
applied
sciences

Article

Variable Compliance Control for Robotic Peg-in-Hole
Assembly: A Deep-Reinforcement-Learning Approach

Cristian C. Beltran-Hernandez 1,* , Damien Petit 1 , Ixchel G. Ramirez-Alpizar 2

and Kensuke Harada 1,2

1 Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan;
damien.gerard.petit@gmail.com (D.P.); harada@sys.es.osaka-u.ac.jp (K.H.)

2 Automation Research Team, Industrial CPS Research Center, National Institute of Advanced Industrial
Science and Technology (AIST), Tokyo 135-0064, Japan; ixchel-ramirezalpizar@aist.go.jp

* Correspondence: beltran@hlab.sys.es.osaka-u.ac.jp

Received: 24 August 2020; Accepted: 23 September 2020; Published: 2 October 2020
����������
�������

Featured Application: assembly tasks with industrial robot manipulators.

Abstract: Industrial robot manipulators are playing a significant role in modern manufacturing
industries. Though peg-in-hole assembly is a common industrial task that has been extensively
researched, safely solving complex, high-precision assembly in an unstructured environment
remains an open problem. Reinforcement-learning (RL) methods have proven to be successful
in autonomously solving manipulation tasks. However, RL is still not widely adopted in real
robotic systems because working with real hardware entails additional challenges, especially when
using position-controlled manipulators. The main contribution of this work is a learning-based
method to solve peg-in-hole tasks with hole-position uncertainty. We propose the use of an
off-policy, model-free reinforcement-learning method, and we bootstraped the training speed by
using several transfer-learning techniques (sim2real) and domain randomization. Our proposed
learning framework for position-controlled robots was extensively evaluated in contact-rich insertion
tasks in a variety of environments.

Keywords: reinforcement learning; compliance control; robotic assembly; sim2real; domain randomization

1. Introduction

Autonomous robotic assembly is an essential component of industrial applications.
Industrial robot manipulators are playing a significant role in modern manufacturing industries
with the goal of improving production efficiency and reducing costs. Though peg-in-hole assembly is
a common industrial task that has been extensively researched, safely solving complex, high-precision
assembly in an unstructured environment remains an open problem [1].

Most common industrial robots are joint-position-controlled. For this type of robot, compliance
control is necessary to safely attempt contact-rich tasks, or the robot is prone to causing large unsafe
assembly forces even with tiny position errors. Compliant robot assembly tasks have been studied in
two ways, passive and active methods. In passive methods, a mechanical device called remote center
compliance (RCC) [2] is placed between the robot’s wrist and gripper. The passive compliance provided
by the RCC lets the gripper move perpendicularly to the peg’s axis and rotate freely so as to reduce
resistance. However, the passive method does not work well with high-precision assembly [3]. On the
other hand, active compliant methods correct assembly errors through sensor feedback. In general,
these methods use force sensors to detect the external forces and moments, and design control strategies
on the basis of dynamic models of the task to minimize contact force [4]. Some active methods mimic

Appl. Sci. 2020, 10, 6923; doi:10.3390/app10196923 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1134-009X
https://orcid.org/0000-0002-3675-5371
https://orcid.org/0000-0002-7805-7539
https://orcid.org/0000-0002-7576-756X
http://dx.doi.org/10.3390/app10196923
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6923?type=check_update&version=2

Appl. Sci. 2020, 10, 6923 2 of 17

human compliance during assembly [5]. Nevertheless, most of these assembly methods are not
practical to use in real applications. Model parameters need to be identified, and controller gains need
to be tuned. In both cases, the process is manually engineered for specific tasks, which requires a lot of
time, effort, and expertise. These approaches are also not robust to uncertainties and do not generalize
well to variations in the environment.

To reduce human involvement and increase robustness to uncertainties, the most recent research
has been focused on learning assembly skills either from human demonstrations [6] or directly from
interactions with the environment [7]. The present research focuses on the latter.

Reinforcement-learning (RL) methods allow for agents to learn complex behaviors through
interactions with the surrounding environment, and by maximizing rewards received from
the environment; ideally, the agents’ behavior can generalize to unseen scenarios or tasks [7].
Therefore, RL can be applied to robotic agents to learn high-precision assembly skills instead of
only transferring human skills to the robot program [8]. Recent studies showed the importance
of RL for robotic manipulation tasks [9–11], but none of these methods can be applied directly to
high-precision industrial applications due to the lack of fine motion control.

In [12], an RL technique was used to learn a simple peg-in-hole insertion operation.
Similarly, Inuo et al. [13] proposed a robot skill-acquisition approach by training a recurrent neural
network to learn a peg-in-hole assembly policy. However, these approaches use a finite number of
actions by discretizing the action space, which has many limitations in continuous-action control
tasks [14], as is the case for robot control, which is continuous and high-dimensional.

Xu et al. [15] proposed learning dual peg insertion by using the deep deterministic policy
gradient [16] (DDPG) algorithm with a fuzzy reward system. Similarly, Fan et al. [17] used DDPG
combined with guided policy search (GPS) [18] to learn high-precision assembly tasks. Luo et al. [19]
also used GPS to learn peg-in-hole tasks on a deformable surface. Nevertheless, these methods learn
policies that control the motion trajectory only, and they require the manual tuning of force control
gains; therefore, they do not scale well to variations of the environment.

Ren et al. [20] proposed the use of DDPG to simultaneously control position and force control
gains, but they assumed the geometric knowledge of the insertion task, which made the learned
policies inflexible to be applied to different insertion tasks. To solve high-precision assembly tasks,
our approach focused on learning policies that simultaneously control the robot’s motion trajectory
and actively tune a compliant controller to unknown geometric constraints.

