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Abstract: Failure to quickly and accurately detect abnormal situations, such as the occurrence of 
infectious diseases, in pig farms can cause significant damage to the pig farms and the pig farming 
industry of the country. In this study, we propose an economical and lightweight sound-based pig 
anomaly detection system that can be applicable even in small-scale farms. The system consists of a 
pipeline structure, starting from sound acquisition to abnormal situation detection, and can be 
installed and operated in an actual pig farm. It has the following structure that makes it executable 
on the embedded board TX-2: (1) A module that collects sound signals; (2) A noise-robust 
preprocessing module that detects sound regions from signals and converts them into spectrograms; 
and (3) A pig anomaly detection module based on MnasNet, a lightweight deep learning method, 
to which the 8-bit filter clustering method proposed in this study is applied, reducing its size by 
76.3 % while maintaining its identification performance. The proposed system recorded an F1-score 
of 0.947 as a stable pig’s abnormality identification performance, even in various noisy pigpen 
environments, and the system’s execution time allowed it to perform in real time. 

Keywords: agriculture IT; pig anomaly detection; embedded board; light-weight deep learning; 8-
bit filter clustering 

 

1. Introduction 

In Korea, the share of the livestock industry in the agriculture sector accounts for 41.8% of 
approximately 40 billion dollars, of which the largest portion is pig breeding. Despite this being an 
important industry, Korea’s marketed-pigs per sow per year (MSY) is merely 17.8, which is very low 
compared to 31 in Denmark, a country advanced in livestock production [1]. One of the main reasons 
for this low performance in Korea is the difficulty of a small number of managers of small and 
medium-sized pig farms to effectively and meticulously manage numerous pigs in enclosed pigpens 
with very poor air quality, which is a bad living condition that negatively affects the animals’ welfare 
and that unfortunately still exists in countries underdeveloped in the livestock industry such as 
Korea. Therefore, it is difficult for those farms to quickly and accurately detect two of the most 
common causes of swine mortality, namely pig respiratory diseases and aggressive behaviors 
between pigs, resulting from financial and practical challenges. 

Recently, several studies have been reported to detect abnormalities in livestock using sound 
sensors to guarantee animals’ health and welfare without affecting farm budgets. These methods are 
not only cost effective, as they are cheaper than other sensors, but also more practical and animal 
friendly because they collect data constantly for 24 h a day without causing any stress or discomfort 
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to the animals [2–8]. In the case of chickens, certain studies that employed sound data include a study 
of hens’ stress caused by temperature changes based on the results of vocalization analysis [2]; studies 
on the detection of respiratory diseases based on broilers’ sneezing and coughing [3,4]; and a study 
that attempted to detect avian influenza using chicken sound data [5]. Similarly, in the case of cattle, 
certain studies employed sound to detect cows’ estrous [6] and respiratory diseases [7,8]. In 
conclusion, sound data are important as it allows retrieving information that can be useful for 
detecting abnormalities in livestock. 

In this study, we focus on a new method to quickly and accurately detect abnormalities in pigs 
based on sound data to effectively manage and eliminate anomalies in livestock. Studies that detect 
abnormalities using sound also exist in the swine research field. Table 1 summarizes the qualitative 
characteristics of recent studies [9–16] that focused on sound-based pig abnormality detection. These 
studies are largely divided into detecting coughing sounds caused by diseases and screams caused 
by stress because a failure in early detection of respiratory diseases and aggressive behaviors among 
weaning pigs owing to social conflict will result in serious financial damage [14–17]. In early studies, 
abnormal pig sounds were detected using the statistical significance of time domain or frequency 
domain features [9–12]. However, recent studies have employed machine learning techniques to 
improve the accuracy of abnormality detection [13,16].  

Table 1. Some of the recent pigs’ abnormality detection research (published between 2008–2019). 

Target 
Platform 

End Point 
Detection 

Active 
Noise 

Control 

Signal 
Feature 

Detection 
Target 

Detection 
Technique 

Real-time 
Performance 

Reference 

PC 

Not 
specified No 

Frequency 
domain 

Cough by 
disease 

Dynamic time 
warping Not specified [9] 

Not 
specified 

No 
Frequency 

domain 
Cough by 

disease 
Statistical 
analysis 

Specified [10] 

Not 
specified 

No 
Time 

domain 
Cough by 

disease 
Statistical 
analysis 

Not specified [11] 

No No 
Frequency 

domain 
Cough by 

disease 
Statistical 
analysis 

Not specified [12] 

No No 
Frequency 

domain 
Cough by 

disease 
Machine 
learning 

Not specified [13] 

Yes No 
Frequency 

domain 
Scream by 

stress 
Statistical 
analysis 

Not specified [14] 

No No 
Time 

domain 
Scream by 

stress 
Statistical 
analysis 

Not specified [15] 

No No 
Frequency 

domain 
Cough by 
air quality 

Machine 
learning 

Not specified [16] 

There were shortcomings and restrictions in the applied usage of previous studies because their 
main purpose was solely to verify whether the vocalization of pigs could be employed to detect 
abnormal behaviors in the pigpen. Some of the most relevant limitations of existing sound-based pig 
abnormality detection studies include the following: 

1. Majority studies presented methods that can only be performed and reproduced in restricted 
laboratory environments. 

2. Only a few studies have applied the automatic detection and localization of pig sound events in 
untrimmed sound data, without manual editing. 

