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Abstract: The growing share of renewable power generation leads to increasingly fluctuating and 
generally rising electricity prices. This is a challenge for industrial companies. However, electricity 
expenses can be reduced by adapting the energy demand of production processes to the volatile 
prices on the markets. This approach depicts the new paradigm of energy flexibility to reduce 
electricity costs. At the same time, using electricity self-generation further offers possibilities for 
decreasing energy costs. In addition, energy flexibility can be gradually increased by on-site power 
storage, e.g., stationary batteries. As a consequence, both the electricity demand of the 
manufacturing system and the supply side, including battery storage, self-generation, and the 
energy market, need to be controlled in a holistic manner, thus resulting in a smart grid solution for 
industrial sites. This coordination represents a complex optimization problem, which additionally 
is highly stochastic due to unforeseen events like machine breakdowns, changing prices, or 
changing energy availability. This paper presents an approach to controlling a complex system of 
production resources, battery storage, electricity self-supply, and short-term market trading using 
multi-agent reinforcement learning (MARL). The results of a case study demonstrate that the 
developed system can outperform the rule-based reactive control strategy (RCS) frequently used. 
Although the metaheuristic benchmark based on simulated annealing performs better, MARL 
enables faster reactions because of the significantly lower computation costs for its own execution. 
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1. Introduction 

In order to mitigate the effects of anthropological climate change, efforts are being made 
worldwide to reduce greenhouse gas emissions (GHG) and increase the share of renewable energies. 
One of the first industrial countries to do so, Germany announced in 2010 the plan to reduce GHG 
by 80% by 2050 along with plans to generate 80% of total electricity using renewable sources [1]. So 
far, in 2019, 42% of the total consumed electricity was generated by renewable sources. However, this 
trend has also entailed some challenging side effects. In particular, the high costs for new renewable-
energy power plants has led to rising electricity prices for industrial companies by 170% compared 
to the price level in 2000 [2]. In addition, electricity prices have been increasingly fluctuating, 
especially in the short term (see Figure 1a) since power generation using renewable sources, e.g., 
wind or solar, is subject to sudden changes in weather and is, therefore, neither controllable nor easily 
predictable. 
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Industrial companies are pressured to minimize electricity costs, which can be achieved in three 
ways. First, energy efficiency can be increased in order to reduce total energy consumption. Second, 
manufacturers can reduce energy costs by means of energy flexibility, i.e., adapting the energy 
demand of a factory to volatile energy market prices, thus consuming less energy in times of high 
prices and vice versa [3]. Third, power self-generation can also contribute to reducing energy costs, 
especially when using solar as well as combined-heat and power plants (CHP) (see Figure 1b). 
Moreover, energy flexibility can be further increased by using stationary batteries. The prices of these 
systems have decreased sharply in recent years (see Figure 1c) [4] and, as a consequence, the capacity 
of installed large battery storages in Germany increased by 1500% between 2015 and 2018 [5]. 

 
Figure 1. Potentials of energy cost reduction for industrial companies [2,5–8]. 

In order to benefit from the aforementioned aspects and reduce energy costs, a suitable, 
integrated control approach is required. The approach adopted needs to consider the power 
consumptions of the manufacturing system as well as the power supply using batteries, self-
generation plants, and market trading [9]. This paradigm of locally balancing power supply and 
demand is widely known as a smart grid [10]. Thereby, an intelligent control strategy for efficient 
electricity usage is derived, based on online date from smart sensors like energy meters. On the 
manufacturing side, it is the task of production control to schedule manufacturing jobs in the short 
term and thus ensure logistic objectives like due time or throughput while also determining the 
energy demand of the production system [11]. As a result, energy costs can represent an additional 
objective for production control. On the power supply side, the battery, self-generation, and market 
trading should be controlled. Since every element regarded underlies stochastic impacts like machine 
breakdowns, generation forecast errors, or changing prices, the system needs to react quickly to such 
unforeseen events [12]. Regarding the resulting complex optimization problem, multi-agent 
reinforcement learning (MARL) provides high potential in this field because of its short reaction time 
and fair solution quality [13]. MARL has already been applied to both production control (e.g., [14–
16]) and smart grid approaches to non-industrial applications (e.g., [17,18]). 

This paper presents an energy and manufacturing system which consists of a stationary battery, 
power plants for self-consumption, short-term electricity trading, and various production resources. 
The relevant system elements and resulting vision for a control system in the context of smart grid 
for industry is shown in Figure 2. Given that common production control systems struggle with the 
resulting complexity, a novel MARL-based approach will be presented here. The fundamentals are 
then briefly pointed out in the next section, which is followed by a short literature review. The MARL 
approach will be proposed therein and validated using a case study. The paper will then end with a 
brief summarizing conclusion. 
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Figure 2. Vision of the smart grid system for industrial companies. 

2. Fundamentals 

The essential fundamentals will be briefly introduced in the following for further 
comprehension. The fields of industrial electricity supply as well as approaches to production control 
and reinforcement learning are outlined for this purpose. 

2.1. Industrial Electricity Supply 

Based on German regulations, there are several options industrial companies can pursue in 
order to arrange their power supply. These options will be briefly outlined. 