Buchli et al. [21] accomplished variable stiffness skill learning on robot manipulators by using
an RL algorithm call-policy improvement with path integrals (PI2). However, the method was
formulated for torque-control robots. Another similar approach was to use a flexible robot so as to
focus only on the motion trajectory, as in [22]; however, rigid position-controlled robots are still more
widely used. Therefore, we focus on industrial robot manipulators, which are mainly controlled in a
position-based manner.

Abu-Dakka et al. [23] proposed a learning method based on iterative learning control (ILC).
Their method is focused on transferring manipulation skills from demonstrations that provide a
reference trajectory and force profile. In this work, we present a method that can learn manipulation
skills without prior knowledge of a reference trajectory or force profile. However, our method supports
the use of such prior knowledge to speed up the learning phase.

The main contribution of this work is a robust learning-based framework for robotic peg-in-hole
assembly given an uncertain goal position. Our method enables a position-controlled industrial robot
manipulator to safely learn contact-rich manipulation tasks by controlling the nominal trajectory,
and at the same time, learning variable force control gains for each phase of the task. We built this on
the basis of our previous work [24]. More specifically, the contributions of this work are:

• A robust policy representation based on time convolutional neural networks (TCNs).
• Faster learning of control policies via domain transfer-learning techniques (sim2real) to greatly

improve the training efficiency in real robots.

Appl. Sci. 2020, 10, 6923 3 of 17

• Improved generalization capabilities of the learned control policies via domain randomization
during the training phase in simulations. Although the effects of domain randomization
have been researched [25,26], to the best of our knowledge, we are the first to study the
effects of sim2real with domain randomization on contact-rich, real-robot applications with
position-controlled robots.

The effectiveness of the proposed method is shown through extensive evaluations with a real
robotic system on a variety of contact-rich peg-in-hole insertion tasks.

Problem Statement

In the present study, we considered a peg-in-hole assembly task that required the mating of two
components. One of the components was grasped and manipulated by the robot manipulator, while the
second component had a fixed position either via fixtures to an environment surface or by being held
by a second robot manipulator. Figure 1 provides a 2D representation of the considered insertion
tasks and the components assumed to be available to solve the task. The proposed method was
designed for a position-controlled robot manipulator with a force/torque sensor at its wrist. Typically,
these insertion tasks can be broadly divided into two main phases [27], search and insertion. During the
search phase, the robot aligns the peg within the clearance region of the hole. In the beginning, the peg
is located at a distance from the center of the hole in a random direction. The distance from the hole is
assumed to be the “positional error”. During the insertion phase, the robot adjusts the orientation of
the peg with respect to the hole orientation, and pushes the peg to the desired position. We focused on
both phases of the assembly task with the following assumptions:

• The manipulated object was already firmly grasped. However, slight changes of object orientation
within the gripper were possible during manipulation.

• There was access to imperfect prediction of the target end-effector pose (as shown in Figure 1) or
a reference trajectory and its degree of uncertainty.

• The manipulated object was inserted in a direction parallel to the gripper’s orientation.

We considered the second assumption fair given the advances in vision-recognition techniques,
wherein the 6D poses of objects can be estimated from single RGB images [28,29] or RGB images
with depth maps (RGB-D) [30,31]. The high accuracy of the predictions is in many cases enough
for robot manipulation. Moreover, this second assumption included the specific case of using an
assembly planner [32,33], where even if the initial position of the objects is known, the inevitable
error throughout the manipulation (e.g. pick-and-place, grasping, and regrasping) that makes the
positions/orientations of the manipulated objects uncertain during the insertion phase. A reference
trajectory could be similarly obtained from demonstrations [34–36] when a complex motion is required
to achieve the insertion. The last assumption allowed for defining a desired insertion force that may
vary for different insertion tasks without loss of generalization.

Figure 1. Insertion task with uncertain goal position.

Appl. Sci. 2020, 10, 6923 4 of 17

2. Materials and Methods

2.1. System Overview

Our proposed system aims to solve assembly tasks with an uncertain goal pose. Figure 2 shows
the overall system architecture. There were two control loops. The inner loop was an adaptive
compliance controller; we chose to use a parallel position-force controller that was proven to work
well for this kind of contact-rich manipulation task [24]. The inner loop ran at a control frequency
of 500 Hz, which is the maximum available in Universal Robots e-series robotic arms (Robot details
at https://www.universal-robots.com/e-series/). Details of the parallel controller are provided in
Section 2.2.3. The outer loop was an RL control policy running at 20 Hz that provided subgoal positions
and the parameters of the compliance controller. The outer loop’s slower control frequency allowed
for the policy to process the robot state and compute the next action to be taken by the manipulator,
while the inner loop’s precise high-frequency control would seek to achieve and maintain the subgoal
provided by the policy. Details of the RL algorithm and the policy architecture are provided in
Section 2.2. Lastly, the input to the system was estimated target position and orientation for the
insertion task.

Figure 2. Our proposed framework. On the basis of estimated target position for an insertion task,
our system learns a control policy that defines motion-trajectory and force-control parameters of an
adaptive compliance controller to control an industrial robot manipulator.

Motion commands xc sent to the adaptive compliance controller corresponded to the pose of
the robot’s end effector. The pose was of the form x = [p, φ], where p ∈ R3 is the position vector,
and φ ∈ R4 is the orientation vector. The orientation vector was described using Euler parameters
(unit quaternions), denoted as φ = {η, ε}, where η ∈ R is the scalar part of the quaternion and ε ∈ R3

the vector part.

