
applied  
sciences

Article

Exploration of Fall-Evaluation Scores Using Clinical
Tools with the Short-Form Berg Balance Scale and
Timed Up and Go and Motion Detection Sensors

Chia-Hsuan Lee 1, Chi-Han Wu 2, Bernard C. Jiang 1 and Tien-Lung Sun 2,*
1 Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106,

Taiwan; sweat0430@mail.ntust.edu.tw (C.-H.L.); bcjiang@mail.ntust.edu.tw (B.C.J.)
2 Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan 320, Taiwan;

s1038903@mail.yzu.edu.tw
* Correspondence: tsun@saturn.yzu.edu.tw; Tel.: +886-3-463-8800 (ext. 2525)

Received: 12 August 2020; Accepted: 1 October 2020; Published: 3 October 2020
����������
�������

Abstract: The results obtained by medical experts and inertial sensors via clinical tests to determine
fall risks are compared. A clinical test is used to perform the whole timed up and go (TUG) test and
segment-based TUG (sTUG) tests, considering various cutoff points. In this paper, (a) t-tests are used
to verify fall-risk categorization; and (b) a logistic regression with 100 stepwise iterations is used to
divide features into training (80%) and testing sets (20%). The features of (a) and (b) are compared,
measuring the similarity of each approach’s decisive features to those of the clinical-test results. In (a),
the most significant features are the Y and Z axes, regardless of the segmentation, whereas sTUG
outperforms TUG in (b). Comparing the results of (a) and (b) based on the overall TUG test, the Z
axis multiscale entropy (MSE) features show significance regardless of the approach: expert opinion
or logistic prediction. Among various clinical test combinations, the only commonalities between (a)
and (b) are the Y-axis MSE features when walking. Thus, machine learning should be based on both
expert domain knowledge and a preliminary analysis with objective screening. Finally, the clinical
test results are compared with the inertial sensor results, prompting the proposal for multi-oriented
data analysis to objectively verify the sensor results.
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1. Introduction

Falling is a common problem among older people living in the community and can have serious
consequences for their lives and the society [1]. As reported by the World Health Organization (WHO),
the population of elderly people (aged 60 or over) will increase from 900 million in 2015 to about 20
billion by 2050, accounting for 22% of the world’s 2050 population [2]. Fall prediction is a multifaceted
problem involving complex interactions among physiological, behavioral, and environmental factors [3].
Clinical fall-risk assessments typically include questionnaires and functional assessment of the posture,
gait, cognition, and other risk factors with respect to falling [3]. These clinical assessments provide an
overview of the fall-risk snapshots but are usually subjective, and those who use threshold assessment
scores for performing the classification are considered to be decreasing rather than increasing [4].
Therefore, previous relevant studies have used the timed up and go (TUG) time score as a clinical
evaluation item to overcome the subjective interpretation of falls [5]. The objective of clinical screenings
is to find the outliers. The most common method used for clinically determining the thresholds is
the clustering criteria. The TUG test performs a simple, rapid, and applicable clinical assessment of
the balance and mobility of older people. However, the environmental assessment tools use clinical
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assessment scales or test data for analyzing the fall risk. The TUG assessment has been used to
assess the fall risk in previous cohort studies of different versions and approaches using wearable
sensors [5–11], predominantly by testing in controlled laboratory environments [9] or focusing on
inpatients [11] and healthy subjects [5,11–13]. In addition, although a few studies have focused on
community-dwelling older people, there is no consensus about the scores for this group, most of which
can be attributed to subjects belonging to different groups. For example, Shumway-Cook et al. [14]
discriminated a community within 13.5 s. Steffen et al. [15] used 15 s to determine whether there is
an optimal cutoff point for the risk of falling and whether the older people living in a family have a
risk of falling. Subjects of different groups have different cutoff points. However, in the older-people
community, there is no way to clearly divide this point. In case of the same problem, most research
intends to select specific subjects for discussion; however, it is considerably difficult to select subjects
applicable to the health of the real environment or the subhealth.

Under first-line clinical diagnosis, clinical-test evaluation allows a comprehensive quantitative
comparison of the performances of different tasks; however, most fall-risk assessments require the
supervision of a medical professional [16]. Therefore, these tests are usually not applicable to large
groups, such as community-dwelling older people, under first-line clinical diagnosis because of
medical manpower constraints. Screenings for older people surviving a fall must avoid cumbersome
processes, minimize the time required for case screening, and reduce dropout. In community service,
the risk of falling and the use of artificial intelligence machine learning techniques must be discussed
as part of the Internet of Things (IoT) to support medical services and improve the medical quality.
“Connected health” brings the concept of intelligent health, which is an application based on the IoT.
The effectiveness of sensor-based care models in clinical outcomes and cost savings was mentioned in
a literature review on connected medicine; however, an understanding of how to use the value of the
data can be derived from the patients by monitoring them at home and in the community, so obtaining
information and then combining it with other biopsychosocial data to obtain information about
whether patients need intervention, knowing that corresponding care information is less discussed [17].
We believe that the use of data to optimize the development and verification of, and practical integration
into, medical services, will be discussed as a benchmark study for the introduction of connected health.