• Power procurement [19,20]: In this case, the manufacturing companies buy the required amount 
of electricity from external sources. The general billing interval of the entire electricity market is 
15 min. There are two main options for procurement: 

o Utility company: Industrial companies may directly rely on power utility companies, 
which in general provide constant prices, thus completely bearing the price risks. 

o Market trading: Companies can actively take part in the electricity market, either trading 
directly or relying on a suitable aggregator. There are several electricity markets which can 
be characterized by their lead time. It is worth noting that there is always some lead time 
between order purchasing and the actual delivery and consumption of the electricity (see 
Figure 3). The shortest lead time is offered by the intraday market, in which electricity can 
be bought at least 5 min before delivery. In case a company has bought electricity within a 
specified interval, it must ensure that the power is actually consumed. In general, a 
tolerance bandwidth of ±5 to 10% is granted. Otherwise, there is a risk of receiving high 
penalties. 

 
Figure 3. Available short-term energy markets in Germany, depending on the time of delivery t [20]. 
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o Self-supply [21,22]: Manufacturing companies may dispose of their own power generation 
facilities, which enable them to generate their electricity on-site. Depending on the relevant 
control characteristics, power plants can be divided into two groups: 

o Variable power sources (VPS): The power generation of these sources is difficult to control 
because it is highly dependent on the current weather conditions. The only control option 
is to cut off their power. However, since VPS do not entail any working expenses, this is not 
recommended. The most important kinds of VPS are solar and wind power plants. 

o Controllable power sources (CPS): The power output of CPS can be controlled and 
adapted within a specified range. In the manufacturing field, combined heat and power 
plants (CHP) are widely used and are assigned to this category.  

o Battery systems: Batteries consist of electrochemical, rechargeable cells and are very suitable for 
storing electricity for several hours or days [23]. However, the cells suffer from degradation over 
time. The extent of the degradation strongly depends on the charging cycles the battery is 
exposed to [24]. As a result, there exist several modelling approaches for considering the 
degradation process within a battery control strategy [25]. 

2.2. Approaches for Production Control 

The main task of production control is to ensure the manufacturing of the predefined jobs by the 
production resources, although stochastic events like machine break-downs can occur [11]. Therefore, 
production control needs to make decisions and react to unforeseen events within a few minutes or 
seconds. Although the jobs are mostly assigned to resources in advance, production control 
determines the time and order sequence of the various jobs to be manufactured in every resource. In 
general, there exist two production control strategies for accomplishing this task, and these are briefly 
outlined in the following [26,27]: 

o Reactive control strategy: The jobs are reactively scheduled based on simply dispatching rules 
like first-in-first-out (FIFO) or earliest-deadline-first (EDF). After finishing a job, the next job is 
selected, so no fixed production schedule is determined. In doing so, decisions can be made very 
quickly, whereas the solution quality is limited. 

o Predictive-reactive control strategy: A deterministic schedule is calculated for a specified 
production period so as to optimize the given objectives. However, every stochastic event during 
the production period requires a schedule update, which makes this approach computationally 
expensive. 

Moreover, multi-agent systems (MAS) display a further control strategy and are mainly 
characterized by their decentralized system architecture, so they cannot be clearly assigned to either 
one of the aforementioned categories [26]. In most cases of MAS, physical production resources like 
machines are represented by an individual agent, which pursues given goals and thereby either 
cooperates or competes with other agents [28]. Although classic MAS approaches are very fault 
tolerant and robust, they often provide a low solution quality because agents can only provide local 
optimization and can hardly pursue long-term goals [29]. However, these downsides can be 
surpassed using multi-agent reinforcement learning (MARL). A basic understanding of MARL is 
provided in the following. 

2.3. Multi-Agent Reinforcement Learning 

In reinforcement learning (RL), the focus lies on finding a control policy that is able to achieve a 
given goal. In this context, RL is formalized as a Markov decision process and builds upon iterative 
learning. During this process, a RL agent selects an action at based on the current policy and state st, 
which is executed in a given environment. Afterwards, the environment transitions into a new state 
st+1 and the agent receives a reward rt + 1 (see Figure 4). By interacting with the environment, the policy 
is iteratively updated using a RL method to maximize the long-term reward. Various methods are 
used to compute the optimal policy, value-based and policy-based approaches being the most 
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common ones. Regarding complex problems, neural networks are widely applied in order to predict 
the optimal policy or value function [30]. 

 
Figure 4. Reinforcement learning paradigm. 

For large problems, the RL approach can be extended to several agents, all of which are 
interacting in the same environment in a collaborative or competitive manner, which then is known 
as multi-agent reinforcement learning. In the case of collaborative agents, cooperative behavior can 
be reinforced by giving all agents a common reward. They thus learn to maximize this common 
reward together. One of the main challenges thereby is the so-called credit assignment problem [31]: 
In a multi-agent environment, it may be difficult for agents to assess their individual contribution to 
globally assigned rewards, thus making agents struggle to optimize their own policy. 

RL has proven able to solve very large and complex problems, e.g., Alpha Go [32]. Although a 
noteworthy computational effort is needed for training, the policy can then be executed within 
seconds while using little computation effort. However, RL—and especially MARL—require a 
detailed model of the environment. In addition, aspects like the reward assignment, the state space 
of the agents, and the hyper parameter of the learning algorithm have a strong impact on the solution 
quality [13]. 