3. Though a study reported the effects of noise on cough sound detection performance [10], studies 
that attempted to detect abnormal situations while guaranteeing robustness to noise are rare. 

4. No previous study explored the feasibility of implementing a real-time economic abnormality 
detection system in a low-cost computing environment for small/medium-size farms. The term 
“real-time” was used to describe a study in one paper [10], but the content did not specify any 
measurement of the execution time for us to verify the real-time processing status. 

However, when the research team interviewed the managers of small/medium-sized pig farms 
to better understand their needs, they put forward the following conditions to be met by the pig 
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abnormality detection system: (1) Low price; (2) 24-hours monitoring; (3) The false alarm rate must 
be low whereas the abnormality detection performance must be high; (4) The system must be noise 
robust if it relies on sound, as there is a considerable amount of noise in piggeries; and (5) The sensors 
must be periodically replaced because their data collection functionalities deteriorate from the 
constant exposure to gases such as ammonia, hydrogen sulfide, and methane generated in pigpens 
with poor air circulation. 

In this study, we propose a low-cost real-time sound-based pig abnormality monitoring system 
that can be installed in real pigpens and operate for 24 h a day in an embedded environment that has 
limited computing resources, without needing a personal computer (PC) environment. First, the 
system employs an adaptive context attachment model (ACAM)-based noise-robust voice activity 
detection (VAD) algorithm, which can effectively detect sound regions even in noisy environments, 
to detect the sound regions in the data received from the sound sensor [18–21]. Then, each detected 
sound region is converted into a spectrogram, containing both frequency and time information, 
before feeding it to the lightweight deep learning model, MnasNet [22]. The filter or kernel of the 
neural network is pruned using the filter clustering method proposed in this study that improves the 
processing speed while maintaining the abnormality detection performance. In addition, we used a 
convolutional neural network (CNN) based deep learning structure in this study because it 
guarantees an effective abnormality detection performance even in various noisy environments [23–
25]. The remainder of this paper is organized as follows. In Section 2, we describe the noise-robust 
sound-based pig anomaly detection system that is deployed in an embedded board and can process 
data in real time. In Section 3, we present the performance and experimental results of the proposed 
system. In Section 4, we draw conclusions and discuss future research. 

2. Embedded Board-Based Real-Time Pig Abnormality Detection System 

The structure of the sound-based real-time pig anomaly detection system proposed in this study 
is illustrated in Figure 1. Data acquisition, preprocessor, and anomaly detector were implemented in 
the embedded system TX-2 board [26]. 

 
Figure 1. Overall structure of the pig anomaly detection system used to detect postweaning 
multisystemic wasting syndrome (PMWS), porcine reproductive and respiratory syndrome (PRRS), 
mycoplasma hyopneumoniae (MH) and scream. 

2.1. Data Acquisition and Preprocessor 

Various sounds produced by pigs were collected using the audio sensor installed in the pigpen 
and then transmitted to the preprocessing module where the end point detector was employed to 
detect the area where sound is present in the signal. In general, traditional techniques using the time 
domain or frequency domain characteristics of a signal have a low sound region detection rate 
performance when a strong signal to noise ratio (SNR) is present in the sound signal [19]. In addition, 
they are highly vulnerable to background noise in the case of threshold-based end point detection 
[19]. However, in this study, pig sounds had to be acquired from pigpens where various 
environmental noises (such as the footsteps of pigs and the music played inside pigpens) were 
constantly present. 
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In this study, to detect sounds inside piggeries, we applied a VAD [18] algorithm that used a 
deep learning-based pattern-matching algorithm and guaranteed good and noise-robust sound 
detection performance. This VAD model was implemented based on ACAM, and the introduction of 
the attention technique further improved the sound detection performance, even in noisy situations 
[19–21]. In the VAD system, during the initialization process, the algorithm first converts the sound 
signal into overlapped frame information with 25 ms and 10 ms shifts, and then, adds context 
information before inputting the signal to the decoder. Thereafter, through the decoder, attention, 
encoder, and long short-term memory (LSTM)-based core processes, it is determined whether the 
corresponding signal frame region is sound (see Figure 2). In this study, we modified certain 
parameters of the algorithm and used it to acquire the sound generated by pigs in pigpens. The 
specifics of the algorithm and user-defined parameters are fully described in [18]. Once the sound 
region was detected in the signal, it was converted into a spectrogram and transmitted to the anomaly 
detector.  

 

Figure 2. Voice activity detection (VAD) block diagram. 

2.2. Anomaly Detector 

In this module, the CNN-based MnasNet structure generated sound features and classified them 
to detect the sound anomalies of pigs. At this level, and to deploy it to the embedded system, the 
smaller the amount of filter calculation of the deep learning structure is, the better it is. To this end, 
the number of filters of the basic structure of MnasNet was controlled using a filter clustering method. 