2.2. Learning Adaptive-Compliance Control

2.2.1. Reinforcement-Learning Algorithm

Robotic reinforcement learning is a control problem where a robot, the agent, acts in a stochastic
environment by sequentially choosing actions over a sequence of time steps. The goal is to maximize
a cumulative reward. Said problem was modeled as a Markov decision process. The environment
is described by a state s ∈ S. The agent can perform actions a ∈ A, and perceives the environment
through observations o ∈ O that may or not be equal to s. We considered an episodic interaction
of finite time steps with a limit of T time steps per episode. The agent’s goal is to find a policy
π(a(t) | o(t)) that selects actions a(t) conditioned on observations o(t) to control the dynamical system.
Given stochastic dynamics p(s(t + 1) | s(t), a(t)) and reward function r(s, a), the aim is to find a policy
π∗ that maximizes the expected sum of future rewards given by R(t) = ∑∞

i γr(s(t), a(t)), with γ being
a discount factor [7].

In this work, we used an RL algorithm called soft actor critic (SAC), which is one of the
state-of-the-art algorithms with high sample efficiency, ideal for real robotic applications. SAC [37] is
an off-policy, actor-critic deep RL algorithm based on maximal entropy. SAC aims to maximize the

https://www.universal-robots.com/e-series/

Appl. Sci. 2020, 10, 6923 5 of 17

expected reward while also optimizing maximal entropy. The SAC agent optimizes a maximal-entropy
objective, which encourages exploration according to a temperature parameter α. The core idea
of this method is to succeed at the task while acting as randomly as possible. Since SAC is an
off-policy algorithm, it uses a replay buffer to reuse information from recent rollouts for sample-efficient
training. Additionally, we used the distributed prioritized experience replay approach for further
improvement [38]. Our implementation of the SAC algorithm was based on the TF2RL repository
(TF2RL: Deep-reinforcement-learning library using TensorFlow 2.0. https://github.com/keiohta/tf2rl).

2.2.2. Multimodal Policy Architecture

The control policy was represented using neural networks, as shown in Figure 3. The policy input
was the robot state. The robot state included the proprioception information of the manipulator and
haptic information. Proprioception included the pose error between the current robot’s end-effector
position and predicted target pose xe, end-effector velocity ẋ, desired insertion force Fg, and actions
taken in the previous time step at−1. Proprioception feedback was encoded with a neural network
with 2 fully connected layers with an activation function RELU to produce a 32-dimensional feature
vector. For force-torque feedback, we considered the last 12 readings from the six-axis F/T sensor,
filtered using a low-pass filter, as a 12 × 6 time series:

[F0
ext, . . . , F12

ext], where Fi
ext = [Fx, Fy, Fz, Mx, My, Mz] (1)

The F/T time series was fed to a temporal convolutional network (TCN) [39] to produce another
32-dimensional feature vector. The feature vectors from proprioception and haptic information were
concatenated to obtain a 64-dimensional feature vector, and then fed to two fully connected layers to
predict the next action.

Figure 3. Control policy consisting of three networks. First, proprioception information is processed
through a 2-layer neural network. Second, force/torque information is processed with a temporal
convolutional network. Lastly, extracted features from the first two networks are concatenated and
processed on a 2-layer neural network to predict actions.

The policy outputs actions for a parallel position-force controller. The policy produces two types
of actions, a .

= [ax, ap], where ax = [p, φ] are position/orientation subgoals, and ap are parameters of
the parallel controller. The specific parameters controlled by ap are described in Section 2.2.3.

2.2.3. Compliance Control in Task Space

Our proposed method uses a common force-control scheme combined with a reinforcement-learning
policy to learn contact-rich manipulations with a rigid position-controlled robot. For the family
of contact-rich manipulation tasks that require some sort of insertion, the parallel position-force
control [40] performs better and can be learned faster than using an admittance control scheme when
combined with an RL policy [24].

https://github.com/keiohta/tf2rl

Appl. Sci. 2020, 10, 6923 6 of 17

The implemented parallel controller is depicted in Figure 4. A PID parallel position-force control
was used with the addition of a selection matrix to define the degree of the control of position and
force over each direction. The control law consisted of a PD action on position, a PI action on force,
a selection matrix, and policy position action ax,

xc = S(Kx
pxe + Kx

d ẋe) + ax + (I − S)(K f
pFe + K f

i

∫
Fedt), (2)

where Fe = Fg − Fext, and xx is the position commanded of the robot. The selection matrix is

S = diag(s1, . . . , s6), sj ∈ [0, 1]

where values correspond to the degree of control that each controller has over a given direction.

Figure 4. Adaptive parallel position-force control scheme [24]. Inputs are the estimated goal position,
policy actions, and a desired contact force. Controller outputs the joint position commands for the
robotic arm.

Our parallel control scheme had a total of 30 parameters, 12 from the position PD controller’s
gains, 12 from the force PI controller’s gains, and 6 from selection matrix S. We reduced the number of
controllable parameters to prevent unstable behavior and to reduce system complexity. For the PD
controller, only proportional gain Kx

p was controllable, while derivative gain Kx
d was computed on the

basis of Kx
p. Kx

d was set to have a critically damped relationship as

Kx
d = 2

√
Kx

p

Similarly, for the PI controller, only proportional gain K f
p was controllable, and integral gain K f

i was

computed with respect to K f
p. In our experiments, K f

i was empirically set to be 1% of K f
p. In total,

18 parameters were controllable. In summary, the policy actions regarding the parallel controller’s
parameters are

ap = [Kx
p, K f

p, S], ap ∈ R18

As a safety measure, we narrowed the agent choices for the force-control parameters by imposing
upper and lower limits to each parameter, assuming we had access to some baseline gain values
Pbase. We defined a range of potential values for each parameter as [Pbase − Prange, Pbase + Prange] with
constant Prange defining the size of the range. We mapped policy actions ap from range [−1, 1] to each
parameter’s range. Pbase and Prange are the hyperparameters of our method.