3. Literature Review 

In the context of considering energy aspects within production control, a large number of 
researchers have focused on increasing the energy efficiency and flexibility in production sites. In the 
following analysis, the focus will lie on approaches for an energy-oriented production control, which 
also include the energy supply side. However, only approaches with a focus on energy flexibility 
aspects will be considered, since this objective is crucial to exploiting fluctuating electricity prices. In 
this context, production control indicates an ability to rapidly react to events. Approaches for single-
machine systems as well as publications in the field of smart grids used for non-industrial buildings 
will also be excluded from the analysis. 

In one of the first approaches, [33] presents a reactive production control method used to adapt 
the energy consumption of a production system to variable prices. Material buffers and flexibility in 
personnel and shift planning are used thereby. The proposed system in [34] also takes advantage of 
material buffers in order to temporarily reduce electricity consumption while also maintaining a 
given throughput. The measures are implemented and selected based on predefined rules, so this 
approach can be assigned to the domain of reactive control strategies. The method presented in [35] 
addresses both energy flexibility and efficiency aspects while applying a mathematical model for 
predictive-reactive job scheduling. Regarding short-term reactions, there exists an additional rule-
based logic used to temporarily adapt the energy consumption, e.g., by shutting down processes. 
Reactive dispatching rules considering the available amount of energy and the job due time are the 
central element in [12]. The approach aims at meeting a given energy availability within some 
tolerance while controlling a production system. In addition, variable spot market prices and self-
supply based on renewable power plants are considered. Moreover, a predictive-reactive, short-term 
load-management for peripheral energy consumers like heating or ventilation is applied. Ref [36] 
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presents another reactive approach to energy-oriented production control in order to exploit volatile 
prices. However, no market constraints, e.g., the required due time, are considered. 

In order to adapt short-term energy consumption to volatile prices and to changing power 
availability from renewable sources, ref [37] presents a scheduling approach based on mixed integer 
programming. In this case, the billing interval was set to one hour, which reduces complexity when 
compared to the widely used 15 min. A system considering volatile prices, self-supply, and a battery 
storage is introduced in [38]. A two-stage optimization strategy was developed for this purpose using 
a limited application for complex systems due to the increasing computational power demand. The 
focus of [39] lies on the integration of volatile energy prices into the short-term decision making for 
job scheduling. Here again, a predictive-reactive algorithm is developed, whereas the computational 
expense increases exponentially with a growing problem size. A MAS used to decrease energy costs 
based on intelligent scheduling and volatile prices is developed in [40]. The agents are bargaining for 
jobs, thus minimizing energy costs, production costs, and throughput time.  

Figure 5 summarizes the analysis of the contributions considered and unveils the central gaps 
concerning electricity supply as follows. First, volatile prices from the public grid have been widely 
integrated into production control approaches. However, the actual organizational and technical 
boundaries of the short-term electricity market (i.e., the required lead time and market fees) have not 
yet been considered in the context of production control. As a result, market trading has only been 
partially considered by the literature in question. Second, the potential electricity supply options—
short-term market, self-supply, and battery systems—have not yet been integrated together into one 
holistic system. Additionally, battery systems have only been regarded in one approach [38], which 
uses a simple battery model that does not include cycle-dependent battery degradation mechanisms. 
However, bringing all of the electricity supply options together is a promising way of efficiently 
reducing electricity costs. 

 
Figure 5. Literature review of energy-oriented production control. 

On the control strategy side, mainly reactive and reactive-predictive approaches are applied. It 
is worth noting that the analyzed reactive-predictive approaches indicate the computation effort and 
the limited ability for solving large-scale problems. As a result, a joint optimization of both all 
relevant electricity supply options and production resources is rarely possible when using the 
applied control approaches because reactive approaches are not suitable for such complex systems, 
and reactive-predictive strategies require a high level of computational effort, thus contradicting the 
requirement for short-term reactions. Although a bargaining MAS is developed in [40], RL has not 
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been used in this field of research, but it would be promising given the ability to handle stochastic 
events and short-term decisions.  

Therefore, the main goal of this work is the integration of the three relevant options of electricity 
supply—a battery system, self-supply, and trading at the short-term market to use volatile prices—
into a system for energy-oriented production control. The literature review shows that a system able 
to combine all these elements and at the same time react in real-time has yet not been developed, and 
to do so, a new control strategy has to be derived. In doing so, a novel smart grid for an industrial 
production site is created that optimizes both the energy demand and supply sides and production 
costs simultaneously. The solution strategy is based on MARL, and it exhibits a promising and novel 
approach in this given field of research. 

4. Proposed MARL Approach 

Using MARL as a solution approach has a large impact on the system architecture. In the 
following, first a system overview is given before the sub-models of the environment are introduced 
briefly. Using this as a basis, the resulting state and action space of the MARL agents will be 
described, and the assignment of the complex reward function will be illustrated. Finally, the selected 
training procedure will be outlined.  

4.1. System Overview 

The central elements of the developed approach are the RL-enhanced control agents, the 
complex reward function, and the environment in which the agent can act, gain experience, and learn. 
Three types of agents exist in this context, and they are characterized by their specific tasks. Whereas 
the market agent executes the trading of electricity on the short-term market, the battery agent 
controls the charging and discharging power of the battery system. Every physical production 
resource with the task to manufacture production jobs, e.g., a machine, is represented by a resource 
agent. Consequently, there may be several resource agents operating in parallel within one system 
and defining the manufacturing time and job sequence of the specific production resource they 
represent. 

