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Abstract: The high dimensional, multimodal, and discontinuous well placement optimization is one
of the main difficult factors in the development process of conventional as well as shale gas reservoir,
and to optimize this problem, metaheuristic techniques still suffer from premature convergence.
Hence, to tackle this problem, this study aims at introducing a dimension-wise diversity analysis
for well placement optimization. Moreover, in this article, quantum computational techniques are
proposed to tackle the well placement optimization problem. Diversity analysis reveals that dynamic
exploration and exploitation strategy is required for each reservoir. In case studies, the results of the
proposed approach outperformed all the state-of-the-art algorithms and provided a better solution
than other algorithms with higher convergence rate, efficiency, and effectiveness. Furthermore,
statistical analysis shows that there is no statistical difference between the performance of Quantum
bat algorithm and Quantum Particle swarm optimization algorithm. Hence, this quantum adaptation
is the main factor that enhances the results of the optimization algorithm and the approach can be
applied to locate wells in conventional and shale gas reservoir.

Keywords: reservoir simulation; metaheuristic; well placement optimization; multimodal optimization;
quantum computation

1. Introduction

In oil and gas industry, to maximize productivity, optimization of well placement is one of the
most important issues in the field development process. The optimization techniques, based on
contemporary research works on this field, can be indexed in three major categories. They are
(i) classical methods, (ii) non-classical methods, and (iii) hybrid methods [1]. In the early novel
research endeavors, focuses were mainly shown on classical methods to tackle well placement
optimization problem and among them mixed-integer programming (MIP) [2], gradient-based
finite difference method [3], multivariate interpolation algorithms [4], simultaneous perturbation
stochastic approximation method [5,6], and steepest ascent method [7] are significant. However,
the gradient-based techniques might get trapped in local optima, which is one of the biggest bottlenecks
of the gradient-based techniques. Moreover, the calculation of the gradients is complex. Hence,
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due to the nature of the well placement optimization problem, it is hardly solved by gradient-based
techniques. On the other hand, derivative calculations are not required for non-classical methods,
and less likely to get trapped in local optima than classical techniques [8–10]. Due to the robustness
and parallelism nature, nonconventional methods with gradient-free approaches are more considered
for well placement optimization. To make a model robust, consideration of risk management is
important. Again, due to different heterogeneity in conventional and shale reservoirs, the production
is different [11–13]. Hence, different search space will be produced that can be challenging for an
optimization technique and the results may not be consistent. Unconventional reservoirs are relatively
tight, exhibit strong heterogeneity, low permeability (<0.1 md), and possess a complex micropore
structure, thus restricting the effective economic development of oil and gas. Boost up oil production
from unconventional reservoirs is different from conventional reservoirs as it requires advanced
technologies of multiple horizontal wells and multi-stage hydraulic fracturing. Due to the fact that in
these unconventional reservoirs, the space between cracked wells is narrowed, the economic equations
also need to take into account the effects of natural fractures and well interference through fracture
communication. Smaller intervals connect more existing fracturing, creating a complex fracturing
network during hydraulic fracturing [12,13]. Hydraulic fracturing has been widely used in many
regions. Despite having many economic benefits it can damage the formation and can reduce the
production rate and recovery efficiency [14–16]. In the operational performance, formation damage is
a profoundly important issue [16]. Nowadays, most reservoirs are facing pressure reduction due to the
high production rate of hydrocarbons, which leads to low recovery efficiency [15]. During the drilling
operations, ineffective implementation of drilling fluid damages the reservoir formation [14].

Nonconventional nature-inspired gradient-free methods such as artificial bee colony (ABC) [17],
improved harmony search (IHS) [18], genetic algorithm ([19,20], covariance matrix adaptation evolution
strategy (CMA-ES) [21], differential evolution (DE) [22], cuckoo search (CS) [23], bat algorithm (BA) [24],
ant colony optimization (ACO) [25], and imperialist competitive algorithm (ICA) [26], etc. have been
applied in well placement optimization problem. Although these types of global optimization
algorithms can provide better solutions than traditional techniques, they are still heavily affected
by parameter tuning and tend to be trapped in a local optimum. To improve this situation, hybrid
techniques are realized in different ways in different research aspects. In some aspects, researchers prefer
to blend non-conventional techniques with classical methods [27], whereas in some cases incorporating
two or more nonconventional approaches are used for developing a hybrid algorithm [28]. Following
this methodology, many researchers combined different algorithm’s best features and developed many
hybrid strategies ([29,30]) that showed superior performance in well placement optimization problems.
However, this type of technique often lacks theoretical studies to support the proposed combination.
Again, when the comparison aspect is considered DE is better than particle swarm optimization (PSO)
and CMA-ES [31]. According to Reference [32], gravitational search algorithm (GSA) is superior than
genetic algorithm (GA). Again, Hybrid differential evolution and particle swarm optimization (HPSDE)
is compared with DE and PSO and found to outperform DE and PSO [33]. In addition, PSO provided
more net present value than GA in another study [34]. Again, ACO-GA-PSO have shown superior
performance than PSO, GA, S-PSO, and RS [25]. Furthermore, BA has provided better net present
value than GA and PSO [24]. The performance of ICA is compared with SPSO and SCGA and the
tuned ICA has outperformed other algorithms [26]. The above-stated comparison between algorithms
does not establish a single algorithm as a superior algorithm. Moreover, the compared algorithms are
not consistent, and a wide set of existing algorithms is not considered in the previous study.