Furthermore, the data collected by a sensor for determining the risk of falls has shown academic
research value. Previous studies have shown that high specificity and sensitivity are the main objectives
of a reliable fall prediction system [18] because the final decision will affect the classification and
influence of the intermediate voters in case of several patients and crossovers. In some previous
studies [16,19], inertial sensors were introduced in the community for ensuring community care services,
and the TUG features were calculated using a stopwatch and by performing entropy measurements
using sensors [9]. These methods are frequently utilized to evaluate physiological data, such as
blood pressure, heart rate, and postural stability. Entropy analysis is used for gait evaluation across a
spectrum of pathologies [20–23]. Sample entropy measures the probability that two sequences will
remain similar at the next point of a time series. More random signals that are produced by healthy
limbs are associated with higher sample entropy values [24]. Healthy human physical conditions are
more complex when compared with the pathological movement. This entropy measurement indicates
that the low entropy values represent a less random signal produced by an injured limb. A more
random signal produced by a healthy condition is associated with a high entropy value. Unlike
statistical measures or asymmetry indices, entropy values can provide insight with respect to the
presence of what is considered to be desirable variability [24]. The entropy measures for time series,
such as sample entropy (SampEn) and approximated entropy (ApEn) [25], can be used to measure the
unpredictability (opposite of regularity) of a time series. More recently, Costa et al. [26,27] proposed
multiscale entropy (MSE), a new entropy-based measure for time series that seems to better quantify
complexity. These sensors can objectively understand the risk of falling; however, it is difficult to
perform subsequent analysis in field experiments because of the large amount of data obtained from
different axes of the sensor and because of the implementation of multiple evaluations.
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Moreover, the sensor does not have a cutoff point for classification; furthermore, there is no
comparable experiment group, and it is impossible to extract the association of the fall-risk factors
one-by-one. Therefore, when classifying high-dimensional data obtained from devices such as sensors,
it is unclear whether the dataset is clearly separable (i.e., whether the interval between similar types is
small or the interval between the different types is large).

If the dataset is not large (e.g., only a few hundred or thousand data items or only dozens or
hundreds of fields per pen), training complex artificial intelligence algorithms may be insufficient.
In contrast, small parts of large datasets can be sampled before the operation, and the data can be rapidly
understood visually, albeit with limited accuracy, using a simple algorithm with low computational
complexity. Recently, Wu et al. [28] used multiscale entropy to analyze the triaxial acceleration signals
of the overall TUG and found that segment-based TUG (sTUG) was more irregular and complex for the
non-fall-risk subjects compared with the fall risk one’s subjects. These results indicate that, compared
with the overall TUG, sTUG can reveal more information about postural (transition/gait) stability
and provide more predictors of fall risk for assessment among community-dwelling elderly people.
Therefore, we attempted to further explore the correlation between the internal sensor and the clinical
test as further feedback. We must ensure the correlation of the data with clinical variables. We also
need to learn more about how we used the MSE analysis sensor features for the best clinical capture
and inform the patients about the environment in which the target data are obtained. By transforming
data into information, we hope to use these data as physiological data for primary medical institutions
for preliminary screening and prediction.

For those who actually perform the data analysis tasks, many ambiguous areas remain, such as
the crossover among older people between fallers and non-fallers, as well as the different classification
cut points. Therefore, a perception of the feasibility, acceptability, and availability of new tools and
techniques in clinical practice [29,30] via data visualization is essential. This perception is far more
critical than the usage of community services in obtaining an initial judgment of subhealth. Assessing
the physical balance of older people in the community helps to identify a follow-up of those individuals
who are likely to fall [31–33]. However, clinical trials of the scale filters are too sensitive, making
older people likely to underestimate the risk of falling [15,34–38]. In addition, fall-risk assessment
should be verified across various aspects [20,39–41] to ensure that the patient can reach a thoroughly
informed decision. Such an assessment’s main purposes include understanding the principles of
data, discovering potential data structures, and extracting important variables. This approach also
involves the detection of outliers, verification of hypotheses, development of data reduction models,
and determination of optimization factor settings [40]. Therefore, in this study we hope to use the
cutoff points of clinical tasks as benchmark results to explore how to incorporate sensors in the auxiliary
tasks of TUG and short-form Berg balance scale (SFBBS) clinical tasks to reflect the results of patients
in the past and to assess the value of the sensor data. This aim integrates connected health thinking
into the environment, allowing individuals to shift from a “Reaction” mode to “Preaction” mode.