The agents interact with the environment by selecting actions. In this context, the considered 
options of energy supply and the production system, including all technical and organizational 
restrictions, are modelled as the environment. The new state of the environment that results from the 
agents’ actions as well as the impacts the actions entailed can thus be computed. Based on the latter, 
the reward function assigns the reward to every agent. Due to the system complexity and the different 
agent types, there are mainly two different types of rewards. The first relates to the energy costs, 
which are modelled as a global reward that all types of agents can receive. In contrast, the production 
costs are a reward only assigned to the resource agents, respectively. Figure 6 displays the resulting 
system structure.  
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Figure 6. System structure. 

4.2. Environment 

As shown in Figure 6, the environment consists of three main elements: the electricity market, 
the ad-hoc power supply, and the production system. These elements will be successively outlined 
in the following.  

4.2.1. Electricity Market 

For industrial companies, several markets exist for potential participation (see Figure 2). Since 
the presented system focuses on the short-term control of a production site, the possible market 
participation is limited to the intraday market due to its lead time of only five minutes. In the other 
markets, electricity can be traded only at least one day in advance, so these markets are out of scope 
for the system in question. However, power which has already been purchased in advance on any of 
the aforementioned markets (hereinafter referred to as “prior purchased power”) is an input into the 
system and must be consumed.  

On the intraday market, the prices change dynamically over time based on the relevant supply 
and demand. The result is a high level of price uncertainty while trading. In addition, electricity can 
be purchased during every 15 min time interval, which is more than five minutes in the future. In 
order to reduce the complexity and to avoid modelling of price uncertainty, market trading is only 
limited to the next billing interval. This means that the market agent can only buy or sell electricity 
in the consecutive billing interval and at a defined time of nine minutes before the actual beginning 
of the corresponding billing interval. There thus exists a time buffer of four minutes in order to ensure 
that the trading is transacted within the required five minutes of lead time. A proportional order fee 
is modelled for every trade. 

4.2.2. Ad-hoc Power Supply 

Power plants used for electric self-supply (VPS and CPS) and batteries are merged into the ad-
hoc energy supply. What they all have in common is that their power generation can be adapted on 
an ad-hoc basis with no actual lead time. An additional factor displays the public grid in which load 
deviations can be settled. In the following, the modelled sub-elements will be described before the 
resulting coaction is derived. 

Regarding self-supply, VPS as well as CPS are modelled. As mentioned earlier, VPS do not entail 
any operational costs. Consequently, the resulting costs for a company do not differ whether 
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electricity from a VPS is used or not. Consequently, electricity from this source is modelled as free 
with respect to price. In contrast, CPS (and especially CHP) rely on fuel and thus directly result in 
operational costs. Moreover, the efficiency of CHP decreases when the plant is not being operated at 
nominal capacity [41]. For the sake of simplification, this correlation is assumed to be linear, using an 
efficiency factor which displays the maximum efficiency loss when the CHP is operating at minimal 
power. Technically, the maximal power generation of VPS is limited by the current weather 
conditions and can only be cut off, whereas CPS can be controlled within a specific range.  

The charging and discharging power of batteries is limited by the nominal storage capacity and 
C-rate. The latter indicates the minimal time in hours for completely charging or discharging. In the 
context of this approach, the battery charging and discharging power is assumed to be constant 
within a three-minute time period. In addition, there is a specific storage efficiency to be considered. 
Since the degradation of a battery mainly depends on its cycles, the battery cell life will be affected 
by the charging strategy. In the relevant context of a stationary battery (due to volatile power 
availability and consumptions), a flexible battery control strategy resulting in irregular cycles is 
expected. Therefore, the degradation model presented in [42] is applied, which allows the assessment 
of the consequences of irregular cycles for the degradation of the battery. Thus, after every work shift, 
the resulting battery degradation can be calculated, and the working life wear can be transformed 
into costs on the basis of overall battery purchase costs. 

Although various options exist for adapting energy supply and demand, short-term gaps 
between power availability and demand can still occur. As an ultimate measure, this electricity 
shortfall can be compensated for via the public grid. However, this means that either more or less 
energy from the grid is being consumed than has actually been bought on the markets in advance, 
which can result in penalty costs in case a specific tolerance level is exceeded (see Section 2.1). The 
amount of the penalty costs depends on the expenses which the grid operators have to face due to 
this unexpected divergence and is thus determined individually for each event. Therefore, a linear 
function according to [43] is used to model the penalty costs.  

The relevant options for an ad-hoc energy supply—self-supply via VPS and CPS, use of battery 
storage, and the public grid – need to be coordinated and are thus transferred to an operation scheme. 
Regarding the modelled control parameters (e.g., charging power) and costs structure (e.g., 
degradation or electricity production costs), the following key-findings can be extracted: 

o The electricity bought from the intraday market and other prior purchased power should always 
be consumed in order to avoid penalty costs.  

o Power from VPS should also be consumed since this does not result in any costs. Only in the 
case of excessively low power demand from the production system can VPS be temporarily cut 
off so as to avoid penalty costs for consuming less electricity than previously purchased. 

o The remaining power demand which cannot be met by VPS and the electricity purchased from 
the market has to be provided by the battery and the CPS. 

o Compensating for a deficit of power availability and demand with energy from the public grid 
should be avoided, as this can incur high costs. 

Considering these key aspects, the control mechanism of the considered ad-hoc power supply 
elements works according to the following four guidelines, which are executed in every time step: 

1. Calculation of the charging/discharging power of the battery system based on RL (Battery 
Agent), whereas the total state of all elements in the power supply (battery, VPS, CPS, prior 
purchased power) and the current demand from production side is considered. 