Again, because of the reservoir heterogeneities [35,36], the nature of the cost functions is
discontinuous, high dimensional, and nonconvex, which contains multiple local optima. In addition to
that, due to the excessive amount of computational expenses, parameter tuning requires a substantial
amount of reservoir simulations. Hence, the trial and error approach to find the best configuration is
impractical. This can be attributed to the optimization algorithms erratic performance. Again, because
of the lack of study in exploration and exploitation analysis, the selection of proper strategy is difficult.
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Furthermore, in most cases, only one reservoir is utilized to evaluate the performance of the algorithms.
Such an approach does not establish the superiority of the algorithm in this field since reservoir
heterogeneity changes the surface of the search field. Moreover, the result of the techniques can differ
with respect to the nonlinearity, dimensionality, and surface of the search field. Previous research shows
that only a few algorithms are used for comparison purposes [37]. Hence, a wide range of algorithms
should be evaluated in a common synthetic reservoir to claim the superiority of a particular algorithm.
Furthermore, metaheuristic algorithms are stochastic. So, statistical analysis and certain criteria should
be considered to establish a technique in this field. In addition, the large search space having high
dimensionality is rarely reliable for stochastic algorithms. Therefore, perceiving an efficient algorithm
with an inherent ability to execute this complex optimization problem is profoundly significant.

To the best of our knowledge, there have been no researches on the application of quantum
computation to deal with well placement optimization problem. Therefore, in this study, to resolve the
problems mentioned before, quantum-behaved bat algorithm (QBA) and quantum particle swarm
optimization (QPSO) are implemented and compared with a wide range of established algorithms.
Moreover, collecting the end result in terms of cost function value does not help to fully understand
the internal behavior of the algorithms. Hence, this study attempts to explain the internal behavior of
the algorithms on well placement optimization with graphical illustrations.

This paper is ordered in the following manner: Section 2 is dedicated to discuss the problem
statement of well placement optimization. In Section 3, we discuss the proposed techniques in detail.
The comparison of different optimization methods and their analysis are provided in Section 4. Section 4
focused on the statistical and convergence analysis of different metaheuristic algorithm’s results as
well as critical findings with discussion. This section also focuses on dimension-wise diversity analysis.
The concluding remarks for well placement optimization are provided in Section 5.

2. Governing Equations

An oil reservoir’s dynamic behavior can be described by coupled spatiotemporal differential
equations. In the case of a two-phase oil reservoir, these are [38]:

∂
∂t

[
ε

S f

B f

]
+q f −∇[

kr f

µ f B f
K(∇P f − ρ f

g
gc
∇Z)] = 0 (1)

where, µ f is the viscosity of phase f (f = 0 for oil and f = w for water), ε is the porosity, ρ f is the
density, B f is the formation volume factor, K is the absolute permeability tensor, S f is the saturation,
kr f is the relative permeability, P f is the pressure, and q f is the flow from (+ve for out, −ve for in) the
reservoir. In mathematical analysis and modeling, the relative permeability of each phase is generally
described using:

kro = kr0
o

So − Sor

1− Swr − Sor

a
, (2)

krw = kr0
w

Sw − Swr

1− Swr − Sor

b
, (3)

where a and b present the exponents in Corey’s correlation, Swr and Sor are the residual water and
oil saturations, respectively, kr0

w and kr0
o are the end-point relative permeabilities for water and

oil, respectively.
The pressure and saturation of the oil and water phases are interrelated by the equation:

Pc = Po − Pw = f (SoSw), (4)

S0 + Sw = 1; (5)

where Pc is capillary pressure, Po and Pw are oil and water pressure, and S0 and Sw presents oil and
water saturation.
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Then, the flow rate at the wellbore can be defined using the following well production equation
(IPR or Inflow Performance Relation):

q = Ψ(kr/µB(P− BHP). (6)

where Ψ is the connection transmissibility factor for wells and the Bottom Hole Pressure (BHP) is
determined by the Vertical Flow Performance (VFP) curve:

BHP = THP + ρgL + ∆P + ∆p. (7)

Among them, ∆P presents the frictional pressure drop through well tubing, ∆p is the pressure
drop due to the acceleration, L represents the depth of the well, and ρ is the density of the well
production, and THP is tubing head pressure. For a given well chain and termination type, the total
flow, the water/oil ratio (gas/oil ratio), and the inlet/outlet pressure determine the pressure drop in
Equation (7).

The prime motivation behind well placement optimization is to make sure that the expenditure
remains minimum while maximizing the net present reaches the maximum value. Well placement
optimization, in general, can be formulated as:

Max R(un) (8)

R(un) = NPV(un) (9)

Subjected to:
LB ≤ un

≤ UB∀ nε (0, 1, 2, 3 . . . . . .N − 1), (10)

where un represents well coordinates, NPV presents net present value, LB and UB are lower bound
and upper bound of the reservoir, respectively.

Net present value (NPV) changes randomly with the change of coordinates of the well location.
Eclipse simulation was used to calculate the cumulative oil production, cumulative gas production,
cumulative water production’s value based on the coordinates of the well location. The variables
used in Equation (11) are depicted from Reference [1]. Hence, NPV for a reservoir model can be
formulated as:

NPV(un) =
T∑

i=1

QOPO(un) + QgPg(un) −QwCw(un) −OPEX

(1 + D)i −CAPEX (11)

where Pg denotes gas price, Qw presents cumulative water production, D is the discount rate, Qg is
cumulative gas production, T is the number of years passed since the production has started, CAPEX is
the capital expenditure, PO presents oil price, Cw denotes cost per unit volume of produced water,
OPEX is the operational expenditure, and QO is cumulative oil production. Equation (1) constitutes an
exact conventional as well as shale gas reservoir model, which cannot be solved analytically. Hence,
by using complex commercial simulators like ECLIPSE, CMG to solve Equation (1) to Equation (7),
production data QO and Qg in Equation (11) can be found. Figure 1 depicts the general flow chart to
acquire NPV value.