2. Materials and Methods

2.1. Protocol

The experimental design of this research is cross-sectional. The research data were sourced from
a cross-disciplinary professional team in a regional hospital in central Taiwan, including geriatric
physicians, rehabilitation physicians, physical therapists, occupational therapists, and social workers.
From April 2014 to May 2015, a community fall risk assessment for the elderly in the neighborhood
of the Feng Yuan hospital (including 7 administrative regions) was conducted, randomly including
clinical tests such as TUG and the SFBBS. On average, older people spent 20 min to complete the suite
of fall assessment tests. Simultaneously, data were collected using TUG tests with sensors. The X,
Y, and Z axes were aligned with vertical (V; Up, +; Down, −), mediolateral (ML; Right, +; Left, −),
and anterior–posterior (AP; Forward, +; Backward, −) directions; accordingly, a segment-based TUG
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(sTUG) test was designed, which can be obtained according to the domain knowledge, including the
“sit-to-stand (STS)”, “sit-to-walk”, “turn”, and “stand-to-sit (STS2)” segments. This study was approved
by the Institutional Review Board of Tsaotun Psychiatric Center, Ministry of Health and Welfare.

2.2. Subjects

We present a field experiment conducted by a professional team from a hospital in central
Taiwan that recruited older people in communities to assess their risk of falling. Seventy-four
community-dwelling older people persons living in different communities in Taiwan were recruited
as the convenience sample (17 males, age: 75.23 ± 11.50; 57 females, age: 73.12 ± 8.56). As reviewed
by the professional team, the enrolment criteria for the subjects excluded those with musculoskeletal
system injuries, any history of central nervous system injuries, and/or walking dependently with or
without the use of any aid within the previous three months. After the researchers explained the
details, each subject agreed to participate and signed consent forms prior to entering the laboratory.

2.3. Inertial Sensor

The inertial sensor used to collect data during the TUG test included a triaxial accelerometer
sensor board (Freescale RD3152MMA7260Q) with a sampling rate of 45 readings/s, an internal battery,
and an SD storage card placed inside a plastic box. The sensor was small and lightweight and could
be worn by the test subjects without causing any discomfort. The location of the strapped sensor
approximated the center of mass location with respect to the belt; it was placed between the 3rd and 5th
lumbar vertebrae (L3–L5) [22], as shown in Figure 1. The sensor weighed approximately 26.5 g, and the
length, width, and height were 232, 7, and 21 mm, respectively, placing no substantial burden on the
subject. The accelerometer collected data from the X (vertical, V; up: +, down: −), Y (mediolateral,
ML; right: +, left: −), and Z (anterior-posterior, AP; forward: +, backward: −) axes. We used MSE to
calculate the complexity of the three axes as features. While calculating the sample entropy for each
coarse-grained series, the MSE calculation process involved the following sub-processes [27]: (1) coarse
granulation, (2) sample entropy, and (3) the complexity index. The “coarse-graining” process is based
on the scale factor of the segment windows, in which the average of the data values for each segment
window is calculated, forming a new time series. Each element y j

(τ) of the new coarse-grained time
series is calculated according to

yi
(x) =

1
τ

jx∑
i−( j−1)x+1

fi, 1 ≤ j ≤
N
τ

(1)

where τ is the scale factor, N is the size of the original dataset, and xi is a data point in the original time
series. For a scale factor of 1, the coarse-grained time series is simply the original time series; a scale
factor of 2 involves the averaging of a pair of consecutive points from the original time series, which
becomes the time series from which to create a scale factor of 3, and so on. When calculating the first
and remaining time series, the duration between them is determined and the maximum value is taken,
as shown in Figure 2.
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Figure 2. Schematic of Phase 2 (sample entropy) of the multiscale entropy (MSE) analysis.

The sample entropy (SampEn) was calculated for each coarse-grained time series in order to
obtain entropy measurement values at each scale [42]. SampEn at each time scale τ was expressed as
the negative of the natural logarithm of the conditional probability Cm(r), where the two sequences
are compared within a similarity tolerance r for consecutive points m and m + 1. The formula for
SampEn is

SampEn(N, m, r) = − ln
Cm+1 (r)

Cm(r)
(2)

where N is the total number of data points, m is the number of consecutive data points, and r is
the tolerance for accepting the match, which was chosen to be between 10% and 20% of the sample
standard deviation σ of the time series. In this study, the parameters were set as follows: m = 2 and
r = 0.15σ.