2. The gap between expected power consumption and available power from VPS, battery power 
as well as purchased electricity from the markets is settled by CPS as much as possible. 

3. If there is more energy available than the expected demand, cut-off power generation of VPS to 
balance demand and supply as much as possible. 

4. The remaining deficit is settled by the public grid 

Consequently, the ad-hoc power consumption is based on a single RL agent used to control the 
battery. All other control operations are based on simple rules. The control system complexity can be 
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significantly reduced in this way. However, in order to minimize total energy costs, the battery agent 
should learn to adapt the charging and discharging of the battery in a way that the CPS can still 
optimally be used. Thus, the battery agent indirectly controls the CPS power generation. 

4.2.3. Production System 

The applied production system model is based on the approach developed in the preliminary 
work [44]. A defined number of jobs, which are found in the job queue of every resource in the 
beginning of a manufacturing shift, is assigned to every production resource, e.g., a manufacturing 
machine. The jobs can be grouped into job types, with jobs of one type having the same machining 
time and average power demand. However, every job has an individual due date, which lies within 
the current shift. Furthermore, every job type requires a different set-up state of the resource used for 
processing, so a type-individual set-up time with a specific energy demand has been modelled.  

Regarding production costs, the time-dependent cost model in [45] has been used. In case a job 
is finished after the given due date, a linear cost-function considering the amount of delay is applied. 
In contrast, storage costs are implied in cases when the finishing time is earlier than the due date for 
the job and outside of a certain time tolerance. In addition, two different kinds of stochastic events, 
rush jobs and machine breakdowns, are modelled, both of which occur arbitrarily during a shift. The 
machine breakdowns last for a defined number of time steps, which is not known in advance.  

Every production resource is represented and controlled by a single resource agent. It is the task 
of every resource agent to select the next action after the previous action is finished. For resource 
agents, this means either choosing one of the jobs currently waiting in the job queue for processing, 
or going to a stand-by state. The latter entails only a little energy consumption, but no job can be 
processed during that time. Consequently, it may be beneficial for resources to temporarily go into a 
stand-by state in order to finish a job on time without incurring storage costs and, at the same time, 
reducing the energy demand during the stand-by period. If the production resource does not have 
the required set-up state for processing a selected order, a set-up process is automatically executed 
prior to the beginning of processing. 

4.2.4. System Sequence 

On the operational level, the system is discretized into consecutive time steps t with a length of 
three minutes. In this case, every 15 min billing interval is divided into five partial intervals, so there 
are several time steps for adjusting the energy consumption within one billing interval. The resulting 
system sequence is displayed in Figure 6. In the beginning of every time step, all of the resource 
agents which have completed their action will choose a new action. Based on this, the battery agent 
and the market agent select their actions simultaneously. Whereas the battery agent comes into action 
every partial interval, the market agent only acts every 15 min. This is due to the fact that electricity 
can only be purchased within 15 min intervals (see section 2.1). In conclusion, it can be noted that, in 
total, all agents act in an asynchronous manner.  

4.3. State and Action Space 

The observation space, which represents the current state for every agent, is crucial in MARL. 
The optimal observation space for the given environment was derived via various simulation 
experiments based on a step-wise feature reduction. The following shape of the observation space 
indicates the best solutions of these examinations.  

Especially with regard to cooperative behavior, it has proven to be beneficial for the agents to 
not only receive information on their own state, but also on the state of the cooperative agents and 
the entire environment. As a result, the agent is able to estimate and predict the behavior of the 
cooperative agents. However, the information on cooperative agents is not modeled in detail. Hence, 
the state of cooperative resource agents is abstracted. The total resulting observation spaces of 
resource, battery, and market agents are summarized in Table 1. For resource agents, their specific 
set-up state as well as the number and deadline of jobs in the queue in front of the resource (which 
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are grouped by their job type) are important. The cooperative resource agents are, for all three types 
of agents, represented by the currently selected action and the remaining time steps for its 
completion, the next three upcoming deadlines of the jobs in the queue in front of the cooperative 
agent’s resource, as well as the total number of waiting jobs and the resource specific energy demand. 
The state of the battery and market agents are briefly summarized by the features current state of 
charge (SoC) and the purchased electricity in the current billing interval. In addition, all agents 
perceive the current state of the environment, the current billing and partial interval, as well as the 
available VPS power, and the amount of prior purchased electricity. Furthermore, information about 
the predicted electricity price on the intraday market only proved to be beneficial for the battery and 
market agents.  

Due to the required machining time of jobs, only a few resource agents select an action in a time 
step because some might still be processing jobs which are not finished yet. Given this fact, part of 
the required amount of electricity in the next interval can be estimated. Based on this consideration, 
the features of known power demand and the number of agents with known actions in the next steps 
are derived. They provide an indication of how much power will be needed in the short term, and 
experimental results have proven the ability of this feature to improve the actions of resource agents. 
Since the battery agent selects an action after the resources do, the power demand can be derived 
based on the selected actions of all resource agents. Given that the market agent does not operate in 
the short term, but rather at nine-minute intervals, this feature is not a suitable part of its observation 
space.  
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Table 1. Agent-specific observation space. 

