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Abstract: The alignment problem of a rotating optical measurement system composed of a
charge-coupled device (CCD) camera and a turntable is discussed. The motion trajectory model
of the optical center (or projection center in the computer vision) of a camera rotating with the
rotating device is established. A method based on camera calibration with a two-dimensional target
is proposed to calculate the positions of the optical center when the camera is rotated by the turntable.
An auxiliary coordinate system is introduced to adjust the external parameter matrix of the camera
to map the optical centers on a special fictitious plane. The center of the turntable and the distance
between the optical center and the rotation center can be accurately calculated by the least square
planar circle fitting method. Lastly, the coordinates of the rotation center and the optical centers
are used to provide guidance for the installation of a camera in a rotation measurement system.
Simulations and experiments verify the feasibility of the proposed method.

Keywords: rotation measurement system; camera calibration; camera and turntable alignment

1. Introduction

In recent years, an optical measurement method based on the photogrammetry principle [1–3] has
been developed rapidly because of its high speed, non-contact, high accuracy and flexibility. Optical
measurement is one of the effective methods for coordinate measurement, trajectory measurement
or surface reconstruction. It is widely used in different fields such as three-dimensional (3D) sensor
measurement, panoramic image mosaic, aerospace, virtual reality (VR), augmented reality (AR),
industrial manufacturing and so on [4–9].

In the large-scale scene or 360-degree annular area measurement, due to the limitation of the field
of view (FOV) of the camera, a single lens camera cannot cover the whole measurement range of the
target. Therefore, scanning photography [10] is employed, in which a rotating mechanism rotating
around a fixed point enables the camera to enlarge the measuring range by acquiring images from
multiple angles. Theoretically, adjacent images taken by the camera rotating around its projection center
can be matched by a purely projective transformation of their regions of overlap without requiring the
three-dimensional shape of the scene [11–13]. In order to facilitate calculation and later data fusion, it is
crucial to coincide the optical center of the camera with the rotation center of the rotating mechanism
in practice for the creation of panoramic images. Here, the optical center of the camera is the origin of
the camera coordinate system in the computer vision. It is also called the projection center in many
references and corresponds to the first nodal point (or principle node) of the camera lens installed
in the same medium. For the close-range applications, the misalignment of the two centers will be
introduced into the final results and the images may not be spliced well. For simplicity, in the rest of
this article, the “optical center of the camera” is abbreviated as “optical center”.
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The alignment of a rotating optical measurement system has always been a hot topic in many
fields and has aroused the research interest of many researchers. Carlo Tomasi et al. [11] proposed a
centering procedure, in which the rotation center was aligned by moving the camera via the translation
platform with the help of the transition line of far and nearby targets, and the location accuracy can
reach one tenth of a millimeter. Antero Kukko et al. [14] designed special calibration target “cones” to
align the optical center with the rotation center to realize the adjustment of the digital camera to a
spherical panoramic camera head. The achieved projection center uncertainty was approximated to be
about 1 mm. Kauhanen et al. [15] developed a method to find the rotation center based on the camera
calibration method, in which a three-dimensional calibration target is employed. The X, Y and Z shifts
for the correction of the camera location were obtained by a numerical method. The standard deviation
between the projection center and the rotation center after calibration could reach 0.161 mm. On the
contrary, in some studies, the relationship between the camera and the rotation mechanism is calculated
by the system calibration in advance, and then it is substituted into the final image mosaic [16–18].
For instance, Zhang Zuxun et al. [19,20] designed a measuring system named Photo Total Station
System (PTSS), within which a metric camera with known internal parameters was rigidly installed
on the telescope of the total station to extend the FOV and improve the accuracy. Zhang et al. [21]
designed a theodolite–camera (TC) measurement system consisting of a theodolite and a camera for
precise measurement at large viewing angles. The total station or theodolite can provide the spatial
coordinates of the control points, which can be used to establish the relationship of the camera while
rotating. This kind of measurement system needs a complicated calculation process to eliminate the
influence of the misalignment between the optical center and the rotation center.