The complexity index is a function of sample entropy, which in turn is a function of the specification
factor and is calculated using Equation (3). The sum of the sample entropy (SampEn) at each scale is
the complexity index (CI), as shown in Figure 3.

Complexity Index =
N∑

i = 1

Sample Entropy(i) (3)



Appl. Sci. 2020, 10, 6931 6 of 15

                                                                 
 6 of 16 

Complexity Index = �𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝑆𝑆𝑦𝑦(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (3) 

 
Figure 3. Complexity index (CI). 

2.4. Clinical Tests 

Many factors contribute to the falls of older people. To enhance the participation of the older 
people and understand the influencing factors from different perspectives, this study used the SFBBS 
and TUG assessment scales that compare the results of the sensor. The details of each clinical scale 
are provided below. SFBBS, used to assess balance, is a performance-based measure of balance during 
specific movement tasks. It assesses the static and dynamic balance and fall risks in adults and the 
geriatric population. Karthikeyan et al. [43] suggested that a community-dwelling elderly cutoff point 
score of 23 or less is a deficit in balance (out of 28 points) for a better predictive value. The TUG test, 
used to evaluate gait ability, is a well-known clinical test for mobility and fall risk [44]. It assesses 
mobility, balance, walking ability, and fall risk in older adults. Shumway-Cook [14] suggested a 
cutoff point of 13.5 s for community-dwelling elderly (over 65 years old), but Alexandre et al. [45] 
suggested a cutoff point of 12.47 s to achieve a better predictive value. In this study, we will discuss 
each cutoff point. In addition, we refer to the past literature [9,28] to segment the TUG test (sTUG), 
as shown in Figure 4, dividing it into sit-to-stand (STS), walk, turn, and stand-to-sit (STS2). We also 
used MSE to calculate the complexity of the sTUG for each axis as a feature. Herein, we attempt to 
ensure that the knowledge discovered from the cutoff point-determined compassion via sensors can 
be communicated to domain experts, the provision of an explanation when deploying, and using this 
knowledge with new technology to explore the manner in which the sensor measurements are 
meaningful. 

 
Figure 4. Timed up and go (TUG) test segment diagram. 

Figure 3. Complexity index (CI).

2.4. Clinical Tests

Many factors contribute to the falls of older people. To enhance the participation of the older
people and understand the influencing factors from different perspectives, this study used the SFBBS
and TUG assessment scales that compare the results of the sensor. The details of each clinical scale are
provided below. SFBBS, used to assess balance, is a performance-based measure of balance during
specific movement tasks. It assesses the static and dynamic balance and fall risks in adults and the
geriatric population. Karthikeyan et al. [43] suggested that a community-dwelling elderly cutoff point
score of 23 or less is a deficit in balance (out of 28 points) for a better predictive value. The TUG test,
used to evaluate gait ability, is a well-known clinical test for mobility and fall risk [44]. It assesses
mobility, balance, walking ability, and fall risk in older adults. Shumway-Cook [14] suggested a cutoff

point of 13.5 s for community-dwelling elderly (over 65 years old), but Alexandre et al. [45] suggested
a cutoff point of 12.47 s to achieve a better predictive value. In this study, we will discuss each cutoff

point. In addition, we refer to the past literature [9,28] to segment the TUG test (sTUG), as shown in
Figure 4, dividing it into sit-to-stand (STS), walk, turn, and stand-to-sit (STS2). We also used MSE to
calculate the complexity of the sTUG for each axis as a feature. Herein, we attempt to ensure that the
knowledge discovered from the cutoff point-determined compassion via sensors can be communicated
to domain experts, the provision of an explanation when deploying, and using this knowledge with
new technology to explore the manner in which the sensor measurements are meaningful.

                                                                 
 6 of 16 

Complexity Index = �𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝑆𝑆𝑦𝑦(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (3) 

 
Figure 3. Complexity index (CI). 

