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Abstract: This paper proposes a study in theoretical and experimental terms focused on the vibration
beating phenomenon produced in particular circumstances: the addition of vibrations generated by
two rotating unbalanced shafts placed inside a lathe headstock, with a flat friction belt transmission
between the shafts. The study was done on a simple computer-assisted experimental setup for
absolute vibration velocity signal acquisition, signal processing and simulation. The input signal is
generated by a horizontal geophone as the sensor, placed on a headstock. By numerical integration
(using an original antiderivative calculus and signal correction method) a vibration velocity signal
was converted into a vibration displacement signal. In this way, an absolute velocity vibration sensor
was transformed into an absolute displacement vibration sensor. An important accomplishment in
the evolution of the resultant vibration frequency (or combination frequency as well) of the beating
vibration displacement signal was revealed by numerical simulation, which was fully confirmed
by experiments. In opposition to some previously reported research results, it was discovered that
the combination frequency is slightly variable (tens of millihertz variation over the full frequency
range) and it has a periodic pattern. This pattern has negative or positive peaks (depending on the
relationship of amplitudes and frequencies of vibrations involved in the beating) placed systematically
in the nodes of the beating phenomena. Some other achievements on issues involved in the beating
phenomenon description were also accomplished. A study on a simulated signal proves the high
theoretical accuracy of the method used for combination frequency measurement, with less than
3 microhertz full frequency range error. Furthermore, a study on the experimental determination of
the dynamic amplification factor of the combination vibration (5.824) due to the resonant behaviour
of the headstock and lathe on its foundation was performed, based on computer-aided analysis
(curve fitting) of the free damped response. These achievements ensure a better approach on vibration
beating phenomenon and dynamic balancing conditions and requirements.
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1. Introduction

Rotating unbalance is a topic frequently mentioned in the analysis of the dynamics of rotary bodies
(rotordynamics [1]). The rotating unbalance occurs due to an asymmetry of mass distribution (in some
different regions of the rotary body, the center of mass is not placed on the axis of rotation). Centrifugal
forces occur in these unbalanced regions of the rotary body. The resultant of these centrifugal forces is
transmitted through the bearings to the structure where the rotary body is placed. In each bearing the
resultant of centrifugal forces has two components at orthogonal directions. Each component acts as a
harmonic excitation force against the structure, thus generating vibrations.
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For some specific appliances these vibrations are desirable (e. g. in vibration shakers used also
as mechanical vibration exciters [2,3], vibration alert systems in mobile phones, electronic vibrating
bracelets [4], and haptic feedback devices with vibrations [5]). Generally, the vibrations due to the
rotating body unbalances have highly undesirable effects (e.g., bad surface quality in the grinding
process [6,7], premature bearing destruction [8,9]), and human body discomfort [10]). In order to
measure [11] and to eliminate the unbalance of rotary bodies [12–14] (using additional balancing masses
and additional inertia [15]), several special requirements must be met and specialized equipment must
be used [16,17]. Actually, one of the best ways to balance rotary unbalanced bodies is through the use
of self-balancing systems [18,19].

Sometimes two rotary unbalanced bodies having almost the same angular speed (or rotational
frequency) which rotate in the same structure (e.g., in centerless grinding machines, [20]) produce a
vibration beating phenomenon [10,21,22].

Each rotary unbalanced body generates a vibration. The addition of two vibrations, having
slightly different frequencies, produces the aforementioned beating phenomenon. This is a resultant
vibration with periodical variation of amplitude, with nodes (where the amplitude has a minimum
value, the addition of the two vibrations produces destructive interference, 180 degrees out of phase
between the constituents of the resultant vibration) and anti-nodes (a maximum amplitude, where the
addition of the two vibrations produces constructive interference, with zero degrees shift of phase
between constituents) [23]. Obviously the beating phenomenon in mechanics is not solely related to
the vibrations produced by rotary unbalanced bodies, it also occurs when two vibration modes with
almost the same modal frequency are excited [24,25], and it occurs as well when a system vibrates
simultaneously due to forced sinusoidal excitation close to a resonant frequency and due to a free
response [26–29].

Some specific appliances use the vibration beating phenomenon to monitor the condition of
mechanical systems, e.g., monitoring the adhesion integrity of single lap joints [30], monitoring the
structural integrity of helicopter rotor blades [31], and for seismic vibration testing [32]. A vibration
beating mechanism in piezoelectric energy harvesting systems is proposed in [33].

In machine tools, in addition to a critical source of vibrations (self-excited vibrations in turning [34],
milling [35] or grinding [36] processes), the vibrations produced by rotary unbalance (generated by
tools [37], shafts [38] or work pieces [36]) and particularly the beating phenomenon [6] created by
rotary unbalanced bodies, are important items. This paper proposes some approaches, in theoretical
and experimental terms, to address the vibration beating phenomenon produced inside a Romanian
lathe headstock SNA 360, by two inner unbalanced rotary shafts, rotating with very close angular
speeds. The main achievements of this paper are producing results in the areas of: vibration beating
monitoring, conversion of a velocity vibration signal into a displacement signal (by antiderivative
calculus), and the evolution of beating vibration signal frequency (pattern, simulation, measurement
and accuracy measurement), as well as producing a study of the influence of headstock and lathe
foundation dynamics on vibration amplitudes.