2.3. A Task’s Reward Function

For all considered insertion tasks, the same reward function was used:

r(s, a) = w1Lm(‖(Fext − Fg)/Fmax‖2) + w2κ, (3)

Appl. Sci. 2020, 10, 6923 7 of 17

where Fg is the desired insertion force, Fext is the contact force, and Fmax is the defined allowed maximal
contact force. Lm(y) = y 7→ x, x ∈ [1, 0] is a linear mapping in the range 1 to 0; thus, the closer to the
goal and the lower the contact force, the higher the reward obtained. || · ||1,2 is an L1,2 norm based
on [9]. κ is a reward defined as follows:

κ =

100 + ((1− t/T)× 100), Task completed

−50, Collision
0, Otherwise

(4)

During training, the task was considered completed if the Euclidean distance between the robot’s
end-effector position and the true goal position was less than 1 mm. The agent was encouraged
to complete the task as quickly as possible by providing an extra reward for every unused time
step with respect to the maximal number of time steps per episode T. Moreover, we imposed a
collision constraint wherein the agent was penalized for colliding with the environment by being
given a negative reward and by finishing the episode early. This collision constraint encourages safer
exploration, as shown in our previous work [24]. We defined a collision as exceeding force limit Fmax.
Therefore, a collision detector and geometric knowledge of the environment were not necessary. Lastly,
each component was weighted via w; all ws were hyperparameters.

2.4. Speeding up Learning

Two strategies were adopted to speed up the learning process. First, the exploitation of
prior knowledge using the idea of residual reinforcement learning. Second, we used a physics
simulator to train the robot on a peg-insertion task and transfer the learned policy directly to the real
robot (sim2real).

2.4.1. Residual Reinforcement Learning

To speed up the learning of the control policy for insertion tasks that require complex manipulation,
we used residual reinforcement learning [41,42]. The goal is to leverage the training process by
exploiting prior knowledge. With the assumption of an estimated target position or a reference
trajectory, we could manually define a controller xg. Then, said controller’s signal would be combined
with policy action ax. The objective was to avoid training the policy from scratch, and avoid the
exploration of the entire parameter space. The position command sent to the robot was

xc = (x′g + x f) + ax, (5)

where x′g is the reference trajectory process through a PD controller, ax is the policy signal on the
position, and x f is the response to the contact force, as shown in Figure 4. The first two terms came
from the parallel controller. Therefore, the policy would just need to learn to adjust the reference
trajectory to achieve the task.

2.4.2. Sim2real

The proposed method works on the robot’s end-effector Cartesian task-space, which makes it
easier to transfer learning from simulations to the real robot or even between robots [43]. For most
insertion tasks, a simple peg-insertion task was used for training on a physics simulator. We used
simulator Gazebo 9 [44]. To close the reality gap between the physics simulator and real-world
dynamics, we used domain randomization [45]. During training on the simulator, the following
aspects were randomized:

• Initial/goal end-effector position: Having random initial/goal positions helps the RL algorithm
to find policies that generalize to a wide range of initial-position conditions.

Appl. Sci. 2020, 10, 6923 8 of 17

• Object-surface stiffness: The RL agent also needs to learn to fine-tune the force-controller
parameters to obtain a proper response to the contact force. Therefore, randomizing the stiffness
of the manipulated objects helps it find policies that adapt to different dynamic conditions.

• Uncertainty error of goal pose prediction: On a real robot, the prediction of the target pose comes
from noisy sensory information, either from a vision-detection system or from known prior
manipulations (grasp and regrasp). Thus, during training on the simulation, we emulated this
error by using normal Gaussian distribution with mean zero and standard deviation of a maximal
distance error (for position and orientation).

• Desired insertion force: For different insertion tasks, a specific contact force is necessary for
insertion to succeed. As we considered insertion force an input to the policy, during training,
we randomized this value for each episode.

3. Experiments and Results

3.1. Experiment Setup

Experimental validation was performed on a simulated environment using Gazebo simulator [44]
version 9, and on real hardware using a Universal Robot 3 e-series with a control frequency of up to
500 Hz. The robotic arm had a force/torque sensor mounted at its end effector, and a Robotiq Hand-e
parallel gripper. In both environments, training of the RL agent was performed on a computer with
an Intel i9-9900k CPU and a Nvidia RTX-2080 SUPER GPU. To control the robot agent, we used the
Robot Operating System (ROS) [46] with the Universal Robot ROS Driver (ROS driver for Universal
Robot robotic arms developed in collaboration between Universal Robots and the FZI Research Center
for Information Technology https://github.com/UniversalRobots/Universal_Robots_ROS_Driver).
The experiment environment of the real robot is shown in Figure 5.

Figure 5. Real experiment environment with a 6-degree-of-freedom UR3e robotic arm. Cuboid peg
and task board hole had a nonsmooth surface with 1.0 mm clearance.

3.2. Training

During the training phase, the agent’s task was to insert a cuboid peg into a task board in the
simulated environment. The agent was trained for 500, 000 time steps, which, on average, took about
5 h to complete. During training, the environment was modified after each episode by randomizing
one or several of the training conditions mentioned in Section 2.4.2. The range of values used for the
randomization of the training conditions is shown in Table 1. The random goal position was selected
from a defined set of possible insertion planes, as depicted in Figure 6.

After training on the simulation, the learned policy was refined by retraining on the real robot
for 3% off the simulation time steps, which took about 20 min, to further account for the reality gap
between simulated and real-world physics dynamics.

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

Appl. Sci. 2020, 10, 6923 9 of 17

Table 1. Randomized training conditions.

