
applied
sciences

Article

Towards Energy-Efficient Mobile Ad Optimization:
An App Developer Perspective

Ahmad Raza Hameed 1 , Saif ul Islam 2,* , Ahmad Almogren 3,* , Hasan Ali Khattak 4 ,
Ikram Ud Din 5 and Abdullah Bin Gani 6,7

1 Department of Computer Science, National University of Computer and Emerging Sciences, FAST,
Islamabad 44000, Pakistan; i171025@nu.edu.pk

2 Department of Computer Science, KICSIT, Institute of Space Technology, Islamabad 45000, Pakistan
3 Department of Computer Science, College of Computer and Information Sciences, King Saud University,

Riyadh 11633, Saudi Arabia
4 School of Electrical Engineering and Computer Science, National University of Sciences and Technology

(NUST), H12 Islamabad 45000, Pakistan; hasan.alikhattak@seecs.edu.pk
5 Department of Information Technology, The University of Haripur, Haripur 22620, Pakistan;

ikramuddin205@yahoo.com
6 Faculty of Computer Science and Information Technology, University of Malaya,

Kuala Lumpur 50603, Malaysia; abdullahgani@ums.edu.my
7 Faculty of Computing and Informatics, University Malaysia Sabah, Labuan 88400, Malaysia
* Correspondence: saiflu2004@gmail.com (S.u.I.); ahalmogren@ksu.edu.sa (A.A.)

Received: 5 September 2020; Accepted: 28 September 2020; Published: 1 October 2020
����������
�������

Featured Application: The proposed approach can be efficiently used to enhance the overall user
experience while using mobile phone applications for consuming content.

Abstract: Advertising over smart devices is one of the growing trends in the information technology
domain. Most of the Android application (app) developers generate revenue through the use of
ads, but on the other hand, the end users get the free app. However, the excessive number of
ads infers hidden costs with respect to energy consumption, network utilization, and user comfort.
These factors affect the app rating and reviews. Consequently, developers require a technique to
balance app performance through optimized mobile ad usage. Therefore, in this paper, we extend
an existing work and propose an energy-efficient method that uses gamma correction to reduce
the hidden costs of a mobile app. In this approach, gamma correction efficiently balances the app
performance by minimizing the size of ads. The size of the mobile ad is reduced by adjusting its
pixels, reducing background color, and illuminating the content of the ad. After several experiments,
it is deduced that our proposed approach efficiently saves mobile battery and developers can apply
this approach to improve app rank and feedback.

Keywords: Android application; energy-efficient; mobile ads; gamma correction

1. Introduction

In the modern era, the smartphone has a considerable impact on communications, studying,
infotainment, finance, and various other factors of human life. According to Gartner statistics,
the number of mobile phone users has been increased from 12% to 116% from 2000 to 2018—and
is projected to reach 453.19 billion in 2022 [1,2]. In order to make the usability of mobile gadgets
better, various solutions have been proposed. However, due to its user-friendly interface and
cost-effectiveness, Android is considered one of the most popular platforms in the smart world.
Therefore, with the increase in Android usability, the range of Android applications is growing

Appl. Sci. 2020, 10, 6889; doi:10.3390/app10196889 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8797-3483
https://orcid.org/0000-0002-9546-4195
https://orcid.org/0000-0002-8253-9709
https://orcid.org/0000-0002-8198-9265
https://orcid.org/0000-0001-8896-547X
https://orcid.org/0000-0002-4388-020X
http://dx.doi.org/10.3390/app10196889
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6889?type=check_update&version=2

Appl. Sci. 2020, 10, 6889 2 of 12

exponentially with the passage of time [3,4]. Therefore, Android developers focus on app development
to get huge revenue. In this context, advertisements through smartphone apps have gained a great
attention. A recent analysis shows that more than $30 billion were spent on marketing through
smartphones in 2014. Furthermore, the analysis predicts the amount of mobile advertisements even
exceed TV advertisement [5]. Based upon this work, it was felt that overall optimization is required for
enhancing the overall experience.

Typically, the Android developer gets ads from Google Ads Services and uses the mobile app
to generate revenue; on the other hand, end users get the free app. It is a “win–win” situation for
developers and users. Presently, a lot of Android developers develop an app without considering
energy efficiency. Therefore, smart devices with limited resources of battery expend energy rapidly.
Because of the quick power dissipation of mobile, end users under-rate an app, meaning that
the developer needs to redesign an app, which is costly in terms of time and money [6].