2. A Theoretical Approach

Assume that the rotary unbalance of each shaft (each of which rotates at angular speeds of
ω1 and ω2, respectively) is reducible at the asymmetry of mass distribution with unbalance masses
m1 and m2, respectively, placed in a single plane at distances r1 and r2, respectively, to the rotation
axis. The horizontal projection of the centrifugal forces of each rotary unbalance (F1 = m1ω2

1r1 and
F2 = m2ω2

2r2) generates vibration displacements y1 = kDaf1F1cos(θ1) and y2 = kDaf2F2cos(θ2), where k
is the stiffness of the headstock and the lathe foundation, Daf1 and Daf2 are the dynamic amplification
factors and θ1 = ω1t+ϕ1 and θ2 = ω2t+ϕ2 are the instantaneous values of the angle of the centrifugal
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forces with respect to the horizontal direction (ϕ1 and ϕ2 being the instantaneous values of these angles
at t = 0). With these considerations, a complete description of y1 and y2 of the vibrations is given below:

y1 = kDa f 1m1ω
2
1r1cos(ω1t + ϕ1) = A1cos(ω1t + ϕ1) (1)

y2 = kDa f 2m2ω
2
2r2cos(ω2t + ϕ2) = A2cos(ω2t + ϕ2) (2)

Here A1 = kDa f 1m1ω2
1r1 and A2 = kDa f 2m2ω2

2r2 are the vibration amplitudes of the two
shafts, respectively. The headstock and the lathe vibrate as a single body on its foundation
(as a mass–spring–damper system) with a vibratory motion which is the result of the addition
y1 + y2 of these two vibrations, a periodical non-harmonic motion that presents itself as a beating
phenomenon [23], with nodes and anti-nodes (as the simulation from Figure 1 proves). According to
Figure 1, if the period of vibration y1 is T1 = 2π/ω1 and T2 = 2π/ω2 is the period of vibration y2, then
the period Tb of the beating phenomenon (the beat period being the time between two anti-nodes or
between two nodes, as well) and the periods T1, T2 (with T2 < T1) should fulfill this obvious condition:

Tb = nT1 = (n + 1)T2 (3)

with n being a natural number, defined from Equation (3) as:

n = T2/(T1 − T2) (4)
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Figure 1. A simulation of the beating phenomenon, where: y1 is the vibration of shaft 1; y2 is the
vibration of shaft 2, Tb is the beat period; and Tc is the period of the resultant vibration y1 + y2.

In Figure 1 n = 7. If in Equations (3) and (4) the periods are replaced by frequencies (Tb = 1/fb,
T1 = 1/f 1, T2 = 1/f 2), then the resulting frequency fb of the beating phenomenon (beat frequency or the
number of nodes per second, as well) is:

fb = f2 − f1 (5)

In Figure 1 f 2 = 8 Hz and f 1 = 7 Hz; these generate fb = 1 Hz with Tb = 1s (A1 = 10, A2 = 8, ϕ1 = 0,
ϕ2 = −π/2).
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According to [39], the resultant waveform of the vibration addition y1 + y2 has the frequency
fc = 1/Tc (as a combination frequency or modulation frequency, with the period Tc highlighted on
Figure 1) defined as:

fc = ( f1 + f2)/2 (6)

This paper will prove by simulations and experiments that this definition is not accurate, especially
when A1 , A2.

These theoretical considerations and some other supplementary issues and procedures will be
confirmed by experimental approach in this paper.

3. Experimental Setup

Figure 2a presents a lateral view of both shafts (1 and 2, placed in the headstock) involved in the
beating phenomenon due to rotary unbalance.
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Figure 2. (a) A lateral view of the shafts involved in the beating phenomenon (with a flat belt
transmission between the shafts); (b) A front view of the lathe headstock with the vibration sensor.

A friction belt transmission with a flat drive belt 3, a pulley 4 (on shaft 1) and a pulley 5 (on shaft 2)
synchronously rotates both shafts (the theoretical value of transmission speed ratio is 1:1). Here 6
depicts an additional mass (10.8 g, a permanent magnet) placed in different angular positions on pulley
5 and used to change the internal unbalancing of the shaft 2.

The shaft 1 is also the lathe main spindle (with the jaw chuck labelled with 7 on Figure 2b
placed on the opposite side of Figure 2a). Figure 2b shows an absolute velocity vibration sensor 8
(an electrodynamic seismic geophone Geo Space GS 11D, now HGS Products HG4 as described in [40]),
placed on the headstock. The geophone corner frequency (8 Hz) is smaller than the minimum frequency
of the headstock vibration (17 Hz). No significant resonant amplification at the corner frequency can
be identified (the open circuit damping being 34% of critical damping). The geophone sensitivity is
31.89 V/m/s.

The signal delivered by the vibration sensor (a voltage proportional to the vibration velocity of
the headstock) is numerically acquired by a personal computer via a computer-assisted numerical
oscilloscope PicoScope 4424 from Pico Technology, Saint Neots, UK (USB powered, four channels,
12 bits resolution, 80 MS/s maximum sampling, 32 MS memory) [41]. Due to the high sensitivity of the
geophone and oscilloscope features (e.g., a numerically controlled internal amplifier) the supplementary
amplification of the signal delivered by vibration sensor is not necessary.