 Observation feature Agent 

Category Name Explanation 

Re
so

ur
ce

 

Ba
tt

er
y 

M
ar

ke
t 

Ag
en

ts
 

Re
so

ur
ce

 Sp
ec

ifi
c Setup state Current setup state of the resource x   

Job deadlines Three next deadlines of every job type x   

Number of jobs Number of jobs in queue for every job type x   

Co
op

er
at

iv
e 

Action Currently selected action x x x 
Remaining steps Remaining time steps for currently selected action x x x 
Next deadlines The three next upcoming job deadlines x x x 
Number of jobs Total number of jobs in queue x x x 
Energy demand Total energy demand of all jobs in queue x x x 

Battery SoC Current Battery State of Charge x x x 
Market Purchased electricity Purchased electricity in the current billing interval x x x 

En
vi

ro
nm

en
t 

Billing interval Count of current billing interval x x x 
Partial interval Count of current partial interval x x x 
VPS power VPS power generation forecast for the next 2 hours x x x 
Prior purchased 
electricity Prior purchased power for the next 2 hours x x x 

Electricity price Electricity price forecast for the next hour  x x 
Known power 
demand 

Power demand of all resource agents, who have not finished the 
current action yet x   

Number of agents 
with known actions 

Number of all resource agents, who have not finished the current 
action yet x   

Power demand Total power demand in the current partial interval (only available, 
when all resource agents have already chosen their actions) 

 x  

 

A discrete action space is applied in order to model the actions of the agents. The resource agents 
can select whether to process a job of every job type or a stand-by step. The action-space of battery 
and market agent is based on a linear distribution of the maximum and minimum charging rate and 
allowed trading power, respectively. In case of bad actions, a penalty reward is awarded. This can 
happen when, e.g., a job type is selected which is actually currently not available in the queue, or 
when the selected charging rate and duration exceed the battery capacity.  
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4.4. Reward Calculation and Assignment 

The reward function and assignment are crucial for the learning success in RL. Since the given 
environment consists of various elements and agents, there are several aspects to consider. In order 
to avoid the credit assignment problem, the reward function is partly divided into global and local 
rewards (see Figure 7). Whereas local rewards are only assigned to single agents, all agents are 
receiving global rewards. In addition, some parts of the reward are assigned immediately, and others 
are assigned at the end of a billing interval or training episode, which means the end of a shift for the 
case in question. 

 
Figure 7. System sequence. 

As displayed in Figure 6, there are two components of the reward function: energy costs and 
production costs. As it is the overall system objective to minimize total costs, the assigned rewards 
consist of the negative costs that the agents aim to maximize. 

Beginning with the resource agents, the time-dependent production costs of a job can only be 
influenced by the resource to which the specific job is assigned. As a result, these production rewards 
𝑅𝑅𝑡𝑡,𝑎𝑎
𝑝𝑝  are granted as an individual and local reward to the resource agents 𝑝𝑝 immediately after an 

action 𝑎𝑎 is finished and consist based on [45] of time-dependent delay and storage costs 𝑇𝑇𝑇𝑇𝑛𝑛(𝑡𝑡), 
setup costs 𝑆𝑆𝑆𝑆𝑛𝑛, and labor costs 𝐿𝐿𝐿𝐿𝑛𝑛. In case an action 𝑎𝑎 lies outside the currently valid action set 
�𝐴𝐴𝑅𝑅𝑅𝑅,𝑡𝑡�, a penalty reward 𝑟𝑟𝐵𝐵𝐵𝐵 is assigned: 

𝑅𝑅𝑡𝑡,𝑎𝑎
𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧
−��𝑇𝑇𝑇𝑇𝑛𝑛(𝑡𝑡) + �𝑆𝑆𝑆𝑆𝑛𝑛 + 𝐿𝐿𝐿𝐿𝑛𝑛�  ,𝑎𝑎 ∈ �𝐴𝐴𝑅𝑅𝑅𝑅,𝑡𝑡�

 − 𝑟𝑟𝐵𝐵𝐵𝐵 ,𝑎𝑎 ∉ �𝐴𝐴𝑅𝑅𝑅𝑅,𝑡𝑡� 

  (1) 

Since the processing of a job can range over several billing intervals, it might not be possible to 
assign the specific electricity cost of a job to one time interval and, respectively, to a single action. 
This is why the resource agents receive the resulting total electricity reward 𝑅𝑅𝑠𝑠𝐸𝐸  of the entire 
environment at the end of a training episode of length 𝑇𝑇. According to Section 4.2, the energy costs 
consist of CPS generation costs 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡), penalty costs due to deficits settled by the public grid 𝐶𝐶𝑃𝑃𝑃𝑃(𝑡𝑡), 
costs for intraday trading 𝐶𝐶𝐼𝐼(𝑡𝑡), and resulting battery degradation 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖(𝑡𝑡): 

In contrast, the electricity costs can be assigned to the battery agent directly at the end of every 
billing interval 𝑖𝑖. Since it takes actions for every partial interval 𝑡𝑡, the battery agent receives the 
reward inspired by Formula (2) after every fifth action. Again, the degradation costs, which are 
calculated with the battery degradation model and the charging gradient, are integrated into the 
energy costs. 