2.2.1. MnasNet 

The CNN algorithm is considered an important breakthrough in the image classification field, 
and the application of models based on it showed a remarkable increase in image recognition 
performance. This resulted in the CNN algorithm being employed in various fields of study [27–30]. 
Recently, different attempts to run such high-performance CNN models in a low-computing 
environment such as mobile ones have been reported [31,32]. The representative hand-crafted CNN 
models in low-computing environments include MobileNet and MobileNetV2, which demonstrated 
stable identification performances in a mobile environment [31,32]. In addition, studies on neural 
architecture search (NAS), which automatically generates suitable models for specific target 
problems based on reinforcement learning (RL) rather than by hand-crafting a CNN model, has been 
conducted [33,34]. Based on this concept, studies have attempted to automatically generate a model 
to apply such an NAS to a mobile environment rather than a PC environment, and the representative 
result of this study is known as mobile neural architecture search (MNAS) [22]. Unlike NAS, which 
emphasizes only the high accuracy of the generated model, the process of retrieving the CNN model 
using MNAS considers the hardware in which the generated model will be deployed. The search 
process for MNAS is optimized using Equation (1) [22]. 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚)  ×  �
𝐿𝐿𝐴𝐴𝐿𝐿(𝑚𝑚)

𝐿𝐿 �
𝑤𝑤

 (1) 

To generate and optimize model 𝑚𝑚 , MNAS attempts to maximize the value obtained by 
calculating the accuracy of 𝑚𝑚, 𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚), multiplied by the latency measured by the target hardware, 
𝐿𝐿𝐴𝐴𝐿𝐿(𝑚𝑚), and divided by the target latency 𝐿𝐿. 𝑊𝑊 denotes a variable that determines the tradeoff 
between 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐿𝐿𝐴𝐴𝐿𝐿. 

Tan et al. [22] set up MNAS to generate an optimized model capable of performing image 
recognition in a Google Pixel 1 mobile phone, resulting in the creation of MnasNet, a lightweight 
model that showed higher efficiency and accuracy than models specifically hand-crafted for mobile 
environments (MobileNet and MobileNetV2) [22,35]. In this study, we employed the MnasNet model 
proposed by Tan et al. [22] as a sound-based pig anomaly detector. 

The structure of MnasNet employed in the experiment is illustrated in Figure 3. Furthermore, 
the mobile bottleneck convolution (MBConv) and separable convolution (SepConv) layers used in 
MobileNetV2 are used here [22,28]. Each block receives an input vector of shape 𝐻𝐻 × 𝑤𝑤 × 𝐹𝐹 (𝐻𝐻 refers 
to height, 𝑤𝑤  to width, and 𝐹𝐹  to the number of channels). The MBConv block is calculated by 
expanding the number of channels 𝐹𝐹  by three times (MBConv3; 𝐻𝐻 × 𝑤𝑤 × 3𝐹𝐹 ) or six times 
(MBConv6; 𝐻𝐻 × 𝑤𝑤 × 6𝐹𝐹 ) before going through depthwise convolution (DWConv), and then the 
number of channels is restored back to 𝐹𝐹. The hierarchical structure of MnasNet is composed of 
repeating blocks with different channel expansion ratios (MBConv3; MBConv6), filter sizes (3 × 3; 
5 × 5 ), and number of filters. In Figure 3, symbols × 2/× 3/× 4  on the right side of each layer 
numbered ①–⑤ represent the number of times that specific block is repeated. In this study, a 
spectrogram image of size 128 × 128 × 3 was used as an input. It was dimensionally reduced to 
4 × 4 × 320 (the output of the last MBconv block) and fed as an input to a fully connected layer (FC). 
Thereafter, the FC was used to calculate the probability of belonging to each class to obtain the result of 
the classification. 

 
Figure 3. MnasNet architecture for pig abnormality classification: (a) MnasNet: 8-bit filters clustering 
algorithm applied to all layers; (b) SepConv; and (c) MBConv(E), 𝑘𝑘 × 𝑘𝑘. 
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2.2.2. Filter Clustering and Pruning 

Although MnasNet is an optimized model for the target hardware, it is sometimes necessary to 
expand the model to obtain higher accuracy or reduce it to decrease computing power consumption. 
The easiest model scaling method is to reduce the overall latency by resizing the input image fed to 
MnasNet from 224 × 224 to 128 × 128  [22,32]. Another method operates by removing the 
convolution layer filters at a fixed rate [33,36–39]. MnasNet employs a depth multiplier (DM) as a 
model scaling hyper-parameter that removes the filters and decreases or increases the number of 
channels in each layer of the model to control its size [22]. If the DM is set to 0.5, the number of filters 
in each layer is reduced to half, thereby reducing the latency. 

Recently, there has been a study that, instead of using the algorithm with the DM described 
earlier, which removes filters at a fixed rate before training the CNN-based deep learning model, 
applied a clustering method to remove filters of low importance among the ones present at the level 
of each layer of the trained neural network model [29]. This clustering method was first applied to 
the detector You Only Look Once (YOLO) [40], and the results proved that the network size was 
effectively reduced while the identification performance was maintained. In this study, an 8-bit filter 
clustering algorithm is proposed to further improve the model compression ratio of the filter 
clustering algorithm proposed in [29], which relied on a 9-bit filter, while maintaining the detection 
performance. The algorithm proceeds in the following order: 

1. Except for the center of the filter, the weights in 3 × 3 filters belonging to a specific layer of the 
deep learning model are converted to binary values—0 if the value of the weight is less than the 
value at the center of the filter and 1 if greater than or equal to the value at the center of the filter 
(see Figure 4). Then, as shown in Figure 4c, 8-bit binary pattern values of the corresponding filters 
are obtained by converting them to 8-bit binary numbers. These 8-bit binary pattern values possess 
a maximum of 256 patterns. 