For any rotating optical measurement system, the motion trajectory of the optical center will be a
circle centered on the rotation center. If the radius of the circle is equal to 0, it means that the optical
center coincides with the rotation center. Otherwise, the optical center is not matched with the rotation
center. However, since the imaging system is composed of multiple lenses, it is hard to accurately
calculate and determine the real position of the optical center. Therefore, it is a challenge to guarantee a
good alignment between the optical center and the rotation center, and any misalignment could affect
the subsequent information stitching.

In order to calculate the coordinates of the optical center and rotation center to solve the alignment
problem, the idea of camera calibration [22–26] is introduced. In this paper, we propose a method based
on Zhang’s camera calibration principle [27] to calculate the positions of the optical center in a unified
world coordinate system from the external parameters (including translation vector and rotation
matrix) of the camera in a rotating optical measurement system composed of a non-metric camera and
a general rotating platform. With the rotation of the turntable, a set of external parameter matrices
are obtained, from which a series of optical centers can be calculated to find out the rotation center
by the least square circle (LSC) fitting method. The optical center and the rotation center provide the
guidance for installation of the camera in a rotating measurement system. In order to reduce the fitting
complexity and improve the fitting accuracy, we introduce an auxiliary plane coordinate system to map
the optical centers on a unified virtual plane before circle fitting. In addition, for reducing the errors,
we collect the images when the camera rotates from different positions, and multiple sets of optical
centers are calculated simultaneously to obtain multiple fitted circle centers. The weighted algorithm
is used to determine the final rotation center. Computer simulations and some experiments verify that
the method can guide the installation and adjustment of the rotating optical measurement system.

The rest of the paper is organized as follows: Section 2 illustrates the principle of the proposed
method. Section 3 shows some simulations to validate the proposed method. Section 4 displays some
experimental results to validate the proposed method and discusses the strengths and contributions of
the proposed method. Section 5 summarizes this paper.
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2. Principle

In this section, we explain the basic composition of the proposed rotating optical measurement
system and the related techniques for finding out the rotation center.

2.1. The Composition of the Rotating Optical Measurement System

The established rotating optical measurement system and the calibration unit include a
checkerboard target, a camera, servo control units, computer processing units, etc. The schematic
diagram of the measurement system is shown in Figure 1a.
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Figure 1. (a) Schematic diagram of the rotating optical measurement system; (b) schematic diagram of
the imaging model.

In Figure 1a, the camera is placed on the servo control units composing of a rotating platform and
two translation platforms perpendicular to each other. The two translation platforms are fixed on the
turntable to move the camera for multiple calibrations and final alignment. Or is the rotation axis of the
turntable. Oc-XcYcZc is the camera coordinate system, and Ow-XwYwZw is the fixed world coordinate
system. We will give the explanations about these coordinate systems in Section 2.2. The checkerboard
target is fixed in front of the system for camera calibration. A sequence of the images, which include
the whole checkerboard or a part of the checkerboard, will be collected while the camera is rotated by
the turntable.

2.2. Imaging Model

First, we give an introduction about the imaging model of the rotating optical measurement
system. As shown in Figure 1b, Or is the rotating axis, P is a point on the target, and P1 and P2 are its
imaging points when the camera is rotated to Position 1 and Position 2. Oc1 and Oc2 are the optical
centers for the two shots, respectively. Oc1Zc1 and Oc2Zc2 are the optical axis directions of the camera,
Oi-uivi (i = 1, 2) are the image coordinate systems, and the origin is Oi. The rotating angle between
OrOc1 and OrOc2 is θ; that is, ∠Oc1OrOc2 = ∠O1OrO2 = θ. Oc1O1 = Oc2O1 = f , where f is the focal
length of the camera. If the optical center deviates from the rotation axis of the turntable, Oc1 and
Oc2 should be on a circle centered on the rotation center; that is, OrOc1 = OrOc2 = r, where r is the
radius of the circle. When the optical center coincides with the rotation center, r→0. The positions of
the rotation center and optical centers can be obtained with our method. They can be used to guide
the alignment of the optical center and rotation center by adjusting the distance and direction of the
camera movement. The details will be presented in the next sections.
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Theoretically, the sequential positions of the optical centers should be located at the whole circle
as evenly as possible when the camera is rotated by the turntable. However, the obtained positions
could only be located at a small arc of the circle, because it is almost impossible to provide a very large
and circular calibration target. In order to improve the calculation accuracy of the rotation center, the
camera is moved to different positions to collect multiple groups of images to obtain multiple sets of
optical centers. Only if the turntable plane is parallel to the plane Ow-YwZw and the optical axis of
the camera is perpendicular to the target at each initial position, the motion trajectory of the optical
center is on the concentric circular arc parallel to Ow-YwZw. However, for an actual rotating optical
measurement system, the above conditions may not be met in the calibration process, which makes
the obtained fitted circles not concentric. For overcoming the problem, we introduced an auxiliary
coordinate system, Op-XpYpZp. The relationship between Op-XpYpZp and Ow-XwYwZw is depicted in
Figure 2. The auxiliary coordinate system helps us map the multiple sets of optical centers to the plane
parallel to Ow-YwZw to find out the rotation center by fitting planar concentric circles.
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Here, we emphasize the four coordinate systems used in the calibration for clarity.