𝑅𝑅𝑠𝑠𝐸𝐸 = −��𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) +
𝑇𝑇

𝑡𝑡=0

𝐶𝐶𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐶𝐶𝐼𝐼(𝑡𝑡) + 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖(𝑡𝑡)� (2) 
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The market agent buys or sells electricity for the subsequent billing interval nine minutes in 
advance. Thus, when the market agent chooses a new action, the effects of the previous action cannot 
be calculated because the respective billing interval is not finished yet. Due to this fact, the market 
agent receives the resulting electricity reward 𝑅𝑅𝑠𝑠𝐸𝐸 stated in Formula (2) at the end of the episode, 
which means the shift respectively. In total, the reward is individually assigned to each agent, as 
displayed in Figure 8, in order to meet its specific needs and boundary conditions.  

 
Figure 8. Reward assignment in every time step. 

4.5. Training Procedure 

By interacting with the environment, training batches consisting of state–action pairs and 
rewards are collected, which in return are used by the RL method in order to maximize the long-term 
reward. In this context, the overall costs are reduced because the reward function is derived from the 
actual costs. Furthermore, a decentralized training approach is applied due to the heterogeneous 
system, in which different roles have to be learned by the agents. In this regard, an actor-critic RL 
method using proximal policy optimization [46] and a generalized advantage estimator [47] are used 
for each agent in order to learn individual policies, as this is a promising approach for discrete control 
tasks [48]. The value and policy functions are approximated using two separate, fully connected 
neural networks. Furthermore, a training iteration is completed whenever 40,000 experiences have 
been gathered. To collect batches of experiences, eight environments are run in parallel. The training 
is stopped after 3000 iterations, and the resulting policies serve as an input for the following 
validation scenarios.  

5. Case Study 

To examine the effect of the proposed energy-oriented production control method, this section 
will present a case study based on a simulation study with two benchmark algorithms. First, the 
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applied system set-up will be described before the examined validation scenarios are presented. 
Finally, the results will be depicted and discussed. 

5.1. Set-Up 

The production system was derived from a contract manufacturing business for surface 
treatment. The portion of the factory site having the main energy demand consists of five machines 
in total, where jobs with a fixed lot size are produced. In every resource, between two and four 
different job types can be machined, each requiring a specific set-up state. Additional parameters like 
stochastic events and delays as well as storage costs are considered, like those discussed previously. 
The modelling data of the production system are briefly summarized in Table 2. 

Table 2. Modelling data of the production system. 

Category Parameter Value 

Production 
resource and 

jobs 

Total number of resources 5 
Number of job types, which can be machined on the same 

resource 
2—4 

Machining duration of a job depending on the job type 21—42 min 
Average power consumption of a job depending on the 

job type 20—48 kW 

Set-up duration of a job depending on the job type 6—12 min 

Stochastic 
events 

Probability for the arrival of rush jobs during a shift 
(normally distributed) 5% (𝜎𝜎 = 2.5%) 

Probability for a resource breakdown in every time step 1% 
Average duration of a breakdown (normally distributed) 12 min (𝜎𝜎 = 3 min ) 

Costs Delay costs of a job 48—88 €/h 
Storage costs of a job 5.2—11 €/h 

On the energy supply side, data from a solar power plant near the production site were used as 
a VPS. In addition, the company had a local CHP plant with a maximum generation capacity of 32 
kW and a lithium battery system with a total capacity of 35 kWh. To settle load deviation from the 
public grid, a tolerance of ±5% and costs of 200 €/MWh were implied. Considering the electricity 
market, the energy prices at the German intraday market from the period October 2018 to September 
2019 were used. In addition, it was assumed that a price forecast would be available at a standard 
deviation of 5%. The energy demand of a production shift was determined by the number of jobs to 
be machined, which is thus not constant. In order to still be able to generate comparable scenarios, 
the following dimensioning of the elements of energy supply was assumed: there exists a solar power 
plant which provides roughly 25% of the total energy demand; 55% has already been purchased in 
advance, thus forming a constant base load, and the rest can be provided by the CPS. Comparable 
scenarios were calculated in this way, the used data is summarized in table 3.. 

In order to generate sufficient training data, a simple training data generator was introduced. At 
the beginning of every training episode, arbitrary jobs were generated for every production resource. 
Thereby, the overall net utilization, without considering set-up, was random at between 60 and 80%. 
On the energy side, a representative day of the solar power and market data was extracted for every 
episode and changed by a normal distribution. A sufficient amount of realistic training data was able 
to be provided in this way.  
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Table 3. Parameters of the energy system. 

Category Parameter Value 

Solar power 
Electricity price 0 ct/kWh 

Maximal generation power (in % of total power demand) 25%  

CHP 

Electricity price 10 ct/kWh 
Nominal generation power 16 kW 
Minimal generation power 6 kW 

Efficiency factor 0.1 

Battery system 

Nominal storage capacity  35 kWh 
C-rate 1 

Purchase costs 
200 

€/kWh 
Total charging and discharging efficiency 0.9 

Intraday market 
Proportional order fee (due to taxes and apportionments) 

7.75 
ct/kWh 

Prior purchased, constant base load power (in % of total 
energy demand) 

55% 

Load compensation 
from public grid 

Additional costs for load deviation 
200 

€/MWh 
Tolerance band for load deviations ±5% 

5.2. Validation Scenarios 

In order to assess the system capability, the developed MARL approach was compared with two 
benchmark scenarios: 

o Reactive control strategy (RCS): The reactive production control was based on the commonly 
used dispatching rule EDF. A widespread rule-based heuristic was developed to control the 
battery and CHP [49]. In this case, the battery power was adjusted, with the goal of maximizing 
CHP power generation and minimizing the resulting deviation between power demand and 
supply as much as possible. The generation of VPS was only cut off when there was still 
excessive power available while the battery was on maximum charging power and the CHP 
completely turned off. Since market trading is not possible using a rule-based method, there was 
no electricity trading in this scenario.  