In general, Figure 1 shows the flow of the program to search the maximum net present value.
At the start of the program, the parameters of the algorithm are initialized. Then, the program inserts
a generated location in the data file. After that, the program calls eclipse and eclipse provide run
summary file for a given location. The program will extract production data QO and Qg from run
summary file and calculate NPV.
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3. Methodology

Metaheuristic algorithms are stochastic and non-deterministic. There are various types of
metaheuristic methods like local search, simulated annealing, Tabu search, variable neighborhood
search, population-based or trajectory-based search, etc. Besides, among all the Metaheuristic search
algorithms, one of the most popular algorithms are—gravitational search algorithm (GSA), particle
swarm optimization algorithm (PSO), crow search algorithm (CSA), genetic algorithm (GA), differential
evaluation (DE), and bat algorithm (BA), etc. Quantum-based optimization techniques were applied in
several complex engineering applications using quantum parallelism mechanisms. For multimodal
optimization applications, the study of Ross indicated that quantum behaved algorithm is superior
to existing metaheuristic algorithms [39,40]. Another study found that quantum computation can
manage highly non-linear multimodal optimization problems naturally [39]. Again, PSO searches
linearly. On the other hand, QPSO’s next position depends entirely on the probabilistic approach [41].
In QBA, the position of each bat depends on the mean best position. The quantum-behaved bat and
mean best position lead local search to jump out of local positions [42]. Hence, QBA can easily avoid
local optima. Since these properties are important to tackle multimodal well placement optimization
problem, QPSO and QBA are discussed in the following section.

3.1. Quantum Particle Swarm Optimization Algorithm

In 1995, a novel search approach was developed and proposed by Kennedy and Eberhart [43],
which is known as PSO and was stochastic. In a search space, the particles of PSO can fly and
change their position with respect to time. At first, the initialization of individuals is done through a
random process.

To update the velocity of each particle, the following equation is utilized

Vk+1
i = wVk

i + c1rand1
(
pbestk

i − xk
i

)
+ c2rand2

(
gbestk

− xk
i

)
, (12)
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where the individual i particles velocity is denoted by Vi for iteration k. For defining a particle’s
acceleration, c1 and c2 are introduced as acceleration constant, w is used for weight vector,
rand1 and rand2 are the random number ranging from 0 to 1, for individual i position is represented by
xk

i in iteration k, pbestk
i and gbestk denotes the best position and global best of individual i in k iteration.

In the search space, by using the following equation, each particle’s next position will be updated:

xk+1
i = Vk+1

i + xk
i . (13)

Sun et al. [44] implemented the principle of quantum mechanics with basic PSO. The QPSO
algorithm not only tackles the drawbacks but also preserves the good features of the PSO algorithm [45],
and thus the incorporation of improved search capability in addition to fast convergence is possible [46].
Another feature of QPSO is that it has only one parameter that needs to be tuned. The flowchart of
QPSO is depicted in Figure 2. Figure 2 shows that at first the positions are randomly generated. Then,
the cost function is calculated for each particle. Based on the results, mbest and gbest are updated.
The search process will continue unless the termination criteria are met.
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Unlike the behavior of the Newtonian particle that is described by both the position (
→
x ) and

velocity (
→
v ) in traditional PSO, in case of QPSO to define the quantum state of a particle, the aid of

wave function Ψ (
→
x , s) will be taken. By expanding the wave function in the three-dimensional space,

we can get, ∣∣∣Ψ ∣∣∣2dxdydz = Rdxdydz. (14)

where Rdxdydz is a probabilistic measure indicating the appearance of that particle at specific time s at
(x, y, z) point. It should be noted that the square of the wave function (|Ψ |2) is the probability density
of the particle at that specific point satisfying the following expression:∫

∞

−∞

|Ψ |2dxdydz =

∫
∞

−∞

Rdxdydz = 1. (15)
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Time variant 3D wave function Ψ (
→
x ,s), which can be interpreted by (14) or (15), satisfies the

following time-dependent Schrödinger equation [47]:

i} ∂
∂t
Ψ

(
→
x , s

)
= ĥΨ

(
→
x , s

)
. (16)

In this case, h̄ and ĥ represents constant of Planck and Hamiltonian operator, respectively.
Considering the particle in a potential field V with mass V(s) we can write:

ĥ = −
}2

2m
∇

2 + V(x) (17)

Assuming each particle as QPSO, Sun and associates [47] treat the particle with no spin in
D dimensional Hilbert space with a given energy. Hence, their states can be characterized by the
wave function.

Now for D dimensional quantum space having a population that consists of k particles, ith particle’s
location can be defined by Xi = (xi1, xi2, . . . , xiD). For the ith particle, the best solution’s position
in previous step, i.e., pbest could be denoted by Qi = (Qi1, Qi2, . . . , QiD). Similarly, in search space
of all the particles, the best particle’s position, i.e., gbest can be written as Qg = (Qg1, Qg2, . . . , QgD).
Using Monte-Carlo method, the quantum state of the particle’s position could be expressed as [45]:

xid = qid ±
L
2

ln
(1

u

)
, (18)

where i = 1, 2, . . . , n, dimension d = 1, 2, . . . , D; u is defined as a random number ranging [0, 1];
qid denotes local attractor of ith particle on d dimension that could be expressed as [48]:

qid = ϕ .Qid + (1−ϕ ).Qgd, (19)

where ϕ is defined as a random number, which is distributed uniformly ranging [0, 1]. A numerical
value, L, originated from the current position of particle and best position of an individual that could be
written as L = 2·β

∣∣∣qid − xid
∣∣∣. Now the quantum state of the particle’s position in (18) will be expressed as:

xid = qid ± β
∣∣∣qid − xid

∣∣∣ ln (
1
u
), (20)

where contraction expansion (CE) is referred to as β, the only QPSO parameter earlier mentioned.
The adaptive CE coefficient could be expressed by [48]:

β =
(
1−

1
2

) tmax − t
Tmax

+
1
2

(21)

where tmax and t are expressed for the maximum number and the current number of
iterations, respectively.