1. World Coordinate System Ow-XwYwZw is a right-handed (Xw-Yw-Zw), orthogonal,
three-dimensional coordinate system, whose original point Ow is established on the upper
left corner of the fixed checkerboard plane; that is, Zw = 0 for points on the fixed checkerboard
plane. The world coordinate system is selected as reference coordinate system during calibration.

2. Image Coordinate System Oi-uivi is an orthogonal coordinate system fixed in the image plane of
the camera, where the ui and vi axes are parallel to the upper and side edges of the sensor array,
respectively, and the origin Oi is located at the upper left corner of the array.

3. Camera Coordinate System Oci-XciYciZci is a right-handed (Xci-Yci-Zci), orthogonal coordinate
system. The origin Oci is located at the camera’s optical center, and the Zci axis is perpendicular
to the image plane and coincides with the optical axis of the camera. The Xci and Yci axes are
parallel to the ui and vi axes of the Oi-uivi, respectively. The plane where Zci = f is the image
plane, where f is the principal distance between the optical center and the image plane.

4. Auxiliary Coordinate System Op-XpYpZp is a right-handed (Xp-Yp-Zp), orthogonal coordinate
system. Its origin Op is located at the optical center. The plane XpOpZp is a virtual plane, whose
axis of Xp and Yp are parallel to that of Yw and Xw in the same direction, respectively, and the axis
of Zp is parallel to that of Zw in the opposite direction.
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2.3. Steps to Determine the Rotation Center of the Rotating Optical Measurement System

The procedure for determining the rotation center of the rotating optical measurement system
is divided into three steps. First, we collect images when the camera rotates from different positions
(i) and calibrate the internal parameters and external parameters (rotation matrix R and translation
vector T) of the camera by Zhang’s method. Then we can get the coordinates of the optical centers
in the unified world coordinate system. Second, with the help of the auxiliary coordinate system,
we calculate the rotation center by the LSC fitting method from the obtained world coordinates of the
optical centers. At last, the final rotation center is obtained through a weighted algorithm. The flow
chart of the procedure is shown in Figure 3.
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2.3.1. Calculate the Optical Center of the Camera

In the traditional camera calibration method based on the pinhole camera model, the camera’s
internal and external parameters are calculated from feature points with known world coordinates and
corresponding image coordinates. The relationship between the camera coordinate system and world
coordinate system is described by the rotation matrix R and translation vector T. R and T reflect the
spatial position of the camera in the fixed world coordinate system. If the homogeneous coordinates of
the points in the world coordinate system M = (Xw, Yw, Zw, 1)T and their image coordinates m = (u, v,
1)T are known, the relationship between M = (Xw, Yw, Zw, 1)T and m = (u, v, 1)T is described as

s
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where s is an arbitrary non-zero scale factor; fx and fy are scale factors of the u-axis and v-axis,
respectively; α is the skew factor of two image axes; and (u0, v0) is the principal point of the camera.
Rotation matrix R is an orthogonal unit matrix, T is a three-dimensional translation vector, and A is
the internal parameter matrix of the camera, defined as

A =


fx α u0 0
0 fy v0 0
0 0 1 0

. (2)

In Zhang’s method [27], the target plane is located on the XwOwYw plane of the world coordinate
system, where Zw = 0. Equation (1) is simplified as Equation (3),
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sm = HM, (3)

where H = [h1 h2 h3] = λA [r1 r2 t] is a 3×3 matrix and λ is a constant. The homography matrix H sets
up the mapping between the points on the target with the points on the image. Multiple target images
with different poses (at least two in theory) are needed to calculate the internal and external parameters
of the camera.

