1 0 0 0 0 0 0 2 0 

Mirai 

ACK 208 99 507 4 2 0 9461 3715 147 3206 192 
Scan 471 1 2 0 1 1 0 28,538 0 4 0 
SYN 10,812 97 8 2202 127 58 48 1234 3763 4 226 
UDP1 119 81 271 10 13 0 276 9900 679 34,867 1327 

Plain UDP2 97 72 809 34 21 10 542 3191 709 9867 741 

Webcam 

Benign 3479 22 27 4 1 25 6 28 2 582 1723 

Bashlite 

COMBO 11 16,002 790 304 0 1 1 5 57 1 680 
Junk 11 5398 1787 531 0 0 0 0 13 0 465 
Scan 66 206 75 8065 0 15 3 9 32 1 99 
TCP 7 7 1 4 0 29,462 1 1 0 0 2 

UDP1 6 5 0 12 0 30,884 0 4 1 1 2 

Mirai 

ACK 3685 23,661 1 2283 0 1515 0 30 8 41 871 
Scan 35 5 1 20 0 54 0 12,714 1 183 139 
SYN 18,951 839 2 9 0 339 0 4 12,813 3889 0 
UDP1 13,632 2077 17 5 0 48 0 4 47 31,131 21 

Plain UDP2 12,398 241 32 23 0 1 0 213 1 1119 11,218 
The red bolded numbers are large numbers of misclassified samples; Gray shaded numbers indicate samples that are 

correctly classified; 1 UDP: UDP flooding; 2 Plain UDP: Less of an option of UDP flooding for higher packets per second 

The F1-score of each specific attack for LSTM is shown in Table 16. The model correctly detected 
benign and COMBO Bashlite attacks. For Bashlite attacks, the model mis-detected junk as a COMBO 
of Bashlite (doorbell), the SYN of Mirai (baby monitor), and a COMBO of Bashlite (security camera). 
It mis-detected scan as the SYN of Mirai (baby monitor) and benign and TCP as the ACK of Mirai 
(doorbell, webcam), the UDP of Bashlite (baby monitor), and benign (security camera). It also mis-
detected UDP as the Ack of Mirai (doorbell), benign (security camera), and the SYN of Mirai 
(webcam). For Mirai attacks, the model mis-detected ACK as benign (security camera, webcam) and 
the UDP of Bashlite (baby monitor), benign (security camera), and the Plain UDP of Mirai (webcam). 
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It mis-detected SYN as benign (security camera) and UDP as the Plain UDP of Mirai (webcam); it also 
mis-detected the ACK of Mirai (doorbell) and benign (security camera). 

Table 16. F1-score of each specific attack for LSTM. 

Device Botnet Attack 
Bashlite Mirai 

Benign COMBO Junk Scan TCP UDP1 ACK Scan SYN UDP1 Plain UDP2 

Doorbell 

Benign 14,764 72 0 1 11 0 14 1 1 0 0 

Bashlite 

COMBO 42 17,820 0 47 3 0 1 0 2 0 0 
Junk 25 8613 0 74 0 0 3 1 4 0 0 
Scan 169 8 0 8733 4 0 16 1 22 2 0 
TCP 14 1 0 1 0 0 27,624 1 0 0 1 

UDP1 19 7 0 0 2 0 31,732 0 1 1 0 

Mirai 

ACK 13 1 1 0 1 0 20,323 3 0 10,317 0 
Scan 11 20 0 0 994 0 1445 29,818 1 17 0 
SYN 7 7 2 77 38 0 13 735 35,893 0 0 
UDP1 20 3 0 3 2 0 145 11 1 71,114 1 

Plain UDP2 4 4 0 0 3 0 8326 6062 35 2517 7644 

Baby Monitor 

Benign 52,339 4 0 34 0 9 13 0 163 7 3 

Bashlite 

COMBO 14 9845 0 34 0 0 0 0 7553 0 0 
Junk 7 533 0 21 0 0 0 0 7943 1 0 
Scan 40 3 0 149 0 1 0 0 8164 1 0 
TCP 13 0 0 12 0 27,746 0 0 3 0 0 

UDP1 9 1 0 7 0 31,711 0 0 7 0 0 

Mirai 

ACK 0 0 0 0 0 9171 18,066 88 5 5 2 
Scan 2 0 0 0 0 31,031 8 3 23 19 0 
SYN 3 0 0 1 0 1673 ,211 6 26,536 5 4 
UDP1 5 0 0 0 0 93 20 0 2 64,990 0 

Plain UDP2 0 0 0 0 0 1 58 1 218 869 23,095 

Security Camera 

Benign 29,554 0 0 0 0 0 0 0 0 0 0 

Bashlite 

COMBO 3576 9470 4213 0 0 0 0 0 0 0 0 
Junk 3276 663 4780 1 0 0 0 0 0 0 0 
Scan 8518 0 1 0 0 0 0 0 0 0 0 
TCP 26,816 0 0 0 0 0 0 0 0 0 0 