2.4. Clinical Tests 

Many factors contribute to the falls of older people. To enhance the participation of the older 
people and understand the influencing factors from different perspectives, this study used the SFBBS 
and TUG assessment scales that compare the results of the sensor. The details of each clinical scale 
are provided below. SFBBS, used to assess balance, is a performance-based measure of balance during 
specific movement tasks. It assesses the static and dynamic balance and fall risks in adults and the 
geriatric population. Karthikeyan et al. [43] suggested that a community-dwelling elderly cutoff point 
score of 23 or less is a deficit in balance (out of 28 points) for a better predictive value. The TUG test, 
used to evaluate gait ability, is a well-known clinical test for mobility and fall risk [44]. It assesses 
mobility, balance, walking ability, and fall risk in older adults. Shumway-Cook [14] suggested a 
cutoff point of 13.5 s for community-dwelling elderly (over 65 years old), but Alexandre et al. [45] 
suggested a cutoff point of 12.47 s to achieve a better predictive value. In this study, we will discuss 
each cutoff point. In addition, we refer to the past literature [9,28] to segment the TUG test (sTUG), 
as shown in Figure 4, dividing it into sit-to-stand (STS), walk, turn, and stand-to-sit (STS2). We also 
used MSE to calculate the complexity of the sTUG for each axis as a feature. Herein, we attempt to 
ensure that the knowledge discovered from the cutoff point-determined compassion via sensors can 
be communicated to domain experts, the provision of an explanation when deploying, and using this 
knowledge with new technology to explore the manner in which the sensor measurements are 
meaningful. 

 
Figure 4. Timed up and go (TUG) test segment diagram. Figure 4. Timed up and go (TUG) test segment diagram.

2.5. Data Analysis

We use different entry points for optimized clinical-test classification and substituted the multiscale
entropy (MSE) analysis results of the axes and segmentation. We also resampled the row data [46]
because the data length had to be considered when performing an MSE analysis. Typically, the time
series of the length used herein with 1800 data points could be coarse-grained up to Scale 6, in which
case the shortest coarse-grained time series would contain 300 data points [47], providing up to 1800
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data points for each segment-based TUG for MSE calculation. To compare the results of the expert
returns, we used the fall-risk assessment, including the MSE analysis, logistic regression, receiver
operating characteristic (ROC), area under the ROC curve (AUC), and clinical tests. The data analysis
will be divided into two parts: the first part is based on the fall-risk judgment of experienced clinicians,
including TUG = 13.5, TUG = 12.47, and SFBBS = 23, as the basis for the fall risk of the cut-point
group; and a t-test to determine the significant differences between the features. The other part uses
the logistic regression path to gradually find the eigenvalues. The data are divided into two groups:
an 80% training set (training set) and 20% test set (testing set). The training set data are included in the
estimated parameters, and the model establishing the test set data is used to test the model built on
the training set. The results of the verification can be used as an indicator of the best model selection.
By comparing these two types of data analysis results, we can better understand the similarities and
differences between the feature values determined using the internal sensor and the medical experts.
Table 1 shows the features of the inertial sensor and TUG for analyzing fall events in this study.

Table 1. Features used by the TUG segmentation and sub-axis with the sensors, whose descriptions
are abbreviated.

TUG

Code T1 T2 T3

Name CI_X CI_Y CI_Z

Segment-based TUG (sTUG)

Code F1 F2 F3 F4 F5 F6

Name CI_X_STS CI_X_Turn CI_X_STS2 CI_X_walk CI_Y_STS CI_Y_Turn

Code F7 F8 F9 F10 F11 F12

Name CI_Y_STS2 CI_Y_walk CI_Z_STS CI_Z_Turn CI_Z_STS2 CI_Z_walk

3. Results

Our discussion and analysis will use internal sensor axes and a segment TUG as the features
of data analysis and can be divided into three main parts. We used a clinical test in all TUG and
sTUG tests and considered various cutoff points. First, we used t-test analysis to verify the fall-risk
categorization. We also used a logistic regression analysis stepwise 100 times to divide the features
into two groups: an 80% training set (training set) and 20% test set (testing set). (c) We compared the
features between (a) and (b) to understand whether the decisive features are actually similar to the
results of the clinical tests.

3.1. Clinical Test of Cut Point Based on Experienced Clinician’s Fall-Risk Evaluation

We display multiple data to discuss the results of the inertial sensor because previous publications
have performed discussion and verification on the clinical-test score (according to fallers and non-fallers).
Karthikeyan et al. [43] suggested the occurrence of impaired balance when the BBS score is 23 or below;
therefore, this value was considered to be our cutoff point. Shumway-Cook et al. [14] recommended that
the community-dwelling older adults should be considered at high risk at TUG times of greater than
13.5 s. Alexandre et al. [45] suggested that a cutoff point of 12.47 s resulted in a good predictive value.
Thus, we attempted to divide each clinical test into two groups by comparing the accelerometer features
with a t-test. A p-value smaller than 0.05 implies a statistically significant difference, indicating fallers
distinguished by features are quite similar to the clinical-test result. We use this as the opinion of expert
judgment. Table 2 shows the results for the cutoff point of the TUG and SFBBS intersection or convergence.
At first glance, with or without segmentation, the most significant features are the Y and Z axes.