In our calibration, for providing the fixed reference world coordinate system, we keep the target
still and rotate the camera to calibrate R and T. Assuming the coordinates of a point are Mc in the
camera coordinate system and Mw in the world coordinate system, the relationship between Mc and
Mw is connected by the following rigid motion equation:

Mc = RMw + T. (4)

If Mc is known, Mw can be obtained by Equation (5):

Mw = R−1(Mc − T). (5)

Since the rotation matrix R is an orthogonal unit matrix, RT = R−1, Equation (5) can be rewritten as

Mw = RT(Mc − T). (6)

The coordinates (0, 0, 0) of the optical center in camera coordinate system can be mapped to the
world coordinate system by Equation (6). The motion trajectory of the optical centers should be a
circular arc on the turntable plane when the camera is rotated by the turntable. In practice, with the
help of auxiliary coordinate system Op-XpYpZp, Equation (7) is needed to map the optical centers on
the plane parallel to Ow-YwZw,

Mw = RcpRT(Mc − T), (7)

where Rcp is a 3×3 rotation matrix, which describes the rotation relationship between the camera
coordinate system and auxiliary coordinate system.

2.3.2. Method for Coincidence of the Optical Center and the Rotation Center

Since not enough of the optical centers can be obtained when the camera is rotating at one position,
the camera is moved to different positions to collect more images, as shown in Figure 4, where ci
(i = 1, 2, 3) represent the three initial positions of the camera. In order to easily move the camera
through the translations to align the rotation center, we need c1c2⊥c1c3, c1c2‖OwZw, c1c3‖OwYw.
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The LSC fitting [28] is performed to calculate the rotation center, which satisfies that the sum of
the squares of the distances between each sample point and the fitting curve must be minimized. Let
(y0, z0) be the two-dimensional (2D) coordinates of the rotation center and (yj, zj) (j = 1~N, N is the
number of camera rotation) be the 2D coordinates of the optical centers projected onto the YwOwZw

plane. In order to obtain (y0, z0), the objective function is

C = min
N∑

j=1

[(y j − y0)
2 + (z j − z0)

2
−R2]. (8)

Theoretically, the radius of the fitted circle varies when the camera is moved, but the circle centers
should remain unchanged. However, there are deviations among the fitted centers Ori in the actual
fitting. The initial rotation center Or is decided by the average of the Ori. We adjust the camera
to Or and calibrate the camera again to get a set of new optical centers O’rj, whose average is O’r.
The weighted average value of Ori and O’r is taken as the final rotation center Or = (Oy, Oz). The
calculation formula is as follows:

Oy =
n+1∑
m=1

kymOym, (9)

Oz =
n+1∑
m=1

kzmOzm, (10)

where Oym and Ozm represent the coordinates of the fitted circle centers Ori and O’r in the Yw and
Zw directions, respectively; m = 1, 2, . . . n+1, where n is the number of the fitted circles. kym and kzm

represent the weighted factors, respectively, which are decided by the variance σm = (σym, σzm) of each
group of the optical centers by Equations (11) and (12),

kym =
σym

n+1∑
m=1

σym

, (11)

kzm =
σzm

n+1∑
m=1

σzm

. (12)

3. Computer Simulation

In order to verify our method, we carried out computer simulations. The simulated camera had
the following parameters: fx = fy = 1700.00 pixels, u0 = 600.00 pixels, v0 = 500.00 pixels and α = 0. The
size of a square of the simulated checkerboard is 14.175 × 14.175 mm. The simulated rotation center in
the world coordinate system is Or = (−80.00, −50.00, 900.00) mm. The simulated camera is placed at
Cr = (−80.00, −33.31, 852.87) mm, Cg = (−80.00, −5.26, 852.85) mm and Cb = (−80.00, −33.37, 821.75)
mm in the world coordinate system and 50.00 mm, 65.00 mm and 80.00 mm away from the rotation
center, respectively, as shown in Figure 5.