Condition Value Range

Initial position
(relative to goal)

Position (mm) [−400, 400]

Orientation (◦) [−10, 10]

Uncertainty error Position (mm) [−2, 2]

Orientation (◦) [−5, 5]

Desire insertion force (N) [0, 10]

Stiffness
(in Gazebo: surface/friction/ode/kp) [7.0× 10−4, 1.0× 10−5]

Figure 6. Simulation environment. Overlay of randomizable goal positions.

3.3. Evaluation

The learned policy was initially evaluated on the real robot with a 3D-printed version of the
cuboid peg in the hole-insertion task with the true goal pose. During evaluation, observations and
actions were recorded. Figure 7 shows the performance of the learned policy (sim2real + retrain).
The figure shows the relative position of the end effector with respect to the goal position, the contact
force, and the actions taken by the policy for each Cartesian direction normalized to the range of [−1, 1],
as described in Section 2.2.3. As shown in Figure 1, the insertion direction was aligned with the y axis
of the robot’s coordinate system. In Figure 7, we highlighted three phases of the task. Blue corresponds
to the search phase in free space before contact with the surface, yellow is the search phase after initial
contact with the environment, and green corresponds to the insertion phase. During the search phase,
and particularly on the insertion direction (y axis), we could clearly observe that the learned policy
properly reacted to contact with the environment by quickly adjusting the force control parameters.
On top of that, during the insertion phase, the learned policy changed its strategy from just minimizing
contact force to a mostly position-control strategy to complete insertion. This behavior is proper for
this particular insertion task, as there is little resistance during the insertion phase, but it is not the
desired behavior for other insertion tasks, as we discuss later in Section 3.4.2.1.

Additionally, we compared the performance of the learned policy as a combination of sim2real
and refinement in the real robot versus just learning in the real robot or just directly transferring the
learned policy from the simulation (sim2real) without further training. We evaluated these policies in
a 3D-printed version of the cuboid-peg-insertion task. Policies were tested 20 times with a random
initial position assuming a perfect estimation of the goal position (true goal). Table 2 shows the results
of the evaluation. The three policies had very high success rates, but the policy transfer from the

Appl. Sci. 2020, 10, 6923 10 of 17

simulation had difficulty with the real-world physics dynamics. As expected, the policy retrained from
the simulation gave the best overall performance time.

Figure 7. Performance of learned policy (sim2real + retrain) on 3D-printed cuboid-peg-insertion task.
Insertion direction was aligned with the y axis of the robot’s coordinate system. Relative distance from
the robot’s end effector to goal position and contact force are shown. The 24 policy actions besides the
corresponding axis are also shown.

Table 2. Comparison of learning from scratch, straightforward sim2real, and sim2real + retraining
(ours). Test performed on a 3D printed cuboid peg insertion task assuming knowledge of the true
goal position.

Method Success Rate Avg. Time Steps Avg. Time (sec)

Scratch 100% 109.6 5.48
Sim2real 95% 75.3 3.77

Ours 100% 65.6 3.28

3.4. Generalization

Now, to evaluate the generalization capabilities of our proposed learning framework, we used a
series of environments with varying conditions.

3.4.1. Varying Degrees of Uncertainty Error

First, the learned policies were evaluated on the 3D printed cuboid peg insertion task where there
was a degree of error on the estimation of the goal position. To clearly compare the performances of
the different methods with different degrees of estimation error, we added and offset of position or
orientation about the x axis of the true goal pose. Nevertheless, for completeness we also evaluated the
policies on goal poses with added random offset of translation, [−1, 1] millimeters, and orientation,
[−5◦, 5◦], in all directions. In each case, the policies were tested 20 times from random initial positions.
Results are shown in Table 3.

In all cases, the policy learned from the simulation with domain randomization and fine-tuned in
the real robot gave the best results. If the difference between the physics dynamics in the simulation
and the real world was too big, learning from scratch could yield better results than only transferring
the policy from the simulation, as can be seen when the uncertainty error of orientation was too big

Appl. Sci. 2020, 10, 6923 11 of 17

(5◦); where the friction with the environment makes the task much harder, such contact dynamics are
difficult to simulate.

Table 3. Comparison of learning from scratch, straightforward sim2real, and sim2real + retraining
(ours) with different degrees of goal-position uncertainty error. Test performed during 3D-printed
cuboid-peg insertion task.

Estimation Error/Success Rate

Position Orientation

Method 1 mm 2 mm 3 mm 4 mm 5 mm 1◦ 2◦ 3◦ 4◦ 5◦ Random

Scratch 90% 90% 70% 55% 35% 100% 90% 80% 80% 50% 80%

Sim2real 90% 85% 75% 60% 40% 100% 90% 80% 80% 30% 75%

Ours 100% 100% 95% 65% 60% 100% 100% 100% 100% 100% 90%

3.4.2. Varying Environment Stiffness

Second, the learned policy was also evaluated in different stiffness environments. Figure 8 shows
the three environments considered for evaluation. High stiffness was the default environment. Medium
stiffness was achieved by using a rubber band to hold the cuboid peg between the gripper fingers,
adding a degree of static compliance. In addition to that, for the low-stiffness environment, a soft foam
surface was added to further decrease stiffness. The policies were evaluated from 20 different initial
positions; results are reported in Table 4.

Figure 8. High, medium, and low-stiffness environments (left to right).

Table 4. Success rate of a 3D-printed-cuboid insertion task with different degrees of contact stiffness.

Method/Stiffness High Medium Low

Scratch 100% 70% 40%
Sim2real 95% 100% 100%

Ours 100% 100% 100%

3.4.2.1. Varying Insertion Tasks

Lastly, we evaluated the learned policy through a series of novel insertion tasks, none seen during
training, to assess its generalization capabilities. These insertion tasks included challenges such as
adapting to a very hard surface (high stiffness), requiring a minimal insertion force to perform the
insertion, and a complex peg shape for mating the parts. The different insertion scenarios are depicted
in Figure 9.