In the traditional PSO algorithm, premature convergence is common as a position, as well as
the velocity of the particle, is directly used. However, to encounter this issue of PSO, in the QPSO
algorithm Sun et al. [44] proposed mbest. Position of the particle is denoted by mbest and the particle’s
best position can be expressed as:

mbest =
1
k

k∑
i

Qi =

1
k

k∑
i=1

Qi1 ,
1
k

k∑
i=1

Qi2, . . . ,
1
k

k∑
i=1

QiD

, (22)
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where particle i’s best possible position is denoted by Qi. If mbest is used, then Equation (20) is
transformed as follows:

xid = qid ± β|mbestd − xid| ln
(1

u

)
, (23)

3.2. Quantum-Behaved Bat Algorithm

The basic Bat Algorithm is formulated by using idealized rules. The three rules are, (i) The use
of echolocation capability to measure distance and to sense the difference between their prey (food)
and background barriers are common to every bat. (ii) If the bats are in xi position having velocity
vi, with fmin fixed frequency as well as λ0 varying wavelength, then loudness A0 will be used for the
search of food while flying randomly. Automated adjustment of the wavelength of their emitted pulses
as well as adjustment of the rate of pulses r ε [0, 1] can be done by bats which is dependent on target
proximity, (iii) It is presumed that loudness changes from a positive large value A0 to a minimum value
Amin that is constant.

Assuming that the solution is not known, to initialize bats randomly, in the search space of each
dimension both lower and upper bound is used. The common solution will be generated by using:

Xi j = X0 − (XmX0)rand. (24)

For ith bat in the jth dimension X0 and Xm denotes the lower and upper bound, respectively.
Considering this, frequency, velocity, and position of bats can be formulated in the following manner:

fi = fmin + ( fmax − fmin)α; (25)

vt
i = vt−1

i +
(
xt

i − gt
)

fi; (26)

xt
i = xt−1

i + vt
i (27)

where α is random vector ranging [0, 1]; fi, fmin as well as fmax are pulse frequency, minimum frequency,
and maximum frequency, respectively. Moreover, vt

i , vt−1
i , xt

i , xt−1
i , and gt denote ith bat’s velocity for t

iteration, ith bat’s velocity at (t − 1) iteration, ith bat’s position at t iteration, ith bat’s position at (t − 1)
iteration, and global best location currently found by bats, respectively.

For the generation of new solutions for every bat, a random natured local walk is used once a
suitable solution is selected from the recent best solutions. Hence, a new position may be expressed
as follows:

xn = xo + εAt, (28)

where ε is denoted for expressing a random number ranging [−1, 1] and At expresses average loudness
of all the bats for total t iterations.

Loudness Ai and pulse rate denoted by ri are the parameters that control the flow of the bat
algorithm. For every iteration, loudness Ai and pulse rate ri can be found using the following expression:

At+1
i = ∆At

i , (29)

rt+1
i = r0

i [1− exp(−γt)], (30)

where At
i , At+1

i , r0
i and rt+1

i denoted for ith bat’s loudness for tth iteration, ith bat’s loudness for (t + 1)th
iteration, ith bat’s initial pulse rate, and ith bat’s pulse rate for (t + 1)th iteration, respectively. Both ∆
and γ are values that are constant ranging [0, 1] and positive, respectively.

The Quantum-behaved bat algorithm (QBA) is the improved variant of the original bat algorithm.
Pioneered in 2010 by Xin-she Yang [49], the original bat algorithm was based on the echolocation or
bio-sonar capability of bats. The flowchart of QBA is depicted in Figure 3. The flowchart in Figure 3
shows that after random initialization loudness, frequency and plus rate are updated. After that,
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the search equation is employed to update search location. A local search is incorporated into the
search technique. This process will continue unless the termination criteria are satisfied.
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Unlike the traditional bat algorithm, for QBA, a new position is assessed differently, and it can be
expressed by the equations below:

xt+1
id = gt

d.
[
1 + j

(
0, σ2

)]
σ2 =

∣∣∣At
i −At

∣∣∣+ ε, (31)

where j
(
0, σ2

)
denotes a Gaussian distribution that has zero mean and standard deviation of σ2. xt+1

id
and gt

d are global best position in d dimension for ith bat’s at t + 1 iteration. At
i is ith bat’s loudness for

tth iteration. To make sure that the standard deviation σ2 always remains positive, ε is introduced.
The global best gt

d in the swarm of bats can be treated as attractor using the Equation (23)
and replacing qid by gt

d. The position of the bat with quantum behavior can be expressed by the
following equation:

xt
id = gt

d + β
∣∣∣mbestd − xt

id

∣∣∣ ln( 1
u
), u(0, 1) < 0.5; (32)

xt
id = gt

d − β
∣∣∣mbestd − xt

id

∣∣∣ ln( 1
u
), u(0, 1) ≥ 0.5; (33)

where xt
id is the ith bat’s position when it is in d dimension for tth iteration. By taking into consideration

every bat’s compensation, capability for Doppler Effect that is self-adaptive in nature reforms the
updating formulas as per the following expression (23) and (24).
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It should be mentioned that for updating the value of velocity as well as for controlling the inheriting
rate of the previous velocity, the inertia weight parameter (w) should be added. The compensation rate
C should be varied for each bat. Since the velocity of the sound through the normal air is assumed as
340 m/s the expression could be reformed as follows:

fid =

(
340 + vt−1

i

)(
340 + vt−1

g

) × fid ×

1 + Ci ×

(
gt

d − xt
id

)∣∣∣gt
d − xt

id

∣∣∣+ ε

, (34)

vt
id =

(
w× vt−1

id

)
+

(
gt

d − xt
id

)
fid, (35)

xt
id = xt−1

id + vt
id, (36)

where fid is used to denote ith bat’s frequency at dimension d; vt−1
g is denoted for (t − 1)th iteration of

the globally best position’s the velocity and Ci is ith bat’s respective positive number ranging [0, 1].
To keep the computation simple, we have assumed that C = 0 leads to the fact that bats will not be able
to compensate for Doppler effect in echoes but in the case of C = 1, the bat will be fully capable for
compensating Doppler effect in the echoes.