2. After defining the 256 patterns that can be generated through the 8-bit binary filtering as individual 
clusters, all filters belonging to a specific layer of the deep learning model are classified into their 
corresponding clusters. For example, if a specific filter that has undergone the process described 
in Figure 4 has the binary pattern 11010110(2), it is classified in the 214th cluster. 

3. After clustering all the filters in a specific layer and using the original filter values shown in Figure 
4a before the binary patterning is applied, we calculate the value 𝑙𝑙2 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 

(�
0.12 + 1.32 + −1.42

+ 1.22 + −0.72 + −2.12
+ 1.72 + 1.12 + −2.32

≅ 4.40) of the filters belonging to each cluster and sort them based on 

the calculated value in their corresponding clusters. 
4. At this stage, in each cluster, the filter with the highest 𝑙𝑙2 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 value is considered the most 

relevant and important filter for the identification performance [37,41] and hence retained, 
whereas all the remaining ones are removed because they are regarded as less important filters 
that will not affect the model’s performance. 

5. Steps 1 to 4 are performed in all the convolutional layers of the deep learning model. 

 

Figure 4. 8-bit binary patterning of 3 × 3 filter: (a) original value; (b) binary value; and (c) 8-bit binary 
pattern value. 

After the algorithm is applied to the entire network, only the highly important and relevant 
filters among the 3 × 3 filters in each layer will remain. This will improve the speed performance of 
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the deep learning network by reducing its size while maintaining its classification performance. The 
8-bit filter clustering algorithm for convolutional layers consisting only of 3 × 3 filters proposed in 
this study is described in Algorithm 1.  

Algorithm 1. 8-bit filter clustering for convolutional layers consisting only of 3 × 3 filters 

Input: Pre-trained weight W 
Output: Filter-Clustered weight WFC 

Initialize: 𝟑𝟑 × 𝟑𝟑 filter 𝒇𝒇 in 𝟑𝟑 × 𝟑𝟑 convolution layer,  
save filter list 𝒇𝒇𝒇𝒇, L2Norm list 𝑳𝑳 
 

for 𝒊𝒊 = 𝟏𝟏 to number of filters in 𝟑𝟑 × 𝟑𝟑 convolution layer do 
    𝒃𝒃 = 𝟏𝟏, 𝒄𝒄 = 𝟎𝟎  
    for 𝒋𝒋 = 𝟏𝟏 to 9 do 
        if 𝒇𝒇[𝒊𝒊][𝒋𝒋] ≥ 𝟎𝟎 do 
            𝒄𝒄+= 𝒃𝒃 
        end if 
       𝒃𝒃 ∗= 𝟐𝟐 

    end for 
𝒇𝒇𝟐𝟐 = 𝑳𝑳𝟐𝟐𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 value of 𝒇𝒇[𝒊𝒊] 

    if  𝒇𝒇𝒇𝒇[𝒄𝒄] == 𝒏𝒏𝒏𝒏𝒇𝒇𝒇𝒇 do 
        𝒇𝒇𝒇𝒇[𝒄𝒄] = 𝒊𝒊 
    end if 
    else if 𝒇𝒇𝟐𝟐 > 𝑳𝑳[𝒄𝒄] do 

 𝒇𝒇𝒇𝒇[𝒄𝒄] = 𝒊𝒊 
    end else if 
end for 
prune 𝟑𝟑 × 𝟑𝟑 filter in convolution layer, except filter in fl 

The 8-bit filter clustering algorithm proposed in this paper was implemented with the purpose 
of being used on 3 × 3 filters in convolutional layers. However, unlike YOLO, which includes only 
3 × 3 filters, the MnasNet structure also has convolutional layers that use 5 × 5 filters, which makes 
it impossible to apply the 8-bit filter clustering algorithm to all the layers of MnasNet. To solve this 
problem, in this study, at the level of the convolutional layers composed of MnasNet’s 5 × 5 filters, 
the DWConv layers inside MBConv (see Figure 3c) were replaced with DWConv layers with a stack 
of two 3 × 3 filters that used the same receptive field. This method allows us to apply the 8-bit 
clustering algorithm proposed in this paper in all the layers of the neural network while minimizing 
the change to the existing MnasNet structure, which helps increase the compression ratio of the 
model. However, the following should be noted when changing the MBConv structure and applying 
the filter clustering method: DWConv, which plays the same role as the depthwise separable 
convolution layer proposed by Chollet [42], is a dependency that is mapped 1 ∶ 1 with the Conv 
1 × 1 layer located at the top of the MBConv to which the DWConv belongs. If filters belonging to 
the DWConv layer in MBConv are removed according to the result of filter clustering and the filters 
belonging to the Conv 1 × 1  layer, which is the upper layer of DWConv, are maintained, the 
dependency is damaged. To solve this dependency problem, in this study, whenever a filter 
belonging to the DWConv layer of MBConv is removed, the filter of the Conv 1 × 1 layer mapped 
1 ∶ 1 with the removed filter is also removed. The process of compressing MnasNet by applying the 
8-bit filter clustering algorithm is shows in Algorithm 2. 
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Algorithm 2. Compression of MnasNet 