The computer-aided processing of this signal was done in Matlab. Firstly, the signal delivered by
sensor must be mathematically divided by the sensitivity of the sensor in order to obtain the vibration
velocity evolution. Secondly, the velocity of vibration must be numerically integrated (by antiderivative
calculus) in order to obtain the vibration displacement evolution. The description and analysis of the
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evolution of some of the other vibration features (e.g., the combination frequency fc, the beat vibration
amplitude and the free vibrations of the lathe on foundation) were also performed.

In order to measure the average value of the instantaneous angular speed (IAS) ω1 of the main
spindle (shaft 1) rigorously, the technique described in our previous work [42] was used (with a
two phase multi-pole AC generator placed in the jaw chuck, as an IAS sensor). The same technique
(which refers only to signal processing, briefly described later on) was used for an accurate measurement
of the combination frequency fc.

4. Experimental Results and Discussion

4.1. A Beating Phenomenon Described in Vibration Velocity

Figure 3 presents the evolution of the headstock vibration velocity during a time interval of
200 s, described with 1 MS (or 1,000,000 samples as well) so a sampling interval of ∆t = 200 µs, when
the main spindle (shaft 1) rotates (and shaft 2, as well) in the steady-state regime, with constant
IAS, with an average value of ω1 = 109.2369 rad/s (for f 1 = 17.3856 Hz average rotation frequency,
or 1043.1 revolutions per minute on average).
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Figure 3. The evolution of the velocity of headstock vibrations with a beating phenomenon due to rotary
unbalanced shafts; here Tb is the beat period, A is a label for a future comment on signal evolution.

It is obvious that Figure 3 depicts a vibration beating phenomenon with nodes and anti-nodes,
with a very high value of the period Tb (96.6 s) and consequently with a very small value of beat
frequency fb = 1/Tb = 1/96.6 Hz. The beating phenomenon proves that the IASs ω1 and ω2 and also
rotation frequencies f 1 and f 2 as well, are slightly different because the diameters of pulleys 4 and 5
involved in belt transmission are not strictly the same. With T1 = 1/f 1 and the relationship between T1

and Tb from Equation (3) there are n ≈ Tb·f 1 ≈ 1679 periods T1 between nodes (and between anti-nodes
as well). This is an approximated value of n because the frequency f 1 is not rigorously constant (as is
proved, later in this paper). According to Equation (3), at each n complete rotations of shaft 1, the shaft
2 makes n + 1 or n − 1 rotations (one rotation difference), which means that the experimentally revealed
value of the belt transmission speed ratio is ω2/ω1 = T1/T2 = n/(n ± 1) ≈ 1679/(1679 ± 1). This is also
the ratio between pulleys diameters: the diameter of pulley 4 divided by the diameter of pulley 5
(assuming that there is no slipping between the belt and the pulleys).

The additional mass 6 (Figure 2a) was placed in a certain angular position on pulley 5, in order
to obtain a maximum value of the amplitude A2, and a maximum difference between amplitudes in
anti-nodes and nodes as well. It is obvious that the main spindle (shaft 1) is also unbalanced; otherwise
the beating phenomenon does not occur.
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Figure 4 presents a zoomed-in detail in the area labelled A in Figure 3. Here the dominant
component (≈6 mm/s amplitude) is the sum of two vibrations created by rotary unbalances; the other
low amplitude (and high frequency) components are related by vibrations generated by some other
headstock rotary components.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 21 
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With the values for f 1 and fb revealed before, the frequency f 2 is a result of Equation (5), with two
possible values (f 2 = f 1 − fb = 17.3752 Hz or f 2 = f 1 + fb = 17.3959 Hz). Because in Equation (5) the
notations f 1 and f 2 are arbitrary, this equation should be reconsidered as fb =

∣∣∣ f2 − f1
∣∣∣.

As a consequence, the angular speed ω2 = 2πf 2 has two possible values (ω2 = 109.1716 rad/s or
ω2 = 109.3016 rad/s), as does the speed ratio (ω2/ω1) of the driving belt (with ω1 = 109.2369 rad/s).
To find the right value of f 2 (and ω2 as well) the technique described in [42] should be used (with an
IAS sensor placed on shaft 2).

The evolution from Figure 3 is an addition of vibrations velocities (v = dy1/dt + dy2/dt) generated
by both of the unbalanced shafts (1 and 2). It is expected that the beating phenomenon keeps the
main characteristics (e.g., Tb, Tc values or fb, fc values, as well) if it is described using the addition
of vibration displacements (s = y1 + y2), except for the amplitudes in nodes and anti-nodes which
significantly decreases.