For each task, the learned policy was executed 20 times from random initial positions and
assuming perfect estimation of the goal position. Table 5 shows the success rates of the learned policies
in these novel tasks, along with the desired insertion force set for each task. As the insertion force was

Appl. Sci. 2020, 10, 6923 12 of 17

defined as a policy input, we could define a specific desired insertion force for each task. Even though
the policy was only trained by using the simpler cuboid-peg insertion task, mainly in the simulation
and shortly after refined in a real robot with a 3D-printed version of the same task, the learned policy
achieved a high success rate in novel and complex insertion tasks.

Figure 9. Several insertion tasks with different degrees of complexity. (A) Metal ring (high stiffness)
with 0.2 mm of clearance. (B) Electric outlet requiring high insertion force. (C) Local-area-network
(LAN) port, delicate with complex shape. (D) Universal serial bus (USB).

Table 5. Success rate of learned policy in several insertion tasks.

Task Success Rate Insertion Force

Ring 80% 5N
Electric Outlet (x) 75% 10N
Electric Outlet (y) 75% 10N

LAN port (x) 55% 5N
LAN port (y) 60% 5N

USB 80% 8N

Compared to the cuboid-peg insertion task, in these novel insertion tasks, the peg was more likely
to become stuck during the task’s search phase, as the surrounding surface near the hole was not
smooth and may have had crevices. The extra challenges were not present during the training phase,
which reduced the capability of the learned policy to react in an appropriate way. The insertion task
of the LAN port was the most challenging for the policy due to the complex shape of the LAN cable
endpoint. If just one corner of the LAN adapter was stuck, the insertion could not be completed even
if a large force was applied.

Additionally, we tested the policy on different insertion planes for the electric outlet and the LAN
port tasks. In both cases, the success rate was similar due to training with the randomized insertion
planes. However, the policy was slightly better with insertions on the y axis plane due to retraining
(on the real robot) only being done on this axis.

3.5. Ablation Studies

In this section, we evaluate the individual contributions of some components added to the
proposed learning framework.

3.5.1. Learning from Scratch vs. Sim2real

The inclusion of transfer learning from the simulation to the real robot for the proposed learning
framework was evaluated. We compared the learning performance of training the agent in the real
robot from scratch versus learning starting from a policy learned in a simulation. Training from
scratch was performed for 50,000 steps, while retraining from the simulation lasted 15,000 steps.
Figure 10 shows the learning curve for both training sessions. Learning from scratch required at least
50,000 steps to succeed at the tasks most of the time. In contrast, learning from the pretrained policy in
the simulation achieved the same performance in under 5000 steps. The policy from the simulation still

Appl. Sci. 2020, 10, 6923 13 of 17

required some training to fine-tune the controller to real-world physics dynamics, which are difficult
to simulate, as can be seen from the slow start and the drops in cumulative reward.

Figure 10. Comparison between learning from scratch and learning from a policy learned in the
simulation: learning curve for the 3D-printed cuboid-peg insertion task in a real robot with random
initial positions.

3.5.2. Policy Architecture

We evaluated the contribution of the policy architecture introduced in our method (see
Section 2.2.2) by comparing it to a policy with a simple neural network (NN) with two fully connected
layers, as used in previous work [24]. We trained both policies on the cuboid-peg insertion task in
the simulation and compared their learning performances. Figure 11 shows the learning curves of
both policy architectures for a training session of 70,000 time steps. From the figure, is clear that,
with our newly proposed TCN-based policy, the agent was able to learn faster and exploit better
rewards. The TCN-based policy learned a successful policy (25,000) about 15,000 steps faster than the
simple neural-network (NN)-based policy did (40,000). Additionally, the TCN-based policy converged
to a higher cumulative reward than that of the simple NN-based policy.

Figure 11. Comparison between policy architectures: learning curve for the cuboid-peg insertion task
with random initial positions.

3.5.3. Policy Inputs

Lastly, we evaluated the choices of inputs for the policy. We compared our proposed policy
architecture with all inputs, as defined in Section 2.2.2, with two variants. First, we considered the
policy without the inclusion of prior action at−1. Second, we considered the policy without knowledge
of desired insertion force Fg. The training environment was the cuboid-peg insertion task in the

Appl. Sci. 2020, 10, 6923 14 of 17

simulation with a random initial position and random desired insertion force. In the case of the policy
that did not have Fg as input, the cost function still accounted for the desired insertion force.

Figure 12 shows the comparison of the learning curves. Most notable is the poor performance of
the policy that lacked the knowledge of prior action at−1. Prior-action information is critical for the
agent to more quickly converge to an optimal policy. Additionally, knowledge of Fg enables the agent
to find policies that yield higher cumulative rewards, and to learn faster.

Figure 12. Comparison of policies with different inputs. Learning curve for cuboid-peg insertion task
with random initial positions and random desired insertion force.

4. Discussion

We proposed a learning framework for position-controlled robot manipulators to solve
contact-rich manipulation tasks. The proposed method allows for learning low-level high-dimensional
control policies in real robotic systems. The effectiveness of the learned policies was shown through
an extensive experimental study. We showed that the learned policies had a high success rate at
performing the insertion task under the assumption of a perfect estimation of the goal position.
The policy correctly learned the nominal trajectory and the appropriate force-control parameters
to succeed at the task. The policy also achieved a high success rate under varying environmental
conditions in terms of uncertainty of goal position, environmental stiffness, and novel insertion tasks.

While model free reinforcement-learning algorithm SAC was used in this work, the proposed
framework can easily be adapted to other RL algorithms. The choice of SAC was due to its sample
efficiency as an off-policy algorithm. The pros and cons of using other learning algorithms would be
interesting future work.