For each position, 20 pairs of external parameter matrices (R and T) were assigned to simulate the
movement of the camera. A total of 60 simulated images “seen” by the camera were substituted into
Zhang’s method to calculate the internal parameters A and external parameters R and T, from which
the positions of the optical centers were obtained. Then 3.5% Gaussian noise was added to affect the
coordinates of each pixel of the images; the same operation is performed to calculate A, R and T and the
optical centers. The obtained internal parameters in both cases are shown in Table 1. The trajectories of
the three groups of the optical centers projected on the YwOwZw plane are shown in Figure 6. Figure 6a
is the result without noise, and Figure 6b is the result with noise. The fitted circle curves by the LSC
fitting method are shown in Figure 7. The fitted centers and radii are shown in Table 2.
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Table 2. Fitted centers and radii correspondence table.

Fitted Center/mm Fitted Radius/mm

Without noise
Or = (−50.00, 900.00) r = 50.00
Og = (−50.00, 900.00) r = 65.00
Ob = (−50.00, 900.00) r = 80.00

3.5% random noise
Or = (−49.96, 900.04) r = 49.96
Og = (−50.01, 900.03) r = 65.19
Ob = (−49.96, 900.01) r = 79.99

It can be seen from Table 2 that the three circle centers and radii are the same as the setting values
without considering noise. When there is 3.5% Gaussian noise, the average of the three circle centers
is Or = (−49.98, 900.02) mm, and the errors of the fitted center and radius are less than 0.05 mm and
0.19 mm, respectively. These results confirm that the proposed method can be used to locate the
rotation center in the rotating optical measurement system.

4. Experiment

4.1. Experimental Setting

We carried out experiments to verify our method. The experimental setup is shown in Figure 8a.
The rotation control system is composed of a CCD camera (model: Bammer camera TXG50; resolution:
1224 × 1025 pixels) with a 16 mm focus length imaging lens (model: MA1214M-MP), two translation
stages (Zolix TSA50-C electric translation platform, with a repositioning precision less than 5 µm;
PI-M406, with a repositioning precision of 0.078 µm) and a turntable (Zolix RAP200 electric rotation
platform, with a repositioning precision less than 0.005◦). The translation stages are fixed on the
rotation platform, and the camera is fixed on a translation stage. The stepper motor controls the
camera to move along the Yw and Zw axes and rotate with the turntable, respectively. During the
experiment, the exposure time of the camera is 12,000 µs. The checkerboard image (the size of a square is
14.175 × 14.175 mm) is displayed on an LCD screen (Philips 190V with a resolution of 1440 × 900 pixels;
the dot pitch is 0.2835 mm/pixel). The LCD display screen keeps still during the calibration process.
Since the LCD display has a completely pure plane and the screen glass is very thin, the refraction
phenomenon can be ignored. Of course, a checkerboard target with a higher machining accuracy can
also be employed for providing feature points with higher accuracy.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18 
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4.2. Determination of the Rotation Center

In the experiment, the camera is respectively placed at three different positions, as shown in
Figure 4, where c1c2⊥c1c3, c1c2 = c1c3 = 20 mm. At each initial position, the camera is rotated 16 times,
for a total of 22.5 degrees with 1.5 degrees per step. Therefore, in total, 48 frame patterns will be
captured during the rotation of the turntable and divided into three sets. One set of the patterns is
shown in Figure 8b. The screen is placed within the depth of field of the camera lens to avoid the
influence of the defocus on the calibration results. The external parameter matrices (R and T) are
obtained by Zhang’s method, in which the calculated R and T are almost lens-distortion-free. The
re-projective pixel error of the calibration results was 0.039 pixels in our experiment.