Recently, a lot of research works have been conducted on energy-efficient techniques within
software, application, and hardware level. More specifically, researchers have focused on application
level because the developer is unable to buy and operate specialized hardware while designing a
mobile app. On the other hand, a recent survey of the mobile ecosystem shows that the perception of
free apps is misleading. In fact, almost half of the apps on the Google Play Store contain an excessive
amount of ads [7,8]. Consequently, mobile ads contain hidden costs both for an end user and developer.
The hidden ad cost affects end users as they slow down the response (consume an excessive amount
of CPU memory), increase network usage, and increase energy cost (an excessive amount of battery
usage). For the developer, the hidden costs may result in bad feedback [9]. Hence, the developer
wants an approach to estimate hidden ad energy cost on a mobile app. Therefore, Gui et al. [5]
have proposed an approach for the estimation of hidden power cost of ads at the application level
of a smartphone. The estimation approach works in two phases: the first one is before the app
implementation phase, where static modeling is applied to static ad configuration to generate energy
consumption of mobile ads. The second one is after app implementation, where a dynamic model
is applied on an implemented app to compute the energy consumption of ads. However, this work
only estimates the hidden ad energy costs. This motivates us to propose an approach that reduces the
hidden energy cost of ads over mobile app.

In the proposed work, gamma correction is applied over mobile ads, which reduces the hidden
energy cost in terms of power dissipation and network usage. Furthermore, the main contribution of
the work is summarized below:

• Gamma correction reduces the size of the mobile ad by adjusting pixels and reducing
background color

• After size reduction, there is illumination of the content of the mobile ad

The experiment validates that the proposed approach efficiently reduces power dissipation of the
mobile app caused by mobile ads; therefore the developer applies this approach to improve app rating
and feedback.

The remainder of this paper is structured in such a way that Section 2 presents the related work.
In Section 3, we discuss the problem statement. Section 4 elaborates proposed work. The evaluation
and experimentation is presented in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

There are several research contributions to developing a technique that efficiently saves power
consumption of smart devices. However, the hidden energy cost of mobile ads over apps is overlooked.
Therefore, in this context, Gui et al. [5] use a statistical method to compute the energy utilization
related to the ads. This technique operates in two ways: First, they built a statistical model which
provides the assessment. This model assumes the static values of ads that are SIZE, TYPE, and RRATE
before the implementation of an app, where the SIZE is the size of the ad, TYPE is the behavior of the

Appl. Sci. 2020, 10, 6889 3 of 12

app either text or video and RRATE is the refresh time of the ad content. Second, for more precise
energy measurement, they introduce a run-time energy measurement technique. This technique works
after app implementation. This technique captures key run-time metrics such as system energy model,
network energy model, and display energy model. This technique provides information related to
the power consumption of an app. Therefore, this proposed work predicts 31% energy consumption
before the implementation and 14% after the app development.

Performance-based energy-efficient guidelines for Android mobiles are proposed in [8]. In this
work, the authors provide the best set of practices to develop an energy-efficient app. This practice
includes static analysis of the mobile app. The static analysis includes allocating an object upfront,
efficient wake call, recycles, reduce over layout, useless parents, using fewer resources, reducing view
call and overdrawing. Through this analysis, the developer reduces a considerable amount of mobile
app energy consumption. Furthermore, energy modeling provides the source of energy dissipation;
therefore, developers correct a particular part of the code to achieve energy savings. However, this static
analysis is unable to reduce the hidden energy cost by mobile ads.

EcoDroid, an energy-based ranking approach, is proposed in [9]. In this work, Jabbarvand et al.
efficiently calculate the energy consumption of mobile apps by dynamic and static analysis. In dynamic
analysis, a test case is generated by interaction with the application, and converts it to path information.
This information is combined with an analyzer for the estimation of consumed power of the dynamic
path in the app. However, static analysis extracts the app call graph which contains the different
possible invocation sequences of Android application. Through this energy consumption information,
EcoDroid ranks the same category applications according to their energy consumption.