Moreover, we created ROC to explore the ability of the clinical measures and CI values to predict
a favorable fall-risk outcome. All the results shown in Figure 5 exhibit an AUC of between 0.7 and 0.9,
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indicating an acceptable or excellent discrimination. The results of the sTUG AUC are all greater than
0.85, but the TUG is just greater than 0.79. However, it can be seen from Table 2 that the features of
the sTUG show at least six features at different cutoff points simultaneously, but the overall TUG is 2,
which can be seen in addition to the subdivision to cut off the AUC area.

Table 2. The results for the cutoff point of the TUG and SFBBS intersection or convergence.

Cutoff
Point TUG = 12.47 TUG = 13.5 SFBBS = 23 SFBBS = 23 or

TUG = 12.47
SFBBS = 23 or

TUG = 13.5
SFBBS = 23 and
TUG = 13.5/12.47

TUG

code p-value code p-value code p-value code p-value code p-value code p-value

T1 0.015 T1 0.130 T1 0.027 T1 0.015 T1 0.045 T1 0.085

T2 0.000 T2 0.191 T2 0.000 T2 0.000 T2 0.000 T2 0.000

T3 0.000 T3 0.023 T3 0.000 T3 0.000 T3 0.000 T3 0.000

sTUG

F1 0.233 F1 0.513 F1 0.213 F1 0.252 F1 0.305 F1 0.390

F2 0.292 F2 0.038 F2 0.022 F2 0.268 F2 0.039 F2 0.020

F3 0.08 F3 0.203 F3 0.059 F3 0.026 F3 0.044 F3 0.283

F4 0.489 F4 0.000 F4 0.192 F4 0.316 F4 0.199 F4 0.182

F5 0.078 F5 0.018 F5 0.007 F5 0.039 F5 0.016 F5 0.002

F6 0.009 F6 0.066 F6 0.639 F6 0.146 F6 0.309 F6 0.204

F7 0.003 F7 0.000 F7 0.001 F7 0.002 F7 0.006 F7 0.001

F8 0.000 F8 0.000 F8 0.000 F8 0.000 F8 0.000 F8 0.000

F9 0.000 F9 0.000 F9 0.001 F9 0.000 F9 0.000 F9 0.000

F10 0.007 F10 0.025 F10 0.025 F10 0.017 F10 0.035 F10 0.007

F11 0.000 F11 0.000 F11 0.001 F11 0.000 F11 0.000 F11 0.000

F12 0.000 F12 0.000 F12 0.018 F12 0.000 F12 0.001 F12 0.016
| Bold-face values: p-value < 0.05.                                                                 
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Figure 5. ROC for classification by logistic regression with clinical test and TUG segmentation.
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3.2. Clinical Test of Stepwise Logistic Regression as Fall-Risk Evaluation (Prediction Results)

Because the clinical test uses the cutoff point as a dichotomous categorical variable, as the expert
opinion, we use the logistic-regression analysis of the machine learning scheme as the automatic
selection method to explore the prediction results. Among them, we used the clinical test (including
intersection or convergence of TUG = 12.47, TUG = 13.5, and SFBBS = 23) and inertial sensor axes,
with or without a segmented TUG, as the features. Therefore, we used the stepwise regression method.
To avoid overfitting problems and minimize the bias, we used a 100-iteration, random-shuffle-split
cross-validation (100-RSSCV). To perform this, a single random-shuffle-split was configured to select a
random subset of 80% of the data for training the model with the remaining 20% of the data being used
as a random subset for model testing when the observing feature frequency and feature importance of
fall risk. Hence, the number of times each feature was selected can be easily calculated. Table 3 shows
the results. We first selected a feature with a frequency of more than 50 times as important features.
The results show that in case of overall TUG, T2 and T3 are more than 50 times, even 100 times, and that
in case of sTUG, F4 and F8 are the features with a frequency of more than 50 times. We also created
ROC to explore the ability of the clinical measures and CI values to predict a favorable fall-risk outcome.
All the results shown in Figure 6 exhibit an AUC of between 0.7 and 0.96, indicating acceptable or
excellent discrimination. Thus, the results of the sTUG AUC are all greater than 0.85, whereas the
results of the TUG are just greater than 0.78.

Table 3. The results for the stepwise regression of the 100-iteration, random-shuffle-split
cross-validation frequency.