UDP1 31,397 1 0 0 0 0 0 0 0 0 0 

Mirai 

ACK 17,399 0 0 0 0 0 0 0 0 0 0 
Scan 29,129 0 0 0 0 0 0 0 0 0 0 
SYN 18,555 0 0 0 0 0 0 0 0 0 0 

UDP1 20,421 0 0 0 0 0 0 0 221 26,941 0 

Plain UDP2 8253 0 0 13 0 0 0 0 36 7290 544 

Webcam 

Benign 5553 38 0 1 0 0 84 0 153 2 27 

Bashlite 

COMBO 56 17,756 0 0 0 0 1 0 6 0 0 
Junk 30 8189 0 1 0 0 2 0 2 0 0 
Scan 182 12 0 8347 0 0 3 0 26 0 2 
TCP 22 0 0 1 0 0 0 0 29,400 0 0 

UDP1 28 3 0 0 0 0 0 0 30,863 0 0 

Mirai 

ACK 29,748 2 0 6 0 0 2 0 2382 0 16 
Scan 41 5 0 11 0 0 0 0 40 0 13,005 
SYN 4 9 0 13 0 0 0 0 36,718 0 0 
UDP 95 4 0 15 0 569 0 0 42 0 46,400 

Plain UDP2 5251 4 0 5 0 1 27 0 24 0 20,019 

The red bolded numbers are large numbers of misclassified samples; Gray shaded numbers indicate 
samples that are correctly classified; 1 UDP: UDP flooding; 2 Plain UDP: Less of an option of UDP 
flooding for higher packets per second. 

Through the experimental evaluation, we found out that the most effective ML models in 
detecting Bashlite and Mirai botnets are decision tree and random forest in both binary and multiclass 
classifications. For DL models, the performance of CNN model is better than that of RNN and LSTM. 
These models have high performance regardless of the type of IoT devices.  
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5. Conclusions 

We developed a framework based on ML and DL to detect IoT botnet attacks and then detected 
botnet attacks targeting various IoT devices using this framework. Our framework consists of a 
botnet dataset, botnet training model, and botnet detection model. 

As a botnet dataset, we used the N-BaIoT dataset generated by injecting Bashlite and Mirai 
botnet attacks into four types of IoT devices (doorbell, baby monitor, security camera, and webcam). 
Bashlite and Mirai attacks each consist of five types of attacks, including TCP, UDP, and ACK. We 
developed a botnet training model based on five ML models, naïve Bayes, K-neighbors Nearest 
Neighbors, logistic regression, decision tree, and random forest. We also used the three DL models 
of CNN, RNN, and LSTM. Based on this training model, we developed a botnet detection model that 
can detect relevant botnet attacks. The botnet detection model consists of not only a binary 
classification model that considers 10 Bashlite and Mirai sub-attacks as one attack (and then 
distinguishes them from benign data) but also a multiclass classification model that can distinguish 
the 10 sub-attacks and benign data. In the experimental results of the ML-based binary classification, 
the F1-score of the ML models, except for Logistic Regression (LR), were very high (mostly 1). In the 
multiclass classification, F1-score of LR was still a low as that in binary classification, but the F1-score 
of the naïve Bayes model, which was high in the binary classification, was also low. In both DL-based 
binary and multiclass classifications, the performance of the CNN was much better than that of the 
RNN and LSTM, and the F1-score of the LSTM was slightly higher than that of the RNN. In other 
words, the experimental evaluation determined that detecting Mirai and Bashlite botnets in N-BaIoT 
with ML models, such as decision tree and random forest results in better performance. Among the 
various DL models, CNN showed the best performance in our framework. Bashlite and Mirai botnets, 
which occurred in 2014 and 2016, mainly targeted IP cameras and home routers. Our experimental 
results using the N-BaIoT dataset showed that the performance of botnet detection mostly depends 
on the type of training models rather than the type of IoT devices. We believe that developing IoT 
botnet detection models based on decision tree, random forest, and CNN would be an effective way 
of improving the performance of botnet detection for various types of IoT devices. 

In the multiclass classification, the models tend to detect TCP as UDP, compared to SYN and 
benign. In the production IoT environment, botnet attacks can occur using various types of protocols. 
Thus, various protocols, including TCP and UDP, should be considered when collecting traffic and 
training models for the better performance of detecting IoT botnets. 

Our study contributes to providing a framework that can easily compare various ML and DL 
models in IoT botnet detection. In future, we will develop an integrated IoT security framework that 
detects a variety of IoT attacks, as well as botnet attacks, based on various ML and DL models. 
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