One limitation of our learning framework is the selection of the force-control parameter range
(see Section 2.2.3). The choice of a wide range of values may allow for the policy to adapt to very
different environments, but it also increases the difficulty of learning a task, as small variations in
the action may cause undesired behaviors, as was the case during the first 20,000 to 30,000 steps
of training (see Figure 11). On the other hand, a narrow range would make it easier and faster to
learn a task, but it may not generalize well to different environments. Defining a range is much
easier than manually finding the optimal parameters for each task, but it is still a manual process.
Therefore, another interesting future study would be to use demonstrations to learn a rough estimation
of the optimal force parameters to further reduce training times.

Author Contributions: Methodology, C.C.B.-H., D.P., I.G.R.-A. and K.H.; Software, C.C.B.-H.; Investigation,
C.C.B.-H., D.P. and I.G.R.-A.; Writing—Original Draft Preparation, C.C.B.-H.; Writing—Review & Editing,
C.C.B.-H.; Supervision, D.P., I.G.R.-A. and K.H.; Project Administration, K.H.; Funding Acquisition, K.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 6923 15 of 17

References

1. Kroemer, O.; Niekum, S.; Konidaris, G. A review of robot learning for manipulation: Challenges,
representations, and algorithms. arXiv 2019, arXiv:1907.03146.

2. Whitney, D.E. Quasi-Static Assembly of Compliantly Supported Rigid Parts. J. Dyn. Syst. Meas. Control.
1982, 104, 65–77. [CrossRef]

3. Tsuruoka, T.; Fujioka, H.; Moriyama, T.; Mayeda, H. 3D analysis of contact in peg-hole insertion. In Proceedings
of the 1997 IEEE International Symposium on Assembly and Task Planning (ISATP’97)-Towards Flexible
and Agile Assembly and Manufacturing, Marina del Rey, CA, USA, 7–9 August 1997; pp. 84–89.

4. Zhang, K.; Shi, M.; Xu, J.; Liu, F.; Chen, K. Force control for a rigid dual peg-in-hole assembly. Assem. Autom.
2017, 37, 200–207. [CrossRef]

5. Fukumoto, Y.; Harada, K. Force Control Law Selection for Elastic Part Assembly from Human Data and
Parameter Optimization. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid
Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 1–7.

6. Kyrarini, M.; Haseeb, M.A.; Ristić-Durrant, D.; Gräser, A. Robot learning of industrial assembly task via
human demonstrations. Auton. Robots 2019, 43, 239–257. [CrossRef]

7. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA,
USA, 2018.

8. Yang, C.; Zeng, C.; Cong, Y.; Wang, N.; Wang, M. A learning framework of adaptive manipulative skills
from human to robot. IEEE Trans. Ind. Inform. 2018, 15, 1153–1161. [CrossRef]

9. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]

10. Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours.
In Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 3406–3413.

11. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates. In Proceedings of the 2017 IEEE international conference on robotics and
automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3389–3396.

12. Nuttin, M.; Van Brussel, H. Learning the peg-into-hole assembly operation with a connectionist reinforcement
technique. Comput. Ind. 1997, 33, 101–109. [CrossRef]

13. Inoue, T.; De Magistris, G.; Munawar, A.; Yokoya, T.; Tachibana, R. Deep reinforcement learning for high
precision assembly tasks. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 819–825.

14. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

15. Xu, J.; Hou, Z.; Wang, W.; Xu, B.; Zhang, K.; Chen, K. Feedback deep deterministic policy gradient with
fuzzy reward for robotic multiple peg-in-hole assembly tasks. IEEE Trans. Ind. Inform. 2018, 15, 1658–1667.
[CrossRef]

16. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M.A. Deterministic Policy Gradient
Algorithms. In Proceedings of the International Conference on Machine Learning, Beijing, China, 22–24
June 2014.

17. Fan, Y.; Luo, J.; Tomizuka, M. A learning framework for high precision industrial assembly. In Proceedings
of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May
2019; pp. 811–817.

18. Levine, S.; Koltun, V. Guided policy search. In Proceedings of the International Conference on Machine
Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1–9.

19. Luo, J.; Solowjow, E.; Wen, C.; Ojea, J.A.; Agogino, A.M. Deep reinforcement learning for robotic assembly
of mixed deformable and rigid objects. In Proceedings of the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2062–2069.

20. Ren, T.; Dong, Y.; Wu, D.; Chen, K. Learning-based variable compliance control for robotic assembly.
J. Mech. Robot. 2018, 10, 061008. [CrossRef]

21. Buchli, J.; Stulp, F.; Theodorou, E.; Schaal, S. Learning variable impedance control. Int. J. Robot. Res. 2011,
30, 820–833. [CrossRef]

http://dx.doi.org/10.1115/1.3149634
http://dx.doi.org/10.1108/AA-09-2016-120
http://dx.doi.org/10.1007/s10514-018-9725-6
http://dx.doi.org/10.1109/TII.2018.2826064
http://dx.doi.org/10.1177/0278364917710318
http://dx.doi.org/10.1016/S0166-3615(97)00015-8
http://dx.doi.org/10.1109/TII.2018.2868859
http://dx.doi.org/10.1115/1.4041331
http://dx.doi.org/10.1177/0278364911402527

Appl. Sci. 2020, 10, 6923 16 of 17

22. Lee, M.A.; Zhu, Y.; Srinivasan, K.; Shah, P.; Savarese, S.; Fei-Fei, L.; Garg, A.; Bohg, J. Making sense of vision
and touch: Self-supervised learning of multimodal representations for contact-rich tasks. In Proceedings of
the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May
2019; pp. 8943–8950.