Input: Pre-trained weight of MnasNet W 
Output: Filter-Clustered weight of MnasNet WFC 

Initialize: Convolution layer of MnasNet 𝒇𝒇 
 

for 𝒊𝒊 = 𝟏𝟏 to number of layers in MnasNet 
    if 𝒇𝒇[𝒊𝒊].𝒇𝒇𝒊𝒊𝒇𝒇𝒇𝒇𝒇𝒇𝑳𝑳_𝒔𝒔𝒊𝒊𝒔𝒔𝒇𝒇 == 𝟗𝟗 do 
        execute 8-bit filter clustering algorithm for 𝒇𝒇[𝒊𝒊] 
        if 𝒇𝒇[𝒊𝒊] == 𝒅𝒅𝒇𝒇𝒅𝒅𝒇𝒇𝒅𝒅𝒅𝒅𝒊𝒊𝒔𝒔𝒇𝒇 𝒄𝒄𝑳𝑳𝒏𝒏𝒏𝒏𝑳𝑳𝒇𝒇𝒏𝒏𝒇𝒇𝒊𝒊𝑳𝑳𝒏𝒏 do 
            prune corresponding filters of 𝒇𝒇[𝒊𝒊 − 𝟏𝟏] 
        end if 
    end if 
end for 
do Fine-tuning through re-training 

3. Results 

3.1. Data Collection and Datasets 

The data were obtained from 36 pigs (Yorkshire, Landrace, and Duroc), each weighing 25– 35 kg 
and kept inside four pigpens (with dimensions of 1.8 × 4.8 m and temperature of 23 ℃) at pig farms 
located in Chungnam, Korea. One study [13] details the data collection and organization of the 
targeted respiratory diseases, including mycoplasma hyopneumoniae (MH), porcine reproductive 
and respiratory syndrome (PRRS), and postweaning multisystemic wasting syndrome (PMWS). 
When labeling the data, and in situations where the data included irrelevant sound caused by pigs’ 
footprint or aggressiveness and attacks among themselves, the video recorded was analyzed along 
with the sound to ensure that the label accurately matched the class. The sound region was detected 
using the algorithm proposed by Kim and Hanh [18] through the VAD system previously mentioned. 
The detected sound data was 0.127 to 2.627 s long, and the sample rate was 44,100 Hz. 

To check the detection performance of pig abnormalities in noisy situations, white Gaussian 
noise (SNR: 20, 15, 10, 5, and 0 dB) and environmental noise (radio operation, door opening, weak 
footsteps, and strong footsteps) were synthesized with pig sounds. The radio sound refers to the 
music played inside the pigsty to suppress stress in pigs and maintain their psychological state at a 
stable level. The strong footsteps are sounds made by several pigs running around excitedly in the 
pigsty, and the weak footsteps are those made by a few pigs walking or running around under 
normal circumstances. Lastly, the sound of the door opening is the one that occurs when the manager 
enters or leaves the pigpen. Table 2 lists certain basic information related to environmental noise, and 
Figure 5 displays examples of signals for various sounds that can be produced by a pig. 

Table 2. Basic statistical information about the environmental noise in pigsty. 

 Weak Footsteps Radio Operation Strong Footsteps Door Opening 
SNR (dB) 9.1172 8.7971 7.4681 4.6820 

Mean intensity 2.9 × 10−5 −9.5×10−6 −1.1×10−5 −3.7×10−5 
Max intensity 0.4594 0.3682 0.9198 0.8978 
Min intensity −0.5862 −0.3615 −0.9794 −0.8593 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5. Examples of pig sound signals: (a) Normal (healthy cough); (b) Normal (grunt); (c) 
mycoplasma hyopneumoniae (MH); (d) postweaning multisystemic wasting syndrome (PMWS); (e) 
porcine reproductive and respiratory syndrome (PRRS); and (f) Scream. The horizontal axis denotes 
the time in seconds and the vertical axis denotes the sound signal in dB. 

3.2. End Point Detection 

To detect sound-based pig anomalies, the first process involves localizing the sound generated 
from the sound signal acquired through the sound sensor installed in the pig house. In this study, the 
VAD algorithm proposed by Kim and Hanh [18] was used for that purpose, allowing the detection 
of all sounds generated in pig houses. The values of the settings used to detect sound were as follows: 
the length of the fast Fourier transform (FFT) window was 512, window size was 0.025 s, hop size 
was 0.01 s, and threshold was set to 0.75. Figure 6 depicts the 12.669 s long signal that represents five 
pig coughs and the result of the coughing sound detection in the signal. The results indicated that 
continuous coughing sounds such as ①, ②, ③, and ④, and coughing sounds with a small signal 
sound size such as ⑤ were effectively detected. In addition, the time taken to detect the sound region 
in the sound signal in 12.669 s in the TX-2 embedded board (CPU: ARM Cortex-A57, GPU: Pascal 
with 256 CUDA cores, and RAM: 8 GB) was 4.391 s. The sound region detected through this process 
was converted into a spectrogram, and then, input to the MnasNet-based abnormality detector. 
Librosa Python package 0.7.2 [43] with its default setting values was used to convert the sound signals 
to spectrograms. At this stage, the time required to convert a 2.005 s sound signal into a spectrogram 
in the TX-2 board was 1.095 s. 
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Figure 6. Sound detection result in pigsty using the VAD algorithm. 