4.2. The Description of the Beating Phenomenon in Vibration Displacement by Numerical Integration

The vibration displacement evolution can be obtained from vibration velocity evolution by
numerical integration (antiderivative calculus). Based on the approximate definition of velocity
(derivative of displacement) v = ds/dt ≈ ∆s/∆t, a current sample of velocity vi is defined using two
successive samples of displacement si, si−1 (in the displacement interval ∆s = si − si−1) and the values of
time ti, ti−1 for these samples, in the sampling interval ∆t = ti − ti−1 (usually this is a constant value) as:

vi =
si − si−1

∆t
(7)

This is an approximation of the first derivative of displacement as backward finite difference,
with i > 1 [43]. The current sample of displacement si can be simply mathematically extracted from
Equation (7) as:

si = vi∆t + si−1 (8)
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Equation (8) describes a sample si of displacement related to velocity, this also being our proposal
for a description of numerical integration of velocity (antiderivative calculus). According to Equation (8)
the sample si depends on sampling interval ∆t (here ∆t is the time ti − ti−1 between two consecutive
samples of velocity vi and vi−1 or two consecutive samples of displacement si and si−1 as well),
the velocity sample vi and the previous sample of displacement si−1, as the result of a previous step of
numerical integration. The numerical integration from Equation (8) is available for i > 1. Of course,
it is mandatory to know the value of the first sample of displacement s1, this being an indefinite value
because i > 1. This is exactly the constant C of integration (usually an arbitrary value). Pure harmonic
signals are numerically integrated, in that case, evidently C = 0.

Figure 5a describes the graphical result of numerical integration of vibration elongation evolution
from Figure 3 using Equation (8), with C = s1 = 0. Certainly this evolution is not strictly related to
the vibration displacement from the beating phenomenon.
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Figure 5. (a) The result of numerical integration of velocity evolution from Figure 3; and (b) the result
of removing the zero-offset influence on numerical integration of velocity from Figure 5a.

We found that the oscilloscope generates a very small negative constant zero offset. As the theory
of integration establishes, the numerical integration of this constant zero offset produces a component
with linear evolution, experimentally confirmed in Figure 5a by the evolution with negative slope.
The removal of this linear component produces the result from Figure 5b (the evolution emphasized
in blue).

It is evident that Figure 5b is not the expected evolution of the vibration displacement in beating
phenomenon. Surely, there is not a mistake in the numerical integration proposal in Equation (8)
because the numerical derivative of the evolution from Figure 5b using Equation (7) produces exactly
the evolution of velocity, as Figure 6 indicates (by comparison with Figure 3).

Our first attempt to explain this deficiency in this result of numerical integration is related by the
constant of integration C.

Intuitively it is supposed that somehow the hypothesis that C = 0 is wrong. Perhaps the effect of
this wrong hypothesis is mirrored in the evolution from Figure 5b and its effect should be removed
(as the influence of negative zero offset was removed before).

It was discovered by numerical simulation that the numerical integration of a computer-generated
beating vibration velocity signal (similarly to those depicted in Figure 3) using Equation (8),
with C = 0, produces a vertically shifted evolution with a constant nonzero value, which should be
mathematically removed.
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Figure 6. The result of the numerical derivative of the evolution from Figure 5b (vibration velocity,
practically similar with Figure 3).

This approach assumed that in the result of numerical integration of vibration velocity depicted in
Figure 5b, a supplementary low frequency component was generated and should be removed. For the
time being we unfortunately do not have a consistent explanation for the appearance of this low
frequency component. This low frequency component (depicted in Figure 5b in white) was detected by
low-pass numerical filtering of the vibration displacement signal (the evolution emphasised in blue).

A computer-generated moving average filter [43] was used, with the first notch frequency equal to
the combination frequency fc = (f 1 + f 2)/2 (assuming that this definition from Equation (6) is accurate),
in order to completely remove the variable component from Figure 5b having the resultant vibration
frequency, and in order to obtain the low frequency component. The number of points in the average of
the filter is defined as integer of the ratio 1/(fc∆t). The removal of this low frequency component from
the result of numerical integration (the vibration displacement signal) depicted in Figure 5b is shown in
Figure 7. It is obvious that this evolution properly describes the resultant vibration displacement during
the beating phenomenon, previously described in Figure 3, by the velocity of the resultant vibration.
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by numerical integration and correction of the signal depicted in Figure 3.
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There is a supplementary confirmation of this result: the numerical differentiation of the vibration
displacement signal from Figure 7 (using Equation (7)) fits very well with the vibration velocity signal
from Figure 3, as a very short detail (15 ms duration) of both evolutions (given in Figure 8a) from the
area labelled as A (Figures 3 and 7) indicates. Thus, the absolute velocity vibration sensor together with
the proposed numerical signal integration method acts as an absolute displacement vibration sensor.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 21 
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Figure 8. (a) A detail concerning the evolution of velocity (Figure 3) overlaid on the numerical
differentiation of the displacement depicted in Figure 7; and (b) a detail of area A of Figure 7 with Tc,
the period of the resultant vibration.

Figure 8b presents a short detail of the vibration displacement evolution in the area labelled with
A in Figure 7. This figure has the same size on the abscissa as Figure 4. By comparison with Figure 4,
the evolution is much smoother here, as a consequence of numerical integration, which drastically
reduces the amplitudes of high frequency components. The integration acts as a low-pass filter.

In Figure 7 two relationships between the vibrations amplitudes A1 and A2 are available
(from Equations (1) and (2)) due to the constructive interference in anti-nodes (A1 + A2 = 118 µm) and
destructive interference in nodes (A1 − A2 = 52 µm), so A1 = 85 µm and A2 = 33 µm. For the time
being A1 does not necessarily refer to vibration amplitude generated by the main spindle or shaft 1.