3.3. Advantage and Disadvantage

From No Free Lunch theorem (NFL) it is known that no single algorithm can be best for all
problems [50]. After analyzing the major attributes of QBA and QPSO algorithm, three key points for
its success can be underscored in the following:

• Better performance can be obtained from quantum-behaved algorithms compared to PSO,
GA, CSA, GSA, and DE to carry out highly nonlinear, multi-modal optimization problem as
quantum-behaved algorithms has the inherent capability to increase diversity in its population.

• As PSO and GA update their location depending not only on personal best information but also
on explicit global best, premature convergence is common in theses algorithms and to avoid this,
mean best is used in this algorithm.

According to the No Free Lunch theorem (NFL), a single algorithm cannot be the best solution for
every problem [50]. Table 1 delineates the overall advantage and disadvantages of these algorithms
in brief.

Table 1. Advantages and disadvantages of discussed techniques.

Techniques Advantage Disadvantage

GA

Easy to incorporate discrete
decision variables.
Initializing itself from possible solutions.
Higher NPV is achieved than GA

Tuning the algorithm is hard.
The convergence and stability linked with
the crossover and mutation rates.
Less efficient than PSO.

PSO

Less parameter to tune.
Simple structure and less dependent on
initial points.
Incorporating the discrete variable
is easy.

Trapped in local optima due to weak
local search.
A high standard deviation and low
efficiency are observed.

DE
DE provides better local search
Good balance between exploration
and exploitation.

Grater variance in Net present value.

CSA One parameter needs to be tuned. Unable to avoid local optima.

BA Fast convergence. Unable to avoid local optima.

GSA High Exploitation rate. Unable to avoid local optima
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Table 1. Cont.

Techniques Advantage Disadvantage

QBA

Low Standard deviation is observed
Better local search.
Standard deviation, efficiency,
and effectiveness
QBA algorithm is better than the
other algorithms.

Computationally expensive.
Large number of parameters need to
be tuned.
Extensive local search causes higher
number of function evaluation.

QPSO Faster convergence and better solution. Computationally expensive

4. Results and Discussion

4.1. Experimental Setting

To validate the proposed methods that are discussed previously, 2 case studies are conducted.
Each algorithm ran 16 times. In case study 1, we have used 100 iterations and case study 2 we have
used 30 iterations. In case study 1, the search space is 19 × 28 × 5 blocks are present. Again, in case
study 2, 10 × 10 × 3 grid blocks are present. Hence, in case study 1, the search space is larger than case
study 2. So, algorithms will require more effort to find optimum value in case study one. For PUNQ S3
reservoir 100 iterations is used in the following paper [51]. The detailed description of test case studies
are shown in Figures 4 and 5. Again, Figure 6b shows that in case study 2, after a certain iteration
the algorithms have reached their optimal result and did not improve further. Furthermore, after a
certain point, the curve shows a flat line. The flat line in Figure 6b proves that the algorithms have
converged and will not improve further. Hence, 30 iteration is sufficient for case study 2. In each trial,
for case study 1, 100 iterations are conducted with 20 particles. A total of 2000 function evaluations
are considered as a stopping criterion. In each trial, for case study 2, 30 iterations are conducted with
5 particles. A total of 150 function evaluations are considered as a stopping criterion. The parameters
that were used in these algorithms and the economic parameters that were used in Equation (11) to
conduct the experiment are listed in Tables 2 and 3.
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Table 2. Parameters used for metaheuristic algorithms on well placement optimization.

Literature Years Algorithm Parameter Configuration

1. [20] 2018 GA Crossover = 60%
Mutation = 5%

2. [52] 2018 PSO
Inertial factor = 0.729
c1 and c2 = 1.494
(Here c1 and c2 represents acceleration)
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Table 2. Cont.

Literature Years Algorithm Parameter Configuration

3. Proposed - QBA

The maximum and minimum inertia weight
(wmax and wmin) 0.9 and 0.5
The maximal and minimal frequency (fmax and
fmin) 1.5 and 0
Gamma, γ 0.9
Delta, δ 0.99
The frequency of updating the loudness and
emission pulse rate, G 10
The maximum and minimum contraction
expansion coefficient (βmax and βmin) 1 and 0.5
The maximal and minimal loudness 2 and 1
The maximal and minimal pulse rate 1 and 0
The maximum and minimum compensation rate
for Doppler effect (Cmax and Cmin) 1 and 0.9
The maximum and minimum probability of
habitat selection 0.9 and 0.6

4. Proposed - QPSO

Maximum number of steps 100
c1 and c2 = 1.494
Initial inertia weight, wmax 1
Final inertia weight, wmin 0.5

5 [53] 2009 GSA Alfa = 20;
G0 = 100;

6 [54,55] 2018 DE crossover probability, Cr = 0.9
weighting factor F = 0.5

7 [56] 2010 CSA Flight length, fl = 2
Awareness Probability, Ap = 0.3

8 [57] 2017 BA Pulse rate = Loudness are = 0.5
Frequency range is [0, 1]
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Table 3. Economic parameters used by authors in well placement optimization.