Hao et al. [10] propose a lightweight fine-grained power estimation eLens approach,
which efficiently calculates the power consumed in smart devices at the software level. In order
to estimate energy dissipation, eLens combines two energy estimation processes, program analysis and
per-instruction energy modeling. In this approach, the workload is generated to find the path of the
user action, and is incorporated with the energy model to calculate per-instruction energy consumption.
Furthermore, eLens uses energy annotation to display energy consumption per-instruction graphically;
through this, the developer efficiently finds energy consumption of the app and reduces it. However,
this approach enables the reduction of the hidden cost of an app such as mobile ads. This hidden cost
affects the mobile app in terms of energy dissipation and user rating.

In [11], Hao et al. propose a programmable user interface (UI) automation (PUMA) for mobile
applications. PUMA is a programmable framework which efficiently separates the exploring logic
of app pages from analyzing the logic of the app. The authors implemented PUMA to perform
dynamic analysis of smartphone apps using event handler Monkey (UI automation)—to monitor
security, energy consumption, performance, and the correctness. Through this, the developer modifies
apps at the run-time and enables the validation of app activities from the security breach. However,
the behavior of hidden mobile app activities is unseen, which affects mobile devices in terms of energy
consumption and security.

Corral et al. [12] proposes a kernel customization approach for reducing the power consumption
in a smartphone application. In this approach, authors customize the kernel by optimizing CPU
frequency scale, input–output (I/O) scheduling, under-lacking/under-voting and timer coalescing to
adjust the power and workings of an app. The authors perform several tests on the customize kernel.
Therefore, the modified kernel efficiently reduces the power consumption of the app.

In [13], the authors studied the optimal service allocation for a group of mobile applications in
mobile cloud computing. They proposed a novel framework named location–time workflows (LTW)
that is used to model the mobile applications for handling the service allocation during mobility.
Furthermore, the framework optimally partitioned the workflow over mobile applications in 2-tier
architecture based on the utility metrics, energy consumption, cost of the services, and delay of the
mobile applications. The proposed system is evaluated using varying mobility models include Random

Appl. Sci. 2020, 10, 6889 4 of 12

Waypoint and Manhattan models. It achieves 20% less mobile energy consumption and a reduced
(30%) network delay.

Rong et al. [14], studied wireless sensor deployment and monitoring problems. They also
discussed infrastructures and technologies to support the use of sensors in the smart city. For efficient
network deployment configuration, they investigate different aspects including coverage, lifetime,
and connectivity. Similarly, in the case of monitoring (mobile and static sensors), they also analyze
sensing time, location, devices, and power consumption. Finally, the authors identify some research
opportunities and directions to further explore sensor deployment and monitoring.

The authors in [15] proposed a knowledge-aware proactive node selection (KPNS) framework for
an IoT environment. In KPNS, the selection of proactive nodes is based on their predicted preceding
position. Furthermore, the KPNS system monitors the quality and energy efficiency of nodes. It also
reduces the hot spot regions by efficiently utilizing the power of nodes.

Considering energy wastage and ignorance of processing requests by the network, the authors
proposed an EAR-ADS algorithm (including energy-aware routing and an adaptive delayed shutdown
mechanism) in [16]. This algorithm deployed dynamic service function chains (SFC), which means
offline and on–off nodes in the network. Furthermore, this technique saves the power consumption of
servers. Due to the adaptive delay shutdown mechanism, the energy wastage is further reduced.

Table 1 presents a comparative analysis of related work. As we see, existing approaches focus
either on estimating the hidden ad energy consumption on the mobile app or to reducing the energy
consumption of app in different perspectives such as code optimization, kernel optimization, etc.
However, the hidden cost of ads over mobile apps is not addressed. Therefore, we propose an
energy-efficient mechanism to reduce the hidden cost of ads on the mobile app.

Table 1. Comparison of state-of-art work.

Protocol Name Features Achievements Deficiencies

Static approach
for measuring
ad-related energy
cost [5]

Static modeling and run-time
dynamic modeling

Estimate energy
consumption 31% before
implementation and 14%
after implementation.

Unable to reduce hidden
energy cost

The hidden cost
of mobile ads
for software
developers [7]

Static mobile ads model Estimate the energy
consumption of
ads before app
implementation phase.

Focus on identity of hidden
energy cost of ads

Performance-based
energy-efficient [8]

Static analysis include object
upfront, efficient wake call,
recycles, reduce over layout,
useless parents, useless
resources, reduce view call
and overdrawing

Minimize the energy
consumption of app.