4.3. The Evolution of Frequency for Resultant Vibration in Beating Phenomenon

An interesting item in the beating phenomenon is the evolution of frequency of the resultant
vibration fc (also known as combination frequency or modulation frequency, fc = 1/Tc, with Tc

highlighted in Figure 8b). In [39] this frequency is defined as the average of both frequencies (f 1, f 2)
involved in the beating (Equation (6)).

A beating phenomenon was simulated using the sum of two harmonic vibrations displacements
y1s(A1,f 1) and y2s(A2,f 2)—already described in Equations (1) and (2) with different values of amplitudes
(A2 > A1) and frequencies f 1 and f 2, close to those from the experiment described in Figures 3 and 7
(with f 1 = 17.3856 Hz and f 2 = 17.3959 Hz), for a duration equal to Tb (placed between two anti-nodes).

For six different values of amplitudes (A1 increases and A2 decreases), the evolution of the
combination frequency fc and its average value was determined on the vibration beating simulated
signal, as Figure 9 indicates, using a high accuracy measurement technique from a previous work [42].
Here each peak describes the value of frequency fc in vibration beating node. It is obvious that fc is
not constant and, in contradiction with Equation (6) and [39], fc , (f 1 + f 2)/2. Here, with A1 > A2 the
average fc is very close to f 2, with fc > f 2.
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Figure 9. The evolution of the instantaneous combination frequency fc on the simulated vibration
beating during a beat period Tb (with A2 > A1 and f 2 > f 1).

A similar simulation was done in the same conditions, now with A1 > A2, as Figure 10 indicates
(here A1 decreases and A2 increases). Similar to the simulation given in Figure 9, it is obvious that
fc is not constant and again, in contradiction with Equation (6) and [39], fc , (f 1 + f 2)/2. The average
frequency fc is very close to f 1, with fc < f 1.
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Figure 10. The evolution of the instantaneous combination frequency on simulated vibration beating
during a beat period (the same condition as in Figure 9, except for the amplitudes relationship: A1 > A2.

There are two conclusions here, in contradiction with the literature [39]:

- The combination frequency fc is not constant over a period Tb (even if its variation is not significant);
- The average value of the combination frequency fc over a period Tb is practically the same

as the frequency of the input vibration in the beating phenomenon (y1s(A1,f 1) or y2s(A2,f 2)),
whose amplitudes are higher (e.g., if A2 > A1 then the average fc ≈ f 2).

Some supplementary simulations for many other values of frequencies f 1 and f 2 (and consequently
Tb) completely confirm these conclusions.
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Figure 11 presents the evolution of the instantaneous combination frequency fc during the vibration
beating phenomenon (displacement of headstock) experimentally described in Figure 7.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 21 
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Figure 11. The evolution of the instantaneous combination frequency fc during the vibration beating
phenomenon (displacement of headstock) described in Figure 7.

Apparently, this is a very noisy evolution. The dominant component of the signal from Figure 7
is the displacement of resultant vibration y1 + y2. The frequency measurement method [42] is based
on detection of zero-crossing moments of this signal (a topic discussed later on). It is obvious that
many other additional vibrations of the lathe headstock (some of them with high frequency) disturb
the accuracy of the zero-crossing detections, as a main reason for the noisy evolution from Figure 11.

The best information available in Figure 11 is the average value of the combination frequency
fc ( f c = 17.3830 Hz, very close to the rotational frequency of the main spindle, f 1 = 17.3856 Hz).
Based on the previous conclusions from Figures 9 and 10 it is evident that the amplitude A1 of
unbalanced vibration generated by the main spindle (shaft 1) is higher than the amplitude A2 of shaft 2
(so A1 = 85 µm and A2 = 33 µm, an item analysed before). As previously mentioned, the rotational
frequency of shaft 2 is f 2 = f 1 − fb = 17.3752 Hz or f 2 = f 1 + fb = 17.3959 Hz.

Figure 12 presents a low-pass filtered evolution of the instantaneous combination frequency from
Figure 11, (using a multiple moving average filter [43], as a well-known method to attenuate the
signal noise).
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Despite a relatively strong irregular variation of the combination frequency fc (due to the variation
of experimental conditions: e.g., the small variation of rotational speeds of shafts 1 and 2, caused
mainly by the variation of frequency of the supplying voltages applied to the asynchronous driving
motor, around a theoretical value of 50 Hz, as Figure 13 clearly indicates), the previous simulations and
conclusions are fully experimentally confirmed. Three supplementary identical experiments confirm
the evolution presented in Figure 12.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 21 
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revealed before (less than 50 mHz full scale evolution in Figures 9, 10, 12, 13 and 15): how accurate is 

this frequency measurement method [42]? 

Figure 13. Low-pass filtered rotational frequency evolution of the main spindle and supplying voltage
frequency evolution of the driving motor.

Firstly, in Figure 12 there are two negative peaks (for the two nodes in Figure 3 or Figure 7;
each node produces a negative peak on fc evolution, an item already discussed in the simulation from
Figure 10) at a time interval very close to the beat period value Tb, already defined in Figure 3 (96.73 s
here, compared with 96.6 s in Figure 3).