o Predictive-reactive control strategy (PCS): An optimization approach based on the 
metaheuristic Simulated Annealing was applied to control the overall system. The production 
plan was rescheduled both in the beginning of an episode and every time that a stochastic event 
occurred. The state transitions were thereby selected in an arbitrary manner, either by changing 
the starting time or the sequence of jobs, trading electricity, or adjusting the battery power. The 
implementation was based on [50]; for the parameters of starting temperature, minimum 
temperature, alpha, and iterations, values of 10, 0.01, 0.9999, and 100 were chosen. 

The technical implementation of the MARL system was based on RLlib [51] and its 
corresponding libraries. The learning algorithm Proximal Policy Optimization (PPO) as well as 
neural networks with two hidden layers, 128 and 1024 neurons respectively, were applied. 

5.3. Results and Discussion 

The three approaches have been benchmarked on ten selected production shifts based on energy 
and production data from the production site. Before this, MARL was trained for 2500 episodes, 
which took about 5 days. The average of resulting costs of the ten shifts is displayed in figure 9. 

It became clear that the presented MARL system outperformed the reactive control approach 
(PCS) on production and energy costs. In contrast, the predictive, SA-based algorithm (RCS) 
achieved, in total, roughly 35% better results than the MARL approach. MARL thereby achieved 
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lower average energy costs than SA, although the production costs were up by 40%. This indicated 
that MARL is stuck in a local optimal, which focused on the energy cost reduction, although there is 
still great potential on the production cost side. However, regarding the calculation time, an 
important advantage of MARL became clear. After training, the MARL system was able to compute 
decisions within seconds, whereas it took up to 2.5 h for the SA algorithm to calculate a new solution 
when new stochastic events occurred. Due to this weak reactivity, the application of SA was not 
suitable for the case in question. In a real-life scenario with stochastic events, decisions have to be 
made within a few seconds. The behavior of both the system and the market and battery agent is 
displayed in Figure 10 for an exemplary shift. The upper part of the figure shows the initially 
available electricity, which consisted of the pre-purchased base load and PV power; the resulting 
availability and total energy consumption are also displayed. It became clear that the available 
electricity can be widely adapted to the energy consumption. Regarding the ad-hoc power supply, 
the CHP was mainly run at maximum power, while the flexibility of the battery was being exploited. 
On the market side, power was bought in the second half of the shift, when the battery was empty 
and the prices low, then sold at the end of the shift when the energy demand dropped due to the fact 
that most jobs had already been machined. 

 
Figure 9. Average results for the ten validation scenarios. 

In summary, the results show that the developed approach was able to control the three 
considered options of energy self-supply, battery, and short-term electricity market as well as a 
production system. Compared to a simple rule-based control strategy, all of the various cost factors 
could be minimized jointly while also taking battery degradation costs into account.  
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Figure 10. Exemplary system behavior for a given shift. 

6. Conclusions 

This article presents a new MARL-based approach for energy-oriented production control. Since 
the existing related studies do not consider all of the available power supply options for industrial 
companies at the same time, although their combination promises a high potential for cost-reduction, 
the focus of this work lies on the integration of self-supply, battery systems, and short-term electricity 
trading into a production control strategy. Thus, industrial companies are enabled to efficiently and 
automatically reduce electricity costs, exploiting short-term fluctuations of electricity prices in real-
time and, at the same time, considering production costs. Due to the resulting system complexity and 
the required reactivity of the system, the application of common control strategies is limited in this 
context, and a new approach based on MARL was developed. For this purpose, the intraday market, 
a stationary battery with a degradation model, power plants for self-supply, and a production system 
were modelled in a given environment. Three different agents, a resource agent, a battery agent, and 
a market agent, were used to minimize the global costs. A distributed and partly global and local 
reward function based on time-dependent production and energy costs was designed for this 
purpose. After training the system on a given production system with self-supply and a battery, the 
agents outperformed a reactive rule-based benchmark-scenario by an average of 84%, although the 
optimization approach via Simulated Annealing still performed 35% better. In terms of 
computational expense and reactivity, however, MARL clearly showed its advantages: the 
computation of a new decision lasted only seconds, whereas up to 2.5 h was needed to solve the 
Simulated Annealing algorithm. However, compared to the results with SA, the presented MARL 
seems to be stuck in local optima. This may be caused by a lack of exploration of new state–action 
trajectories of the environment and may be enhanced by using promising algorithms for this problem, 
such as [52], in future work. 
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In the context of the developed system, several simplifications were made with respect to the 
production and market sides in particular. So far, the method has been limited to a single-stage 
production system and some market characteristics, e.g., the bidding process and price risks were 
neglected. In addition, there was a lack of sufficient real training data, so a rudimentary training data 
generator was introduced. Since no benchmarks were available for the examined scenario, two 
specific benchmark algorithms were developed within the scope of this work. In future works, the 
given limitations considering modelling and benchmarks will need to be further reduced. In addition, 
the aspects of reward function, observation states, and learning will be examined more closely in 
order to further improve the cooperative behavior of the agents as well as the solution quality in 
general.  
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