Still ad hidden energy cost

EcoDroid: an
energy-based
ranking
approach [9]

Dynamic and static analysis Dynamic analysis
estimates the energy
consumption of ads by
interaction path analyzer
while static analysis uses
history of mobile data.

Absence of mechanism to
reduce hidden ad cost

eLens app energy
estimation [10]

power modeling power consumption
estimation.

Unable to mitigate ads
hidden cost

Appl. Sci. 2020, 10, 6889 5 of 12

Table 1. Cont.

Protocol Name Features Achievements Deficiencies

PUMA [11] Separate the exploring logic
of app pages from analyzing
logic of app

It verifies security breach,
energy consumption and
correctness of activities in
response.

Absence of hidden cost

Software-based
kernel
customization
approach [12]

Customize the kernel and
balance between energy and
performance

This phenomena reduces
the energy consumption
of app running on it.

Hidden energy cost

An optimal
service allocation
approach
for mobile
applications. [13]

A location–time workflow
(LTW) model for mobile apps

Services are offloaded
during mobility and the
workload is partitioned
to minimize the energy
utilization of apps.

Hidden ads energy cost

A survey on
wireless sensors
for smart city
environment [14]

Deployment strategies and
monitoring techniques

Analyze scheduling
techniques to reduce
energy consumption
of network and mobile
devices.

Illustrate ads energy
consumption

KPNS [15] The law of target movement
for prediction

Maintain balanced
workload to reduce the
energy cost of mobile
devices.

Performance degradation of
mobile devices

3. Problem Statement

For better understanding of the problem, we illustrate problem statement in the design science
approach (DSA) way.

3.1. Motivation

In recent years, mobile devices become an important part of our daily life. The emergence of
mobile devices such as smartphones, tablets, etc. provides us with useful features. In addition, it helps
us to acquire information in no time. Android is considered as a ruling platforms in the mobile industry.
The number of Android applications has increased, which makes them versatile and necessary for
us [3]. Moreover, ads are an integral part of mobile applications. Typically, ads are used a source
of income, while the subscribers get the free app in return. Due to the use of inefficient mobile ads,
there is an energy depletion problem which directly reduces the performance and battery life of the
smartphone. Consequently, the end user underrates the developer app, which directly affects a lot of
the information technology (IT) community. Therefore, recent research has focused on this problem to
compute the energy utilization of ads in apps.

3.2. Problem

In [5], the authors calculate the energy utilization of mobile ads in two phases, as portrayed in
Figure 1—pre- and post-implementation. In the pre-implementation phase, static modeling is applied
on the static configuration of the ads which estimates its energy consumption on a mobile app. Due to
this, the developer gets early feedback before application implementation. Thus, the developer designs
an application according to the feedback solution. In the post-implementation phase, the developer
provides a workload as an input to calculate the power consumed through ads. To find the precise
information of ads, the authors make a duplicate copy of the app and remove an ad from it then apply
the workload on both apps with or without ads. The run-time energy calculation model includes
system, network and display model, which works parallel to the workload to find precise mobile
ad energy consumption after application implementation. However, existing work only focuses on

Appl. Sci. 2020, 10, 6889 6 of 12

estimating mobile ads energy consumption. This motivates us to propose a solution for the app
developer which reduces the size of ads by applying gamma correction on mobile ads.

Post implementation Before implementation

Static Modeling

Calculate energy

consumption

Remove ads App with out ads

Workload Execution Runtime modeling

System modeling

Display model

Network Model

Google ads

server

Energy

information

Figure 1. Existing work.

3.3. Evaluation

For fair comparison, we used state of the art tools and devices for experimentation [5].
Furthermore, cam scan, nature photo editor, blind traveler app, and karvan card applications are used
for the proposed work evaluation.

• RERAN tool: Recording the manual generated workload. Through this we use the same workload
at any time.

• Android profiler: Recording energy consumption of applications.
• Trapen profiler: Recording energy consumption of applications.
• Android studio: For Code.
• Device for experiment: Q mobile, Samsung core prime and Huawei Mate 10 lite.
• Matlab tool: Pictorial representation of findings.
• Android applications for experimentation: Cam Scan, Nature Photo Editor, Blind traveler app,

and Karvan Card.

3.4. Hypothesis

The proposed mechanism is expected to reduce mobile energy consumption by 50% by optimizing
ads over the mobile application. Furthermore, our work has an impact on a considerable part of
the Android community, in particular app developers who optimize applications to improve rank
and feedback.