From the rotation matrices obtained by the calibration, the rotation angles γix(j), γiy(j) and γiz(j)
(i = 1, 2, 3, j = 1, 2, ..., 16) of the Xw, Yw and Zw axes of the world coordinate system with respect
to the Xc, Yc and Zc axes of the camera coordinate system of the initial position can be calculated,
respectively. Theoretically, if the optical axis Zc of the camera at initial position is parallel to Zw and
the plane Oc-XcZc is parallel to the plane Ow-YwZw, the rotation angle γiy(j) should be equal to the
actual rotation angle of the turntable, and the rotation angle γix(j), γiz(j) = 0 when the camera is rotated
around the Yc axis, as shown in Figure 9a. Three sets of the angle curves are marked with a different
color in the figure, where the horizontal axis represents the times of the camera’s rotation, which is
marked as N = 16(i − 1) + 1~16i. In fact, the rotation angles γix(j) and γiz(j) fluctuate around 0 degree.
We use γ’ix(j), γ’iz(j) and γ’iy(j) to express the calculated three rotation angles, respectively, as shown in
Figure 9b. If the three angles are used to calculate the optical centers directly, the three fitted centers
will not be concentric on the plane Ow-YwZw. Figure 10a,b shows the projection of optical centers on
the plane Ow-YwZw and the fitted trajectory, respectively. The deviations of the circle centers are large,
by which the rotation center can not be found accurately. With the help of the auxiliary coordinate
system Op-XpYpZp, the optical centers can be mapped on a plane parallel to Ow-YwZw through the
rotation matrix Rcp. In Rcp, the three rotation angles are ∆γix(j) = γ’ix(j) − γix(j), ∆γiy(j) = γ’iy(j) −
γiy(j) and ∆γiz(j) = γ’iz(j) − γiz(j). After the angle correction with Rcp, the optical centers calculated by
Equation (7) are unified to the same world coordinate system.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 
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Three sets of the optical centers and the fitted circular arcs with different radii on the Ow-YwZw

plane are shown in Figure 11a,b. Employing the optical center coordinates, the distance among c1, c2

and c3 are calculated, c1c2 = 20.16 mm and c1c3 = 20.08 mm. The errors of the distance are 0.78% and
0.42%, respectively. The fitting results and the root mean square error (RMSE) of the three groups are
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displayed in Table 3. The average value of the three fitted centers is Or = (−55.20, 961.67) mm, which is
regarded as the initial value of the rotation center.
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Table 3. Fitting results.

The Initial Position of the Camera Fitted Center/mm Fitted Radius/mm RMSE/mm

c1 Or1 = (−55.23, 961.58) r1 = 71.62 0.042
c2 Or2 = (−55.38, 961.88) r2 = 53.32 0.054
c3 Or3 = (−55.00, 961.53) r3 = 67.29 0.042

In order to obtain a more accurate rotation center, we adjusted the camera to Or, employing the
translation stages along the Yw and Zw directions, respectively, and rotated the camera 16 times to
calculate the optical centers O’rj, which are distributed over a small range, as shown in Figure 12.
The average value of O’rj is O’r = (−54.59, 962.05) mm. The final rotation center Or is calculated by
employing Or1, Or2, Or3 and O’r using Equations (9)–(12), where Or = (−54.69, 961.96) mm. The camera
is moved to Or and rotated 16 times to calculate the optical centers O”rj. The standard deviation (STD)
of O’rj relative to Or and O”rj relative to Or in the Yw and Zw directions are shown in Table 4. It is
obvious that Or is more reliable than Or. These results indicate that the camera’s optical center has
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been positioned accurately with the rotation center of the turntable and the systematic uncertainty in
our method remains about 0.1 mm.
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Table 4. The standard deviation in the Yw and Zw directions.

Standard Deviation/mm Yw Zw

O’rj relative to Or 0.029 0.141
O”rj relative to Or 0.022 0.117

4.3. Verification

Two experiments are designed to prove whether the optical center is aligned with the rotation
center by our method after the camera has fixed the position Or.

4.3.1. Calculating the Angle Formed by the Two Space Points M1, M2 and the Optical Center

In the experiment, we calculated the angle α formed by the two space points M1, M2 and the
optical center, as shown in Figure 13. When the optical center coincides with the rotation center,
the angle α shall remain unchangeable when the camera is rotated. However, when the optical center
does not coincide with the rotation center, the angle will change with the rotation of the camera on the
turntable; that is, α1 , α2.
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Figure 13. Schematic diagram.