Secondly, as shown in Figure 14, a superposition of filtered frequency fc evolution from Figure 12
(here in a conventional blue coloured description) over the experimental envelopes of vibration
displacement in beating (the same as those depicted in Figure 7) indicates that the negative peaks of fc
are placed, as expected, in nodes.
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The small displacement to the right of the negative peaks of the filtered combination frequency
evolution (as against the nodes on Figure 14) is not related to the numerical filtering. This is proved by
the result of the simulation of Figure 14, as given in Figure 15 (with addition of pure harmonic signals
y1s and y2s in vibration beating simulation).Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 21 
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Figure 15. The result of a numerical simulation for the evolutions described in Figure 14.

This periodic pattern of filtered combination frequency fc evolution experimentally revealed in
Figures 12 and 14 (according to the simulations from Figures 10 and 15) is strongly attenuated if the
amplitude A2 becomes significantly lower than A1 (and vice versa).

An important question is in order here due to a very small variation of filtered frequencies revealed
before (less than 50 mHz full scale evolution in Figures 9, 10, 12, 13 and 15): how accurate is this
frequency measurement method [42]?

In this measurement method (e.g., the measurement of the combination frequency fc of vibration
displacement signal from Figure 7), the computer-aided detection of the time interval between each
two consecutive zero-crossing moments (tzcj and tzcj+1) of a periodical signal is used. This time interval
defines a semi-period Tc/2 = tzcj+1 − tzcj as Tc/2 = 1/2fc, or a value fc = 1/Tc. When the result of
multiplication of two successive displacements samples si and si−1 (having the sampling times ti and
ti−1, with i > 1) is negative or zero (si·si−1 < 0 or si·si−1 = 0) a zero-crossing moment is detected (e.g., tzcj)
and calculable as the abscissa of the intersection of a line segment defined by the points of coordinates
(ti, si) and (ti−1,si−1) on the t-axis (as x-axis in Figure 8b). The main reason for frequency measurement
error εf , 0 is a consequence of calculation errors for two successive zero-crossing moments εj , 0
(for tzcj) and εj+1 , 0 (for tzcj+1). These εj and εj+1 errors are caused by the replacement of a harmonic
evolution with a linear evolution between those two successive displacement samples involved in each
zero-crossing moment definition. With ti−1−ti = ∆t (∆t being the sampling interval) the error εj = 0
only in three situations: (1) if si = 0 (the end of the line segment is placed on the t-axis, with tj = ti),
(2) if si−1 = 0 (the start of line segment is placed on t-axis, with tj = ti−1) and (3) if −si = si−1 (the middle
of the line segment is placed on t-axis, with tj = ti−1 + ∆t/2). A similar approach is available for the
next two successive samples (si+h and si+h−1) involved in the definition of tzcj+1 moment and εj+1 error
(with h as the integer part of the ratio Tc/∆t). If simultaneously εj and εj+1 = 0 then εf = 0. Any other
definition of sampling times generates frequency measurement errors εf , 0.
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A computer-aided calculus was performed for frequency measurement error εf of a harmonic
simulated signal with frequency 17.383 Hz (the average value of the combination frequency fc) during
a semi-period. Here 10,000 different values of sampling time t1 (between 0 and ∆t, with ∆t = 200 µs,
the same sampling interval as in Figures 3 and 7) and t2 = ∆t − t1 (between ∆t and 0) for the first two
successive displacement samples involved in the calculus of the first zero-crossing moment tzc1 was
used. Figure 16 describes the evolution of the frequency measurement error εf(t1).Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 21 
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Figure 16. The evolution of the frequency measurement error εf (for a simulated harmonic signal
with combination frequency fc = 17.383 Hz) versus the evolution of the first sampling time (t1 = 0÷∆t,
or t1 = 0÷ 200 µs) involved in the first zero-crossing time (tzc1) calculus.

As Figure 16 clearly indicates, the frequency measurement error εf of the combination frequency
fc is variable and placed between −0.000935 and +0.0014 mHz. The result of the measured frequency
of the simulated signal is 17.383+1.4 µHz

−0.935 µHz as a description of the accuracy measurement. Very similar
limits for the εf error are calculated for a harmonic signal with frequency f 1. If the value of the frequency
fc = 1/Tc used in simulation accomplishes the condition Tc = h∆t (with h being an integer), then εf = 0
for any value t1 = 0 ÷ ∆t.

4.4. The Influence of the Lathe Suspension Dynamics on Beating Vibrations Amplitude

The relative high vibration displacement amplitude of the headstock during the beating
phenomenon (as shown in Figure 7) has an evident explanation: the vibration frequencies f 1, f 2

and fc as well, are close to the first resonant frequency (vibration mode) of the headstock and lathe on
its foundation (as a single body mass–spring–damper vibratory system). This means that the dynamic
amplification factors Daf1 and Daf2, (involved in Equations (1) and (2)) are significantly higher than 1
(because of resonant amplification). In order to prove that, the resources of a very simple experiment
performed with the same experimental setup are available: the evolution of headstock vibration
velocity after an impulse excitation produced with a rubber mallet (hammer) in the same direction
with y1 and y2 vibrations (as Figure 17 describes).
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Figure 17. Some experimental results on signal processing related to free damped vibration of headstock
after an impulse excitation (with a rubber mallet).