Economic Parameter Value Unit

Discount rate 10% -

Oil production cost 72.327 $/STB
Gas price, Pg 0.126 $/MScf
Oil price, PO 290.572 $/STB

CAPEX 6.4 × 107 $
Water production cost 31.447 $/STB

Gas price, Pg 0.126 $/MScf

4.2. Description of Case Studies

To select the test cases, the reservoirs that are not identical are considered. The surface of the
reservoir can be highly non-smooth or it can multimodal for well placement optimization problem.
The PUNQ S3 reservoir can be highly multimodal [26]. So, it will test capacity to tackle the multimodal
optimization problem. Again, SPE-1 is fairly simple. So, the case studies will test the capacity to tackle
highly multimodal optimization problem and simple multimodal optimization problem.

PUNQ-S3 is a real field-based model and had been used for Elf Exploration production.
The detailed characteristics of this reservoir model are analyzed in the literature [58] and shown
in Figure 4. The PUNQ-S3 consists of 19 × 28 × 5 blocks of the grid. To evaluate the proposed
technique, the authors have chosen 4 vertical wells that need to be optimized, where each well has (x, y)
coordinates. Thus, the overall number of the variables that need to be optimized in this experiment is
2× 4.

To conduct the second case study, the first SPE model is adopted. The first SPE model is formulated
based on a 3D black oil reservoir simulation. Hence, this type of synthetic reservoir model is exploited
in this study. The detailed characteristics and specification of this reservoir model are discussed in
the literature [59] and shown in Figure 5. There are 10 × 10 × 3 grid blocks in the First SPE model.
Two vertical wells locations are optimized in this case study. Since, each well is defined by (x, y)
coordinates, 2× 2 variables are optimized in this case study.

4.3. Convergence Analysis
To analyze the performance of different algorithms, the convergence curve and convergence speed

is an important tool. So, plots of the mean net present value of algorithms versus iterations number are
illustrated in Figure 6. As per the illustration of Figure 6a, QPSO algorithm surpassed all the other
algorithms. The QBA provided 2nd best results in case study 1. The 3rd and 4th best net present values
are achieved by the DE and PSO algorithm, respectively. However, it should be mentioned that both
GA, GSA, BA, and CSA have suffered the problem to converge in local optimum point. Overall, in the
first case study, QPSO and QBA have achieved better solutions. As seen from Figure 6b, QBA has
exhibited superior performance to provide a better net present value compared to other algorithms in
case study 2. After QBA, QPSO and PSO algorithms have gained better results than other methods.
However, unlike the previous case study, GA performed the worst with respect average net present
value. Furthermore, the CSA, GA, BA, and GSA algorithms again failed to obtain satisfactory NPV in
this study.

Figure 6 suggests that, unlike PSO and BA algorithm, modification in the search expression in
PSO and BA with quantum computation helped avoid local optimum in convergence. Furthermore,
the quantum computation in the PSO and BA made it more vibrant across both case studies. Hence,
in a multimodal problem, QPSO and QBA is more dynamic than PSO and BA and is further validated
by the exploration and exploitation graphs shown in Figure 6.
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4.4. Performance Evaluation and Statistical Analysis
To assess the discussed algorithms performance, several benchmark criteria are considered for

this problem [6,60]. Thus, the author’s preferred benchmark for the evaluation are discussed in the
following subsection:

Effectiveness is the average value that is in between consecutive tests where the best solution is
expressed with respect to the global optima as a percentage is effective and it is simply a measure of
performance. Mathematically, effectiveness can be defined as follows:

f =
1
N

∑N

i=1

f
(
p̂i

)
f (p∗)

(37)

where f (p) is defined as a solution for p, p∗ is denoted for the solution for global optima, p̂i is referred to
as the best solution for ith trial, and N is trial number for each algorithm.

Efficiency is the parameter that is an indicator of the algorithm’s speed at which it reached a
specific performance level using a number of distinctive evaluations to obtain a solution that is at least
98 percent of the best value in the experiment.

L =
1
N

N∑
i=1

L98
i
M

, (38)

where additionally, L98
i is the number of unique function evaluations required to find solution q such

that f (q) _ 0:98f (ˆpi) for trial i (for minimization) and M is the total number of function evaluations
per trial.

Besides these two criteria, statistical data like standard deviation, average, and min-max are
collected in experimental trials and the results are shown in Tables 4 and 5.

Table 4. Statistical data of applied metaheuristic algorithms on well placement optimization for case
study 1.

GSA PSO CSA GA DE BA QPSO QBA

Max 3.84 × 109 5.14 × 109 3.72 × 109 5.09 × 109 5.13 × 109 5.30 × 109 5.03 × 109 5.33 × 109

Min 2.83 × 109 3.43 × 109 2.43 × 109 3.01 × 109 3.38 × 109 2.10 × 109 4.38 × 109 4.29 × 109

Average 3.33 × 109 4.07 × 109 3.24 × 109 3.67 × 109 4.26 × 109 3.28 × 109 4.77 × 109 4.67 × 109

Standard deviation 2.62 × 108 5.72 × 108 3.73 × 108 5.11 × 108 4.59 × 108 8.35 × 108 1.60 × 108 2.74 × 108

Effectiveness 6.24 × 10−1 7.63 × 10−1 6.08× 10−1 6.88 × 10−1 8.00 × 10−1 6.16 × 10−1 8.94 × 10−1 8.76 × 10−1

Efficiency 1.39 × 10−1 5.53 × 10−1 5.09 × 10−1 4.78 × 10−1 6.46 × 10−1 8.25 × 10−1 4.28 × 10−1 5.38 × 10−1

Table 5. Statistical data of applied metaheuristic algorithms on well placement optimization for case
study 2.