In the experiment, the four points pairs with different positions on the checkerboard plane are
selected to calculate the angle αk (k = 1~4) and marked as a red circle, green triangle, pink diamond
and blue square, as shown in Figure 14. Sixteen angles αk (j) (j = 1, 2, . . . , 16) are calculated when
camera is rotated under the condition of the coaxial; the four angle curves are shown in Figure 15a and
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the four difference curves of the adjacent angles are shown in Figure 15b. We moved the camera away
from the rotation center; the calculated angle curves are shown in Figure 15c and the four difference
curves of the adjacent angles are shown in Figure 15d. The standard deviation of the four sets of angles
in both cases are shown in Table 5. It can be seen from Figure 15 and Table 5 that the angles αk of the
four groups of marker points in the coaxial are basically unchanged, and the standard deviation of the
angles in the coaxial is obviously smaller than that in the off-axis. It indicates that the optical center
coincides with the rotation center of the turntable.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 
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Table 5. The standard deviation of the angles of the four sets of marker points.

Standard Deviation/Degree Red Circle Green Triangle Pink Diamond Blue Square

Alignment 0.013 0.011 0.011 0.011

Misalignment 0.043 0.066 0.043 0.057

4.3.2. Camera Coordinates Registration of the Same Spatial Points Before and After Camera Rotation

In the experiment, we compared the camera coordinates of the spatial points on the target before
and after camera rotation. Employing the imaging model, as shown in Figure 1b, the coordinates of
spatial point P are (Xcl, Ycl, Zcl) and (Xcr, Ycr, Zcr) in camera coordinate system Oc1-Xc1Yc1Zc1 and
Oc2-Xc2Yc2Zc2, respectively. If the plane Oc-XcZc is parallel to plane Ow-YwZw, when the optical center
coincides with the rotation center, the relationship between (Xcl, Ycl, Zcl) and (Xcr, Ycr, Zcr) is expressed
by Equation (13), 

Xcl
Ycl
Zcl

 = Rθ


Xcr

Ycr

Zcr

, (13)

where Rθ =


cosθ 0 − sinθ

0 1 0
sinθ 0 cosθ

, and θ is the rotation angle of the turntable.

Otherwise, if the optical center deviates from the rotation center, the relationship between
(Xcl, Ycl, Zcl) and (Xcr, Ycr, Zcr) should be expressed by Equation (14),

Xcl
Ycl
Zcl

 = Rθ


Xcr

Ycr

Zcr

+ T, (14)

where T is the translation vector between Oc1-Xc1Yc1Zc1 and Oc2-Xc2Yc2Zc2.
We shot the checkerboard images when the camera is rotated by the turntable with a different

rotation angle θi and extracted checkerboard corners as marked points. Employing their homogeneous
coordinates (Xwi, Ywi, Zwi, 1)T in the world coordinate system, image coordinates (ui, vi, 1)T, and the
internal parameter matrix A, the rotation matrix Ri and translation vector Ti between the world
coordinate system and the camera coordinate system at different position can be obtained from
Equation (1). Then the coordinates (Xci, Yci, Zci, 1)T of the marked points can be calculated by
Equation (15), 

Xci
Yci
Zci
1

 =
[

Ri Ti
0T 1

]
Xwi
Ywi
Zwi
1

. (15)

Assume that (Xcl, Ycl, Zcl) and (Xcr, Ycr, Zcr) stand for the original coordinates and the coordinates
after camera rotation of a spatial point, respectively. The coordinates (X’cl, Y’cl, Z’cl) stands for the
resulted coordinates calculated by Equation (13) from the coordinates (Xcr, Ycr, Zcr). We can compare
(X’cl, Y’cl, Z’cl) with the original coordinates (Xcl, Ycl, Zcl). If they are equal, it is proved that the optical
center coincides with the rotation center; otherwise, it is indicated that the optical center of the camera
deviates from the center of the turntable.