3.3. Pig Anomaly Classification Results  

The data used for sound-based pig anomaly detection included 100 samples of cough, 110 of 
grunt, 70 of MH, 150 of PMWS, 140 of PRRS, and 140 of Scream, adding up to 710 samples of data. 
The dataset was divided in the ratio of 8:2, with 8 (568) as the training set and 2 (142) as the testing 
set. Furthermore, to confirm whether abnormal situations could be detected robustly in various noisy 
situations, five steps of white Gaussian noise and four environmental noise sounds were used 
(142 × 9) by synthesizing them with the original test data. 

In the first experiment, MnasNet was trained only with the original data for training that did not 
contain noise. As mentioned in the Introduction, the CNN-based deep learning structure is known to 
be robust to noise, but it is still necessary to secure more robust anomaly detection performance. 
Consequently, in the second experiment, the original data for training and the data obtained by 
synthesizing SNR 0 with the corresponding data were used in the MnasNet model training. 
Subsequently, an experiment was conducted to confirm the effectiveness of the filter clustering 
technique proposed in this study for the corresponding MnasNet structure. Then, another experiment, 
in which the DM option was applied to MnasNet models before training them, was conducted to be 
used for performance comparison. For MnasNet, Keras 2.2.4 [44] and TensorFlow 1.12.0 [45] were 
used, and an Adam Optimizer with decay rates β-1 = 0.9 and β-2 = 0.999, a learning rate of 0.001, and 
a batch size of 142 were used. The first experiment was trained for 80 epochs, whereas the second one 
for 100 epochs, and default settings were used as hyper-parameters for the training. After filter 
clustering was applied to MnasNet, additional training was performed on the pruned MnasNet 
model for fine-tuning. The evaluation index used in the experimental results is the F1-score, which is 
calculated as follows [46]: 

𝑃𝑃𝑁𝑁𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚𝑁𝑁𝑃𝑃 =
𝐿𝐿𝑃𝑃

𝐿𝐿𝑃𝑃 + 𝐹𝐹𝑃𝑃
× 100 (2) 

𝑅𝑅𝑚𝑚𝑃𝑃𝑚𝑚𝑙𝑙𝑙𝑙 =
𝐿𝐿𝑃𝑃

𝐿𝐿𝑃𝑃 + 𝐹𝐹𝑁𝑁
× 100 (3) 

𝐹𝐹1 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑚𝑚 =
2 ×  𝑝𝑝𝑁𝑁𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚𝑁𝑁𝑃𝑃 ×  𝑁𝑁𝑚𝑚𝑃𝑃𝑚𝑚𝑙𝑙𝑙𝑙

𝑝𝑝𝑁𝑁𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚𝑁𝑁𝑃𝑃 + 𝑁𝑁𝑚𝑚𝑃𝑃𝑚𝑚𝑙𝑙𝑙𝑙
 (4) 

where true positive (TP) represents the data accurately classified as true, false positive (FP) represents 
the inaccurate identification of data as true, and false negative (FN) represents the data inaccurately 
identified as false. Precision indicates the ratio of how much of the data predicted as a specific class 
actually belongs to it, and recall indicates the ratio of accurately detecting a specific class. 
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Table 3 presents the experimental results of identifying abnormalities in pigs after training with 
only clean data (not containing any synthesized noise). The table illustrates the results of three 
experiments with MnasNet using different DM values and three experiments related to filter 
clustering. The DM values in the first three experiments represent the rate at which the filters are 
maintained. DM 1.0 represents the training performed without pruning any filters of MnasNet, which 
we will refer to as the basic structure of MnasNet for the remainder of the paper, and DM set to 0.75 
and 0.5 are the ones where MnasNet filters are removed at rates of 25 % and 50 %, respectively, before 
the training. However, the remaining three experiments are the result of applying the filter clustering 
technique to the trained model of the basic structure of MnasNet. In the order of listing, the first 
experiment uses the model resulting from applying the initial filter clustering algorithm [29], the 
second one uses the result of applying the 8-bit filter clustering technique to only the convolutional 
layer comprising 3 × 3 filters of the MnasNet, and the last one uses the model resulting from 
applying the 8-bit filter clustering technique to all layers of MnasNet to identify abnormalities in pig 
sounds.  

The experimental results indicated that when DM was set to 0.75 or 0.5, the model’s 
identification performance could not be maintained because the results showed a significant drop. In 
contrast, the three experiments using the filter clustering technique showed that the identification 
performance was well maintained despite a decrease in the number of filters in the neural network. 
This demonstrated that the MnasNet model’s identification performance was not affected by the 
removal of filters that were not relevant for the identification, which was different from removing 
filters randomly from MnasNet using the DM. However, for SNRs 15, 10, 5, and 0, with strong white 
Gaussian noise and door opening noise (environmental noise), we noticed that the identification 
performance was generally low for all algorithms. 