Cutoff
Point TUG = 12.47 TUG = 13.5 SFBBS = 23 SFBBS = 23 or

TUG = 12.47
SFBBS = 23 or

TUG = 13.5
SFBBS = 23 and
TUG = 13.5/12.47

TUG

code Frequent code Frequent code Frequent code Frequent code Frequent code Frequent

T1 14 T1 35 T1 10 T1 1 T1 4 T1 7

T2 100 T2 100 T2 68 T2 100 T2 97 T2 62

T3 100 T3 100 T3 91 T3 100 T3 100 T3 100

sTUG

F1 9 F1 19 F1 7 F1 2 F1 6 F1 10

F2 5 F2 19 F2 79 F2 1 F2 48 F2 88

F3 5 F3 7 F3 26 F3 6 F3 15 F3 9

F4 76 F4 86 F4 93 F4 84 F4 93 F4 95

F5 4 F5 11 F5 19 F5 8 F5 17 F5 9

F6 46 F6 30 F6 1 F6 2 F6 3 F6 21

F7 4 F7 9 F7 66 F7 12 F7 3 F7 38

F8 100 F8 99 F8 74 F8 100 F8 100 F8 61

F9 31 F9 96 F9 45 F9 55 F9 74 F9 73

F10 10 F10 9 F10 15 F10 18 F10 7 F10 20

F11 52 F11 97 F11 8 F11 60 F11 55 F11 60

F12 75 F12 0 F12 23 F12 46 F12 26 F12 24

Bold-face values: We used a 100-iteration, random-shuffle-split cross-validation (100-RSSCV). The feature is selected
with a frequency of more than 50 times.
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Figure 6. ROC for classification by logistic regression for the clinical test and TUG segmentation.

3.3. Comparing (a) and (b)

Comparing the results of (a) and (b), first, from the overall TUG of Tables 2 and 3, T3 is a feature
that has significant differences regardless of expert opinion or logistic prediction, but the differences
between different clinical test combinations can still be seen. For example, the features of TUG = 12.47
are T1, T2, and T3, but the feature of TUG = 13.5 is only T3. The use of clinical test in the stepwise
logistic regression for fall-risk evaluation (prediction results) under different clinical test combinations
is noteworthy. T2 and T3 are significantly different. This indicates that the features selected for fall risk
are all T2 and T3.

From the perspective of sTUG (Tables 2 and 3), the expert use of the cutoff point to judge the risk
of falling (clinical tests) is noted. Using different clinical test combinations, F7, F8, F9, F10, F11, and F12
exhibit significant differences. The clinical test’s stepwise logistic regression for fall-risk evaluation
(prediction results) results in F4 and F8 under different clinical test combinations. The only duplicate
between the two is F8. At first glance, expert opinion requires at least six features (F7, F8, F9, F10, F11,
and F12) to be screened for falling risk. However, from the prediction results, a maximum of five can
be screened, and most of the combinations only require four features. The results of the sTUG AUC are
all more than 0.85.

4. Discussion

The current literature has identified a wide range of accelerometer-based features, but with no
consensus regarding the optimal variables to be examined based on the obtained data. The chosen
features or the extraction manner often differ among studies. In this study, we aimed to extract
a comparison of features that had previously been associated with a fall-risk cutoff point, with an
emphasis on the selection of clinically relevant features; the inertial sensor diagnosis can be considered
equivalent to expert diagnosis. In our study, we attempted to refer to the fall risk judged by the cutoff

point from the past literature as the result of expert opinion judgment (Table 2). In the overall TUG
result, we found that, regardless of the cutoff point, T3 is important and has significant differences.
T3 represents the Z (AP) axis of the inner sensor. O’Neill et al. (1994) [48] reported that most falls
involve falling forward. Accordingly, the AP direction (Z axis) can classify clusters. As mentioned by
Weiss et al. [37], compared with the traditional method of using a stopwatch to distinguish fallers from
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non-fallers, we obtained the same result, meaning to get the subject to go forward and do the task is
the first inertial step. It is worth noting that T2 is also a very important feature, which is equivalent
to an expert clinically observing the part where the subjects will naturally swing their hands when
walking [49]. The T1 X axis (up: +, down: −) values are not easy to use as observation values because
people will naturally maintain their own balance, which is the balance maintained by proprioception.