GSA PSO CSA GA DE BA QPSO QBA

Max 3.84 × 1010 3.86 × 1010 3.83 × 1010 3.80 × 1010 3.86 × 1010 3.85 × 1010 3.86 × 1010 3.86 × 1010

Min 3.63 × 1010 3.75 × 1010 3.34 × 1010 3.30 × 1010 3.64 × 1010 3.56 × 1010 3.78 × 1010 3.82 × 1010

Average 3.76 × 1010 3.82 × 1010 3.66 × 1010 3.60 × 1010 3.80 × 1010 3.76 × 1010 3.84 × 1010 3.84 × 1010

Standard deviation 6.21 × 108 3.09 × 108 1.63 × 108 1.37 × 108 5.39 × 108 6.92 × 108 2.58 × 108 1.61 × 108

Effectiveness 9.74 × 10−1 9.89 × 10−1 9.49 × 10−1 9.32 × 10−1 9.84 × 10−1 9.74 × 10−1 9.93 × 10−1 9.95 × 10−1

Efficiency 9.79 × 10−2 1.52 × 10−1 1.54 × 10−1 1.23 × 10−1 1.46 × 10−1 1.00 × 10−1 2.17 × 10−1 1.79 × 10−1

The mean value and standard deviation indicate the robustness of the algorithm. The results of
Case Study 1 show that the QPSO algorithm is optimal on four criteria. However, QBA was better on 2
other criteria. The box plot results are shown in Figure 7a indicates that QPSO and QBA have reached
almost similar results compared to other algorithms and QPSO has the lowest standard deviation.
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Again, the result of case study 2 in Table 5 shows that the QPSO and QBA algorithm is superior
on three and five criteria, respectively. However, PSO and DE also achieved the same maximum value,
their average value is lower than QBA and QPSO. The box plot results in Figure 7b illustrates that QBA
has the lowest standard deviation compared to other algorithms, and QPSO has the second-lowest
standard deviation. The main results of the study of case 2 are somewhat tantamount to the previous
study as it shows quantum-based algorithms are a better choice considering all 6 criteria.

4.5. Wilcoxon’s Rank-Sum Test
To validate whether the results of QPSO and QBA are statistically different from the other six

algorithms, a non-parametric statistical test, the Wilcoxon rank-sum test [61,62], with a significance
level of 0.05, is used. Table 6 shows the p-value one tail, p-value two tails, and Z values for the
Wilcoxon rank sums test. A p-value less than 0.05 and Z value higher than 1.96 is required to reject
the null hypothesis. From Table 6 it can be inferred that there is a statistical difference between the
performance of QPSO and QBA with other algorithms except in one case. In case study 1 and 2,
the performance of the QPSO and QBA are not statistically different. Therefore, it can be inferred that
quantum computation can bring improved results from the other six algorithms. However, QPSO and
QBA’s proved to be statistically different from its primary algorithm.

Table 6. Statistical data of applied metaheuristic algorithms on well placement optimization for case
study 1 reservoir.

Case Study 1 Case Study 2

Z Value p Value
One Tail

p Value
Two Tails Z Value p Value

One Tail
p Value

Two Tails

QPSO Versus GSA 3.5033 0.00022979 0.00045958 3.3481 0.00040678 0.00081355
QPSO Versus PSO 3.0379 0.0011912 0.0023824 1.6418 0.050321 0.10064
QPSO Versus CSA 3.5033 0.00022979 0.00045958 3.2447 0.00058782 0.0011756
QPSO Versus DE 2.9867 0.0014101 0.0028202 2.1416 0.016113 0.032226
QPSO Versus GA 3.4516 0.00027868 0.00055736 3.5044 0.00022878 0.00045757
QPSO Versus BA 3.3999 0.00033711 0.00067422 3.428 0.00030402 0.00060805
QBA Versus GSA 3.5033 0.00022979 0.00045958 3.3999 0.00033711 0.00067422
QBA Versus PSO 2.9862 0.0014124 0.0028249 2.5216 0.0058404 0.011681
QBA Versus CSA 3.5033 0.00022979 0.00045958 3.5033 0.00022979 0.00045958
QBA Versus DE 2.5725 0.0050482 0.010096 3.0735 0.0010578 0.0021155
QBA Versus GA 3.3481 0.00040678 0.00081355 3.5044 0.00022878 0.00045757
QBA Versus BA 3.2964 0.0004896 0.00097921 3.3245 0.00044287 0.00088574

QBA Versus QPSO 1.3315 0.091512 0.18302 0.74132 0.22925 0.4585
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4.6. Exploration and Exploitation Analysis

Dimension wise analysis sheds light on the internal behavior of the algorithms [63]. In this context,
it is important to have a strong diversification to better exploit the search space. A small degree of
diversification implies local convergence. To measure the diversity in each dimension, the authors
have considered the equation proposed in Reference [64]:

Div j =
1
n

n∑
i=1

|median(x j) − xi j|, (39)

where xi j is the dimension j of the ith swarm, median(x j) refers to the median of dimension j in the
whole population, and n is the total number of the population. So, the average diversity can be
calculated using Equation (40):

Div =
1
D

∑n

i=1
Div j, (40)

where Div is the diversity measurement of the whole population in an iteration.
Hence, Exploration and Exploitation can be measured using the following equation:

Exploration =
Div

Divmax
× 100, (41)