Table 3. Sound-based pig abnormality identification results (Train: clean dataset). 

Noise Condition 
F1-score 

MnasNet 
DM 1.0 

MnasNet 
DM 0.75 

MnasNet 
DM 0.5 

Filter 
Clustering [29] 

Proposed Method 
Only 𝟑𝟑 × 𝟑𝟑 Layers 

Proposed Method 
All Layers 

Clean 1 0.943 0.916 0.841 0.993 0.993 0.993 
SNR 20 0.940 0.748 0.656 0.885 0.888 0.935 
SNR 15 0.865 0.696 0.571 0.760 0.786 0.860 
SNR 10 0.813 0.593 0.430 00.676 0.686 0.680 
SNR 5 0.813 0.506 0.325 0.505 0.506 0.598 
SNR 0 0.558 0.460 0.216 0.478 0.388 0.603 

Radio operation 0.841 0.868 0.693 0.993 0.946 0.971 
Weak footsteps 0.813 0.906 0.640 0.933 0.908 0.897 
Strong footsteps 0.903 0.851 0.741 0.936 0.920 0.940 

Door opening 0.660 0.763 0.463 0.781 0.696 0.680 
Average 0.815 0.731 0.558 0.794 0.772 0.816 

Standard deviation 0.121 0.164 0.195 0.190 0.201 0.157 
1 Clean refers to the original data without noise synthesis. 

Unlike the previous experiments, the experimental results listed in Table 4 are from the training 
performed using a dataset containing data obtained by synthesizing white Gaussian noise SNR 0 and 
clean data. As shown in Table 4, compared to the previous experimental results, the F1-score has 
considerably increased from 0.107 to 0.277, and the pig’s abnormality is stably identified not only in 
white Gaussian noise conditions but also in environments containing environmental noise. In 
particular, the average F1-score result of the 8-bit filter clustering method proposed in this study is 
0.947, the highest identification result, which is 0.025 higher than the result obtained using the basic 
structure of MnasNet (DM 1.0). In addition, as presented in Table 5, the number of parameters of the 
neural network is 646,624 and the execution time for detecting a pig’s abnormality from sound 
converted to spectrogram images on the TX-2 board is 0.253 s/image. While this model has a size that 
is 76.3 % smaller than the basic structure of MnasNet, its execution time is 0.220 s faster, which proves 
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that the proposed method produces the most optimized model. Thus, this model can be executed in 
real time, and as shown in Table 4, provides the best identification results. 

Table 4. Sound-based pig abnormality identification results (Train: clean + SNR 0 synthesized dataset). 

Noise Condition 
F1-score 

MnasNet 
DM 1.0 

MnasNet 
DM 0.75 

MnasNet 
DM 0.5 

Filter 
Clustering [29] 

Proposed Method 
Only 𝟑𝟑 × 𝟑𝟑 Layers 

Proposed Method 
All Layers 

Clean 0.985 0.960 0.913 0.991 0.976 0.993 
SNR 20 0.935 0.935 0.893 0.991 0.970 0.987 
SNR 15 0.981 0.923 0.910 0.973 0.976 0.978 
SNR 10 0.954 0.906 0.830 0.991 0.985 0.993 
SNR 5 0.963 0.891 0.855 0.973 0.973 0.993 
SNR 0 0.931 0.863 0.773 0.983 0.986 0.987 

Radio operation 0.876 0.790 0.870 0.863 0.796 0.820 
Weak footsteps 0.871 0.820 0.835 0.833 0.846 0.917 
Strong footsteps 0.916 0.860 0.768 0.906 0.958 0.958 

Door opening 0.783 0.721 0.710 0.735 0.861 0.845 
Average 0.922 0.867 0.835 0.924 0.933 0.947 

Standard deviation 0.062 0.072 0.067 0.088 0.070 0.065 

Table 5. Comparison between the number of parameters of the pig-anomaly detector model and the 
execution time of the model on the TX-2 board (Train: clean + SNR 0 synthesized dataset). 

 
MnasNet 
DM 1.0 

MnasNet 
DM 0.75 

MnasNet 
DM 0.5 

Filter 
Clustering 

[29] 

Proposed Method  
Only 𝟑𝟑 × 𝟑𝟑 Layers 

Proposed 
Method All 

Layers 
No. of Model 

Parameters 2,727,310 1,607,106 749,118 2,268,713 2,094,722 646,624 

TX-2 Average 
Execution Time 

0.473 
s/image 

0.373 
s/image 

0.268 
s/image 

0.412 s/image 0.378 s/image 
0.253 

s/image 

Table 6 displays a confusion matrix of the results after applying the 8-bit filter clustering method, 
shown in Table 4, to all layers of MnasNet. The results confirmed that it effectively detected 
abnormalities related to pigs’ respiratory diseases and screams resulting from attacks between pigs. 

Table 6. Confusion matrix for identification of pig abnormalities (Test: Clean + All synthesized noise 
dataset). 