Here the blue curve partially depicts the free damped vibration velocity vfd (acquired with the
geophone sensor); the red coloured one depicts the best fitting curve of a part of the free response
(with 25,000 samples and 500 ns sampling time). The curve fitting [44] was done in Matlab, with an
adequate computer program specially designed for this paper, based on a known theoretical model of
free viscous damped vibration velocity response [45]:

v f d(t) = a·e−btsin(p1t + α) (9)

The best fitting curve (in red in Figure 17) is described with a = 1.170·10−3 m/s, b = 5.899 s−1

(as damping constant), p1 = 117.952 rad/s (as angular frequency of damped harmonic vibration)
and α = 4.986 rad (as phase angle at the origin of time t0 on Figure 17). The angular natural

frequency (p =
√

p2
1 + n2 = 118.099 rad/s) and the damping constant b are useful in the

definition [45] of dimensionless dynamic amplification factor Daf from forced vibrations of harmonic
excitation (as happens during the beating phenomenon, assuming that the combination frequency is
approximately constant):

Da f =
1√[

1−
(
ω
p

)2
]2
+

(
2ωp ·

b
p

)2
(10)

Here ω = 2πf is the angular frequency of harmonic excitation on frequency f. Based on previous
experimental results of curve fitting (with b and p values in Equation (10)) Figure 18 presents the
simulated evolution of Daf related to the frequency of excitation (1 ÷ 35 Hz range). Because of a low
damping constant b, the system presents resonant amplification, with a maximum value Daf = 10.01 on
f = 18.749 Hz frequency.

Based on the previous experimentally determined frequencies f 1 and f 2, with f = f 1 = 17.3856 Hz
gives the result Daf1 = 5.831 and with f = f 2 = 17.3752 Hz (or f = f 2 = 17.3959 Hz) the result is Daf2 = 5.803
(or Daf2 = 5.859). For f = f c = 17.383 Hz (Figure 12) the result is Dafc = 5.824 (the coordinates of point A
on Figure 18). This means that, because of mechanical resonance, the vibration amplitude generated by
the beating phenomenon of the headstock and the lathe on its foundation (already revealed in Figure 7)
is amplified on average by 5.824 times.
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Besides the amplification of the vibration, the resonant behaviour also introduces a significant
shift of phase γ between the excitation (unbalancing) force and the vibration displacement, theoretically
described [45] as depending onω (and excitation frequency f as well) with the equation:

γ = arctan[
2 b

p
ω
p

1−
(
ω
p

)2 ] (11)

With the b and p values previously determined, the values of shift of phase calculated for each
frequency are: γ1 = 0.5691 rad for f = f 1 = 17.3856 Hz and γ2 = 0.5656 rad (or γ2 = 0.5725 rad) for
f = f 2 = 17.3752 Hz (or f 2 = 17.3959 Hz). For f = f c = 17.383 Hz the result is γc = 0.5682 rad.

The knowledge of both of these resonant characteristics (the value of the dynamic amplification
factor Daf and especially the phase shift γ) is important for a next approach of the dynamic balancing
of these two shafts placed inside the headstock.

As a general comment, we should mention that the resonance behaviour of this low damped
vibratory system—as previously mentioned—is a consequence of the disponibility of this system to
absorb modal mechanical energy. The system works as a narrow-band modal energy absorber [46].

5. Conclusions and Future Work

Some specific features of the beating vibration phenomenon discovered on a headstock lathe have
been revealed in this paper.

An experimental description (with theoretical approaches based on simulations) of this beating
vibration phenomenon with very low beat frequency (1/96.6 Hz) was performed. The beating
phenomenon occurs due to the addition of vibrations produced by two unbalanced shafts, rotating
with very close instantaneous angular speeds (rotating frequencies), with constructive interference in
anti-nodes and destructive interference in nodes.

The absolute velocity signal of vibration beating (delivered by a vibration electro-dynamic
sensor placed on the headstock) was converted into a displacement signal. For this purpose, a fully
confirmed method of numerical integration (antiderivative calculus), with theoretical and experimental
approaches was applied. This method is deduced from the approximation of the formula for the first



Appl. Sci. 2020, 10, 6899 17 of 20

derivative of displacement, as a backward finite difference [43]). An appropriate technique of correction
of this numerical antiderivative calculus method was also introduced (mainly by removing the low
frequency displacement signal component generated by numerical integration). Thus, an absolute
velocity vibration sensor together with a numerical integration procedure plays the role of an absolute
vibration displacement sensor.

A consistent part of the research was focused on the resultant vibration displacement signal,
mainly on the evolution of frequency (or the combination frequency fc) related to the nodes and
anti-nodes position. It was theoretically discovered (by simulation) and was experimentally proved
that, in opposition to the literature reports, the combination frequency is not constant, and the definition
of its average value is wrong. The evolution of the combination frequency has a specific periodic
pattern (having the same frequency as the beat frequency) with small variation (tens of millihertz)
and negative or positive peaks placed in beating nodes. The appearance of these peaks (negative or
positive) depends on the relationship between amplitudes and frequencies of vibrations involved in
the beating phenomenon. The small variation of frequency inside the pattern and the correlation
between the frequencies of different experimental signals (the combination frequency fc, the rotation
frequency f 1 of the main spindle, and the supply voltage frequency of the driving motor) have been
correctly described as a result of a high accuracy procedure of frequency measurement, developed in
a previous work [42] and successfully applied here. It was proved on a simulated signal (having a
frequency of 17.383 Hz, equal to the average value of the combination frequency in vibration beating
phenomenon) that this procedure has less than ±1.5 µHz measurement error.