We first align the optical center with the rotation center by our proposed method. The camera
captures the target images when the turntable rotates 0◦, 6◦, 9◦ and 12◦, respectively, as shown in
Figure 16. The original position of the camera corresponds to 0◦. The coordinates (Xcl, Ycl, Zcl) and
(Xcri, Ycri, Zcri) (i = 1, 2, 3) of the marked points are calculated, respectively. Employing Equation (13),
(X’cli, Y’cli, Z’cli) can be calculated by multiplying the corresponding rotation matrix Rθi. Comparing
them with the coordinates (Xcl, Ycl, Zcl), we can see that the coordinates coincide accurately, as shown
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in Figure 17, where the original coordinates (Xcl, Ycl, Zcl) are marked as red “+” and the resulted
coordinates (X’cli, Y’cli, Z’cli) are marked as blue “o”; the circular zones are the enlarged parts. The
standard deviation in the Xc and Yc directions are shown in Table 6.
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Table 6. The standard deviation in the Xc and Yc directions.

Direction STD/mm
6◦

STD/mm
9◦

STD/mm
12◦

Alignment Xc 0.010 0.048 0.065
Yc 0.015 0.037 0.063

Misalignment Xc 7.221 10.910 14.641
Yc 0.314 0.358 0.424

We deviated the optical center from the rotation center and repeated the above steps. The captured
target images are shown in Figure 18. When Rθi acts on the coordinates (Xcri, Ycri, Zcri) (i = 1, 2, 3) of
the marked points, there is a significant deviation, as shown in Figure 19. The standard deviation in
the Xc and Yc directions are shown in Table 6.
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The experiments verify that our method can align the optical center with the rotation center. When
the optical center coincides with the rotation center, the extracted marked points coincide with each
other when Rθi acts on the coordinates after camera rotation, and the alignment errors in the Xc and Yc

directions are quite small. Otherwise, the deviation in the Xc, Yc direction is large.



Appl. Sci. 2020, 10, 6962 16 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 18 

coordinates (X’cli, Y’cli, Z’cli) are marked as blue “o”; the circular zones are the enlarged parts. The 
standard deviation in the Xc and Yc directions are shown in Table 6. 

 
(a) (b) (c) (d) 

Figure 16. The checkerboard images of (a) 0°; (b) 6°; (c)9°; (d) 12°. 

 
(a) (b) (c) 

Figure 17. The comparative diagrams of the marked points of (a) 6°; (b)9°; (c) 12°. 

We deviated the optical center from the rotation center and repeated the above steps. The 
captured target images are shown in Figure 18. When Ri acts on the coordinates (Xcri, Ycri, Zcri) (i 
=1,2,3) of the marked points, there is a significant deviation, as shown in Figure 19. The standard 
deviation in the Xc and Yc directions are shown in Table 6. 

 
(a) (b) (c) (d) 

Figure 18. The checkerboard images of (a) 0°; (b) 6°; (c) 9°; (d) 12°. 

 
(a) (b) (c) 

Figure 19. The comparative diagrams of the marked points of (a) 6°; (b) 9°; (c) 12°. 

  

Figure 19. The comparative diagrams of the marked points of (a) 6◦; (b) 9◦; (c) 12◦.

5. Conclusions

We propose a method based on camera calibration with a two-dimensional target to solve the
problem of the alignment of the camera’s optical center and the rotation center in a rotating optical
measurement system composed of a camera and a rotating platform. An auxiliary plane coordinate
system is introduced to adjust the external parameter matrix of the camera. The rectified external
parameter matrix is used to calculate the optical centers in the unified world coordinate system.
Multiple fitted circles can determine the rotation center more accurately than a single fitted circle, which
will provide a higher precision in the following application, such as a panoramic mosaic. Simulations
and experiments verified the effectiveness of the proposed method.

It should be noted that the optical center of the initial position of the camera should be kept at an
appropriate distance from the rotation center during calibration to increase the accuracy of the circle
fitting. By the way, although this paper only discusses the alignment of the optical center of the camera
with a one-dimensional rotating optical system, the proposed method can also be extended in principle
to the problem in the alignment of the optical center with the rotating axis of a two-dimensional
rotating optical system. However, the current experimental setup is only suitable for the alignment
problem of one-dimensional rotating optical systems. In the following work, we will find a device
suitable for two-dimensional (pitch and yaw) rotating platforms.
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