 
Predicted 

Healthy Cough Grunt MH PMWS PRRS Scream 
Healthy Cough 179 1 0 0 0 0 

Grunt 5 179 0 6 0 2 
MH 0 4 121 1 0 0 

PMWS 3 9 1 239 1 0 
PRRS 5 3 0 0 259 2 

Scream 12 3 0 0 0 237 

Figure 7 illustrates the compressed MnasNet structure after pruning the filters that are irrelevant 
to the identification performance using the 8-bit filter clustering method. As previously described in 
Section 2.2.2, to apply the 8-bit filter clustering method to all layers of MnasNet, the MBConv layers 
composed of 5 × 5 filters were changed to comprise two hierarchical 3 × 3 filters. Therefore, the 
interior of the existing MBConv structure was changed to a structure with two DWConvs, named 
MBConv2, as shown in Figure 7d. In addition, in MBConv in the MnasNet model, layers having the 
same number of filters were repeated; hence, we represented them as one and added symbols 
× 2/× 3/× 4 on the right side of the layers (see Figure 3a). However, when the 8-bit filter clustering 
algorithm is applied to MnasNet, the number of filters belonging to each layer of the repeated 
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MBConv changes. Therefore, the MBConv, which had the same number of filters that was repeated 
3 times in the basic MnasNet structure, was drawn only once and marked with symbol × 3 on its 
right side (see ① in Figure 3a). The same MBConv had to be expressed by dividing it into 3 MBConvs 
with different numbers of filters after applying our proposed method (see ① in Figure 7a). 

 

Figure 7. MnasNet architecture after applying the 8-bit clustering method: (a) MnasNet: 8-bit filters 
clustering algorithm applied to all layers; (b) SepConv; (c) MBConv(E), 𝑘𝑘 × 𝑘𝑘; and (d) MBConv2(E), 
𝑘𝑘 × 𝑘𝑘. 

Tables 7 and 8 summarize a comparison of results between other studies and our proposed 
method. However, because the previous studies conducted experiments without considering the 
noise generated in pigpens, the results using only clean data in the test dataset were used to ensure 
a fair and accurate comparison. For cough detection, the following three performance indicators were 
used: cough by disease detection rate (CDR), false-positive rate (FPR), and false-negative rate (FNR). 
The description of the performance index is described in detail by Chung et al. [13]. Table 7 presents 
a comparison of the results of detecting cough caused by disease using our proposed method and 
that used by other studies. Table 8 presents a comparison of the results of identifying respiratory 
diseases in pigs using our proposed method and that used by Chung et al. [13]. 

Table 7. Performance comparison between proposed method and other disease detection studies 
regarding cough detection. 

 Guarino et al. [9] Exadaktylos et al. 
[10] Chung et al. [13] Proposed 

Method 
CDR (%) 85.5 82.2 94.0 99.0 
FPR (%) 13.4 12.0 5.4 4.0 
FNR (%) 14.5 17.8 6.0 1.0 

Feature Frequency domain 
Power spectral 

density 
MFCC Spectrogram 

Detection 
method 

Dynamic time 
warping 

Statistical analysis 
Support vector data 

description 
Deep learning 
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Table 8. Comparison of respiratory disease identification performance between proposed method 
and that used b Chung et al. [13]. 

 
Chung et al. [13] Proposed method 

Precision (%) Recall (%) Precision (%) Recall (%) 
MH 85.7 82.0 96.0 99.1 

PMWS 94.8 96.4 94.4 97.1 
PRRS 92.0 97.8 96.2 99.6 

Average 90.8 92.0 95.5 98.6 
Feature MFCC Spectrogram 

Detection method Sparse representation classifier Deep learning 

4. Conclusions 

Failure to quickly and accurately detect various abnormalities (porcine respiratory diseases, 
aggressive behaviors among pigs, etc.) occurring in pigpens will cause considerable damage to the 
pig farms and national economy. In particular, and unlike large-scale enterprise farms, small and 
medium-sized farms are relatively negligent when preparing for and dealing with such abnormal 
situations. To provide them with a suitable solution, we propose a system that employs sound data 
to effectively detect abnormal situations in pigs. The system was designed specifically to be executed 
in real time using a low-cost sound sensor and run on an embedded board TX-2, instead of relying 
on relatively expensive video sensors and general PCs, such that small farms with limited budgets 
could purchase them without having to bear any financial burden. In addition, the system was 
implemented to be robust against various noises generated inside pigpens, such that it could be 
applied in real-life pig farms. 

The proposed system included a pipeline that connected the entire process starting from sound 
acquisition to the detection of anomalies in pigs as follows: (1) effective sound signal acquisition from 
a sound sensor mounted in an environment with possible noise occurrences; (2) signal-to-sound area 
detection and conversion to a spectrogram; and (3) application of the 8-bit filter clustering algorithm 
proposed in this paper to MnasNet, a light-weight deep learning model, to remove filters that did not 
affect the identification performance. As a result, a model 76.3 % lighter than the original MnasNet 
model was created and used to receive the spectrogram as input to detect and identify abnormal pig 
situations. The results of the abnormality identification experiment demonstrated an F1-score of 
0.947, achieving the best identification performance even in pigpens where various noises were 
generated. In addition, the execution time of the abnormality identification algorithm on the TX-2 
board was 0.253 s, which was 0.220 s faster than the basic MnasNet model; this allowed real-time 
execution. In our next study, we intend to implement a more reliable pig abnormality monitoring 
system by combining sound and video data acquired from sensors installed in pigpens. 
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