The influence of the behaviour of the headstock and lathe foundation dynamics (as a rigid
body placed on a spring–damper system) on the vibration induced by unbalanced rotors and the
beating phenomenon was also investigated. Based on computer-aided analysis of free damped viscous
response (by curve fitting), the characteristics of foundation dynamics were experimentally revealed
(mainly the values of natural angular frequency and the damping constant). Considering these
values, the dynamic amplification factors of vibrations (mainly of the resultant vibration) and phase
shift between centrifugal forces (as excitation forces produced by unbalanced rotary shafts) and the
vibrations generated by these forces were calculated.

For each experiment, numerical simulation and signal processing procedures, several computer
programs written in Matlab were successfully used.

In the future, the theoretical and experimental approaches will be focused on the influence of
dynamic unbalancing and vibration beating on the active and instantaneous electrical power absorbed
by the driving motor of the headstock. There is a logical reasoning for these approaches: the headstock
vibration motion (especially during the resonant amplification behaviour revealed in Figure 18) should
be mechanically powered. Of course, the instantaneous and active mechanical power (difficult to
measure) is delivered by the driving motor as an equivalent of instantaneous and active electric power
absorbed from the electrical supply network (easier to measure).

Several theoretical and experimental studies on computer-aided balancing of each rotary shaft
inside the lathe headstock will be performed (using two absolute velocity sensors and an appropriate
method of computer-assisted experimental balancing). A study on the vibration beating phenomenon
produced by more than two unbalanced rotary bodies will be done.
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Nomenclature

A1, A2 The amplitudes of vibrations y1, y2 [m]
ae-bt The envelope of free viscous damped vibration velocity response [m/s]
b The damping constant [s−1]
C The constant of velocity signal integration [m]
Daf Theoretical dynamic amplification factors of vibrations [ ]
Daf1,Daf2 Dynamic amplification factors of vibrations y1, y2 produced by shafts 1, 2 [ ]
Dafc Dynamic amplification factor of resultant vibration y1 + y2 at average frequency fc [ ]
dy1/dt, dy2/dt The derivative of vibration displacements y1, y2 (vibration velocities) [m/s]
f The frequency of harmonic excitation of the lathe headstock [Hz]
F1, F2 The horizontal projection of the rotary unbalance forces generated by shafts 1 and 2 [N]
f 1, f 2 The frequency of vibrations y1, y2 [Hz]
fb The beat frequency [Hz]
fc The frequency of the resultant vibration y1 + y2, or combination frequency [Hz]
IAS Instantaneous angular speed [rad/s]
k The stiffness of headstock and lathe foundation [N/m]
m1, m2 Unbalance mass on rotary shafts 1, 2 [Kg]
n A natural number involved in the definition of the beat period Tb
p The natural angular frequency [rad/s]
p1 The angular frequency of damped harmonic vibration [rad/s]
r1, r2 The distance between the center of the unbalance mass and the rotation axis on shafts 1, 2 [m]
s The addition of vibration displacements s = y1 + y2 [m]
si, si+1 Two successive displacement samples of vibration [m]
si+h, si+h-1 Two successive displacement samples of vibration [m]
t Time [s]
t0 The origin of time for the theoretical model of free damped vibration velocity [s]

tzcj, tzcj+1
Two successive zero-crossing moments of the displacement vibration signal involved in
frequency measurement [s]

∆t Sampling interval for a numerically described signal [s]
T1, T2 The periods of vibrations y1, y2 [s]
Tb The beat period, with Tb = 1/fb [s]
Tc The period of the resultant vibration y1 + y2, with Tc = 1/ fc [s]
v The velocity of the resultant vibration in beating [m/s]
vfd The vibration velocity of the headstock during a free damped response [m/s]
vi A sample of the vibration velocity [m/s]
y1, y2 The vibration displacement generated by shafts 1, 2 [m]
y1s, y2s Simulated vibration displacement signals [m]

α
The phase angle at the origin of time t0 for a theoretical model of free damped vibration
velocity [rad/s]

εf The error in the frequency measurement [Hz]
εj, εj+1 The calculus errors for two successive zero-crossing moments [s]

γ
The shift of phase between the excitation force and the vibration displacement in the free
damped response [rad]

θ1, θ2 The instantaneous value of the angle of centrifugal forces to the horizontal direction [rad]
ϕ1, ϕ2 The values of θ1 and θ2 at the origin of time, t = 0 [rad]
ω The angular frequency of harmonic excitation of the lathe headstock [rad/s]
ω1, ω2 The instantaneous angular speed of the rotary shafts 1, 2 [rad/s]



Appl. Sci. 2020, 10, 6899 19 of 20

References
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