Moreover, the results of the clinical test of the cutoff point for fall-risk evaluation (expert opinion)
in Table 2 show the features that are significant with each cutoff point as follows: F7, F8, F9, F10, F11,
and F12. It is worth noting that compared with the overall TUG, there are significant differences in the
axial view between the Y and Z axes. Nevertheless, adding segments will increase the AUC area as
a whole; for example, considering the situation of SFBBS = 23 or TUG = 13.5, we can determine the
AUC area from 0.7974 to 0.9061. F8 and F12 indicate the Y and Z axes for walking; we assume that
this interpretation is similar to the above for both TUG and sTUG. The four segments, F9, F10, F11,
and F12, also focus on the Z axis (anterior–posterior, AP; forward: +, backward: −). In our opinion,
based on most of the AUC area results in Table 2, we can see that the cutoff AUC is between 0.7 and
0.9, indicating acceptable or excellent discrimination. The use of sensors as objective instruments to
assist frontline personnel does not necessarily require professionals to make observations [50] or even
segmentation plus axial exploration. The combined results of the clinical test can further increase the
AUC area. In addition, multifactor fall prevention measures for the elderly have been recommended
as one of the most effective methods [51], and multifactor analysis has been used to assess the fall risk
among the elderly. In the past, scholars have successively developed and verified fall-risk assessment
tools for the elderly in communities, but most of the assessment tools are designed for screening and
cannot include the risk factors required for a complete fall-risk assessment [52,53]. We discussed the
different clinical tests and cutoff points of the intersection and set points and found that the overall
TUG was T3 (CI_Z) in each clinical test; that is, the Z-axis result can be directly used as the clinical-test
classification using MSE, similar to the preliminary result of the use of SFBBS and TUG multifactors
as the initial screening factors for fall-risk assessment [52,53]. We consider that in addition to more
accurate results, multifactors (oriented) can also be considered. Moreover, from the perspective of
action segmentation, STS and turning only have significant differences in the Z axis, and walk and
STS2 have differences in the Y and Z axes, respectively. This result seems to be the axial direction.
In particular, no matter which segmentation action, the Z axis shows a significant difference, but if the
accuracy is improved, segmentation needs to be added. It is difficult to integrate multiple information
sources to enhance clinical decision-making and provide complete patient records, which is a major
finding in this study, particularly in the decision of segmentation action [9,28].

From the results of sTUG, we noted an interesting observation. The AUC results are not different.
The results of the clinical test stepwise logistic regression for fall-risk evaluation (prediction results)
features are F4, F8; these are the X and Y axes of walking. Compared with the clinical test’s cutoff point
for fall-risk evaluation (expert opinion), the features are F7, F8, F9, F10, F11, and F12, focusing on the Y
and Z axes. In addition to the observation method of the experts, the prediction results can assist to
confirm the X-axis status and key actions. It is worth mentioning that the combination of prediction
results and clinical test can reach the AUC level of expert opinion using only a maximum of five feature
values. As auxiliary first-line medical staff, sensors can be used to replace manpower [54,55], even in the
subsequent data analysis, and predicting the risk of falling can also be discussed using the multifactors
of this study. It is difficult to integrate multiple information sources to enhance clinical decision-making
and provide complete patient records. In our study, we compared the ways of making preliminary
community screening recommendations to the hospital and constructing predictive regression models.
The clustering results can reveal hidden information contained in personal health record systems to
the experts and patients in a cluster. Such a sensor can effectively enable user matching, providing a
new pipeline for users to collect information and allowing them to pay more attention to their own
healthcare and medical plans.
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Classification and regression are two of the most representative examples of problem description
for both machine learning algorithms and statistical analysis. We used the same concept to analyze
the classification. Note that the same idea can be expressed differently by statistical (clinical test) and
machine learning (logistic regression) techniques. In addition, past studies have indicated that the
cutoff points determined by different subjects are different [14,43]. Therefore, several studies [15,52,53]
used multiple evaluations to resolve the conflict. Even in clinical settings, there is no shortage of
fall assessment tools; however, because there are several causes for falls, multiple factors must be
evaluated to improve the accuracy of fall-risk prediction [13,37]. In this study, we incorporated sensors
while using logistic regression as an analytical method for prediction of multiple assessment tools,
also simulating experts to verify the availability of sensors. Data collection among the elderly can be
very difficult [5,56], so it is not easy to strike a balance with gender restrictions. Therefore, this study
discussed the judgment of falls; any discussion of gender differences was necessarily rather limited.

5. Conclusions

This study used logistic-regression analysis to show the inertial data on a fall-risk scale with
various perspectives to allow medical practitioners to screen for high-risk patients and to serve as a
decision-making reference for predicting future falls, particularly during the early stages of a disease.
Doctors with rigorous medical training can integrate clinical experience and scientific computing aids
to make judgments and decisions. Comparing the results of the two (expert opinion vs. predication),
it was found that the AUC results are not much different, but the features are not the same. In the overall
TUG, by considering a higher AUC (prediction results), we found that the sensors of the Y and Z axes
can classify fallers and non-fallers in each clinical-test combination. However, after the segmentation,
a logistic regression was used to determine the AUC of the optimization result; the general combination
only needs four features to achieve a considerable result. Therefore, this study proposes that machine
learning should be based on expert domain knowledge in addition to preliminary analysis with
objective screening. Hence, we used a clinical test to compare to the inertial sensor. Simultaneously,
it proposes multi-oriented data analysis to objectively verify the results of the sensor.
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