Exploitation = (1−
Div

Divmax
) × 100, (42)

where, Divmax presents the maximum diversity of whole populations in one run.
Without revealing the behavior of swarms in the iterative process, it is difficult to understand

the end result and the value of the objective function. Therefore, to understand the end results of
these techniques or convergence curve in Figure 6, this study initiates a graphical illustration to show
the algorithms’ exploration and exploitation behavior over the whole iteration. From Figure 8, it can
be inferred that a higher NPV can be achieved with an adequate exploration and development ratio.
On the other hand, these figures clearly indicate a gradual change in intensity during exploration and
exploitation during the iterative process.
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The graphs shown in Figure 6 shows that while QPSO and QBA has a high average exploration
rate. On the other hand, CSA, GSA, and GA had a relatively low exploration rate. In case Study 1,
the overall exploration rate of QBA and QPSO is 74% and 60%, respectively, and a quantum behaved
algorithm offered a better optimal solution. Again, among all algorithms, the least average exploration
group contains BA, GA, CSA, and GSA and their exploration rate was 6.6%, 8.2%, 17.4%, and 6.4%,
respectively. This shows that the average diversity obtained by the other algorithms is much less than
the quantum-behaved algorithms. Furthermore, it can be noted that BA, GA, CSA, and GSA obtained
the least average NPV value and quantum-behaved algorithms offer a better optimal solution. Again,
PSO and DE obtained 27.4% and 54.6% exploration rate, respectively.
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On the other hand, in case study 2, the average diversity of BA, CSA, and DE was 85.1%, 83.3%,
and 85.2%, respectively. In this case, BA provides the highest exploration rate. However, BA and CSA
were unable to achieve better optimization results. Hence, it showcases that the higher exploration rates
are not necessary to optimize the well location. Again, PSO, GSA, and GA achieved 39%, 21.93%, 14.2%
exploration rates. Moreover, PSO was able to achieve 3rd best average NPV. Similarly, 1st and 2nd
best average NPV provider QBA and QPSO achieved 66.4%, 71% exploration, respectively. Therefore,
the correct exploration-exploitation ratio should be carefully calculated according to the search field.
In general, a roughly balanced response indicates that the algorithm is more efficient. This seems to be
one of the explanations for the successful results of The QPSO and QBA algorithm.

Another important finding in this study is the successful search is produced through exploration
mechanisms with the effective exploration of mechanisms and appropriate balanced responses. In some
cases, the two metaheuristic algorithms offer very different performances to the quality of the solution,
but the balanced responses are similar (i.e., in case study 2, DE and BA’s Exploration percentage = 85,
exploitation percentage = 15). It simply means that there are not enough balanced solutions to produce
successful performance. Therefore, operators must consider the correct diversity conditions in a
balanced response to produce viable options.

This study has limitations, as it is primarily focused on optimization methods. Uncertainty
quantification and history matching have not been considered. The primary emphasis is on areas
such as utilize quantum computation for reservoirs, enhancing efficiency, and increasing the NPV
performance of well positioning. The emphasis in this analysis is only on the algorithm for optimization.

5. Conclusions

In this study, quantum computation is implemented for well placement optimization and their
application to well placement optimization problem is investigated. Experimental results suggested
that the QBA and QPSO algorithm can find a better solution than popular algorithms. It is true that
due to strong attraction to local attractor QBA has a strong local search capacity that helped it to tackle
this multimodal problem more efficiently. It can be inferred that quantum computation can bring
improved results compared to other six algorithms. This study showcases that higher exploration rates
are not necessary to optimize the well location. However, the correct exploration-exploitation ratio is
should be carefully calculated in the task area. In general, a roughly balanced response indicates that
the algorithm is more efficient. This seems to be one of the explanations for the successful results of
The QPSO and QBA algorithm. The main conclusions of this paper are as follows:

No global search algorithm can perform well on all kinds of reservoirs. Different reservoir requires
different strategy.

Quantum techniques increase exploration rate in the search technique, which helps to find
better results.

There is no statistical difference in the results of QBA and QPSO.
The particles are volatile and diverse owning to the local attractor points.
Quantum techniques are less susceptible to premature convergence and less likely to be stuck in

local optima.
High exploitation rate can be linked with lower NPV value.
Diversity analysis reveals that dynamic exploration and exploitation strategy is required for

each reservoir.
Future optimization studies should focus on using the global search algorithm with a local

search approach because it may have the advantage of solving well placement optimization problem
successfully. Lots of research papers have used proxy models in recent years to replace actual reservoir
simulators, and these models have been found to minimize runtime. The accuracy of this alternative
model, therefore, depends on its range of sampling. Future research in this area may focus on improving
the reliability of this technique.
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Nomenclature

Acronyms
ABC Artificial Bee colony
CSA Crow Search Algorithm
GA Genetic Algorithm
GSA Gravitational Search Algorithm
ICA Imperialist Competitive Algorithm
MA Metaheuristic algorithms
NCSA Niching Crow Search Algorithm
NFL No Free Lunch theorem
O-CSMADS Meta-optimized hybrid cat swarm MADS
S-PSO Synchronous Particle Swarm Optimization
SPSO Standard Particle Swarm Optimization
SCGA Standard Continuous Genetic Algorithm
PSO Particle Swarm Optimization
WPO Well placement optimization
QPSO Quantum Particle Swarm Optimization
RS Response Surface Method
THP tubing head pressure
Symbols
A Loudness
Cw Cost per unit volume of produced water ($/STB)
CAPEX Capital expenditure ($)
D Discount rate (fraction)
NPV Net present value ($)
OPEX Operational expenditure ($)
PSO Particle Swarm Optimization
Po Oil price ($/STB)
Nomenclature
Q Cumulative production (STB)
C The compensation rate for Doppler Effect
w The inertia weight
f The frequency
G The frequency of updating the loudness and emission pulse rate
PUNQ-S3 A synthetic Reservoir
T Number of years
SPE-1 A Synthetic Reservoir
K The absolute permeability tensor
B f The formation volume factor
P f The pressure
j
(
0, σ2

)
A Gaussian distribution
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Rand random
∆P The frictional pressure drop through well tubing
∆p The pressure drop due to the acceleration
L The depth of the well
r Pulse rate
λ varying wavelength
Greek Symbols
γ Gamma
ρ The density of the well production
δ Delta
β The contraction expansion coefficient
µ f The viscosity of phase
ε The porosity
ρ f The density
S f The saturation
kr f The relative permeability
q f The flow from the reservoir
Subscripts
min Minimum
max Maximum
o oil
w water
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