23. Abu-Dakka, F.J.; Nemec, B.; Jørgensen, J.A.; Savarimuthu, T.R.; Krüger, N.; Ude, A. Adaptation of
manipulation skills in physical contact with the environment to reference force profiles. Auton. Robot.
2015, 39, 199–217. [CrossRef]

24. Beltran-Hernandez, C.C.; Petit, D.; Ramirez-Alpizar, I.G.; Nishi, T.; Kikuchi, S.; Matsubara, T.; Harada,
K. Learning Force Control for Contact-rich Manipulation Tasks with Rigid Position-controlled Robots.
IEEE Robot. Autom. Lett. 2020, 5, 5709–5716. [CrossRef]

25. Chebotar, Y.; Handa, A.; Makoviychuk, V.; Macklin, M.; Issac, J.; Ratliff, N.; Fox, D. Closing the sim-to-real
loop: Adapting simulation randomization with real world experience. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 8973–8979.

26. Andrychowicz, O.M.; Baker, B.; Chociej, M.; Jozefowicz, R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.;
Powell, G.; Ray, A.; et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res. 2020, 39, 3–20.
[CrossRef]

27. Sharma, K.; Shirwalkar, V.; Pal, P.K. Intelligent and environment-independent peg-in-hole search strategies.
In Proceedings of the 2013 International Conference on Control, Automation, Robotics and Embedded
Systems (CARE), Jabalpur, India, 16–18 December 2013; pp. 1–6.

28. Zakharov, S.; Shugurov, I.; Ilic, S. Dpod: 6d pose object detector and refiner. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 1941–1950.

29. Peng, S.; Liu, Y.; Huang, Q.; Zhou, X.; Bao, H. Pvnet: Pixel-wise voting network for 6dof pose estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 4561–4570.

30. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object
Pose Estimation in Cluttered Scenes. Robot. Sci. Syst. (RSS) 2018, 2018. [CrossRef]

31. Hodan, T.; Haluza, P.; Obdržálek, Š.; Matas, J.; Lourakis, M.; Zabulis, X. T-LESS: An RGB-D dataset for 6D
pose estimation of texture-less objects. In Proceedings of the 2017 IEEE Winter Conference on Applications
of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 880–888.

32. Harada, K.; Nakayama, K.; Wan, W.; Nagata, K.; Yamanobe, N.; Ramirez-Alpizar, I.G. Tool exchangeable
grasp/assembly planner. In Proceedings of the International Conference on Intelligent Autonomous Systems;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 799–811.

33. Masehian, E.; Ghandi, S. ASPPR: A new Assembly Sequence and Path Planner/Replanner for monotone
and nonmonotone assembly planning. Comput.-Aided Des. 2020, 123, 102828. [CrossRef]

34. Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 6292–6299.

35. Gupta, A.; Kumar, V.; Lynch, C.; Levine, S.; Hausman, K. Relay Policy Learning: Solving Long-Horizon
Tasks via Imitation and Reinforcement Learning. In Proceedings of the Conference on Robot Learning
(CoRL) 2019, Osaka, Japan, 30 October–1 November 2019.

36. Wang, Y.; Harada, K.; Wan, W. Motion planning of skillful motions in assembly process through human
demonstration. Adv. Robot. 2020, 1–15. [CrossRef]

37. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. arXiv 2018, arXiv:1801.01290.

38. Horgan, D.; Quan, J.; Budden, D.; Barth-Maron, G.; Hessel, M.; van Hasselt, H.; Silver, D. Distributed
Prioritized Experience Replay. In Proceedings of the International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

39. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for
sequence modeling. arXiv 2018, arXiv:1803.01271.

40. Chiaverini, S.; Sciavicco, L. The parallel approach to force/position control of robotic manipulators.
IEEE Trans. Robot. Autom. 1993, 9, 361–373. [CrossRef]

http://dx.doi.org/10.1007/s10514-015-9435-2
http://dx.doi.org/10.1109/LRA.2020.3010739
http://dx.doi.org/10.1177/0278364919887447
http://dx.doi.org/10.15607/RSS.2018.XIV.019
http://dx.doi.org/10.1016/j.cad.2020.102828
http://dx.doi.org/10.1080/01691864.2020.1782260
http://dx.doi.org/10.1109/70.246048

Appl. Sci. 2020, 10, 6923 17 of 17

41. Johannink, T.; Bahl, S.; Nair, A.; Luo, J.; Kumar, A.; Loskyll, M.; Ojea, J.A.; Solowjow, E.; Levine, S. Residual
Reinforcement Learning for Robot Control. In Proceedings of the 2019 International Conference on Robotics
and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6023–6029. [CrossRef]

42. Silver, T.; Allen, K.R.; Tenenbaum, J.B.; Kaelbling, L.P. Residual Policy Learning. arXiv 2018, arXiv:1812.06298.
43. Bellegarda, G.; Byl, K. Training in Task Space to Speed Up and Guide Reinforcement Learning. In Proceedings

of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
3–8 November 2019; pp. 2693–2699.

44. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154.

45. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 23–30.

46. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA workshop on Open Source Software, Kobe, Japan,
12–17 May 2009; Volume 3, p. 5.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICRA.2019.8794127
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	System Overview
	Learning Adaptive-Compliance Control
	Reinforcement-Learning Algorithm
	Multimodal Policy Architecture
	Compliance Control in Task Space

	A Task's Reward Function
	Speeding up Learning
	Residual Reinforcement Learning
	Sim2real

	Experiments and Results
	Experiment Setup
	Training
	Evaluation
	Generalization
	Varying Degrees of Uncertainty Error
	Varying Environment Stiffness

	Ablation Studies
	Learning from Scratch vs. Sim2real
	Policy Architecture
	Policy Inputs

	Discussion
	References