4. Overview of the Proposed Work

The aim of the proposed work is to reduce energy use along with estimating the energy cost of
ads all around the life cycle of app development. The proposed study uses the same techniques as
presented in [5], which estimates the power cost of ads before and after application development as
shown in Figure 1. In order to balance battery depletion, we applied gamma correction on mobile ads.
Gamma correction reduces the size of mobile ads by adjusting the pixels and reduces the background
color. For better visibility of mobile ads, we illuminate its content. The process is applied both before
the implementation phase and after the app development phase.

The proposed work is shown in Figure 2, which operates in two ways:

• Before the implementation phase
• post-implementation phase

In the first phase, our approach takes the static model value as an input to gamma correction,
which further reduces the quality and size of the ad over the mobile app. This process provides

Appl. Sci. 2020, 10, 6889 7 of 12

early feedback to the developer to optimize mobile ads before app development. Similarly, in the
post-implementation phase, the proposed work takes the display model as an input to gamma
correction, which customizes mobile ads to make it energy-efficient for an app. We validate our
approach by comparing the modified ad application with other existing application.

Post implementation Before implementation

Static Modeling

Calculate energy

consumption

Remove ads App with out ads

Workload

Execution

Runtime modeling

System modeling

Optimize the energy

consumption

Display model

Network Model

Google ads

server

Energy information

Gamma correction

Optimize the energy

consumption

Gamma correction

Figure 2. Proposed work.

4.1. Static Model

To acquire the energy consumption of mobile ads in app, existing work [5] uses static modeling.
The model provides information regarding the ads energy utilization before the development phase.
Before app implementation, the developer includes some static variables of ads such as size s, type t,
and refresh rate r. Therefore, these values of a variable are taken as an input to the static model result in
high-level energy estimation of ads in the mobile app. In order to build efficient estimation through the
static model, we conduct several numerical experiments. In these experiments, we considered static
ad configuration, varying one configuration and keeping the others the same, then calculating the
average energy consumption of mobile ads over application. In order to find accurate average energy
consumption of ads, we repeat this numerical experiment several times. Thus, finally we conclude that
energy consumption of ads is linear when r when s and t are kept fixed. We formulate the relation as:

E = β− α ∗ (r− 30) (1)

In the above Equation (1), α is a coefficient, β presents the power consumption (average) and the lowest
refresh rate r is 30.

4.2. Dynamic Model

The approach proposed in [5] provides developers with energy consumption information about
mobile ads. The proposed approach takes the implemented apps and generated workload by the
developer as input and then computes the energy cost of a mobile ad at run-time. For manual workload
generation, the RERAN tool is used [5]. This tool keeps a record of user activities which are repeated
later on. Furthermore, for clear differences between the app and mobile ad energy consumption,
the proposed approach compares both the with-and without-ads application and computes the
utilization of energy by the ads. This model considers the utilization of CPU at different frequencies,
network usage, and screenshots with the time-stamp. The energy model is formulated in Equation (2):

Ētotal = Ēsystem + Ēnetwork + Ēdisplay (2)

Appl. Sci. 2020, 10, 6889 8 of 12

4.2.1. System Model

The system model computes the energy consumption of the CPU at a different frequencies.
This model generates information regarding the power consumption of ads. This model finds a linear
relationship between CPU time and frequency, which is calculated as:

Ēsystem =
n

∑
f=1

(
Ē f × T̄f

)
+

(
Ēm × M̄

)
(3)

In Equation (3), f presents the CPU frequency and n shows the total number of variations in CPU
frequency. Ē f is the energy usage while mobile ad running on CPU and T̄f is the total time at which
mobile ad running on the CPU. The mobile ad also use memory while running; therefore, this model
computes memory energy usage and total memory usage respectively, Ēm and M̄.

4.2.2. Network Model

The network model computes the energy utilization of mobile ads by considering the total number
of bytes sent over the network. The model formulates a linear relationship in Equation (4):

Ēnetwork = C̄n × B̄total−bytes (4)

where Cn is the coefficient that shows the energy utilization per unit byte transferred over the network
and Btotal−bytes is a total number of bytes that the ads have sent.

4.2.3. Display Model

The display model estimates the energy consumption of ads by taking screenshots of mobile ads
as an input when the workload is manually generated then efficiently estimates the energy utilization
of mobile ads. The energy of mobile ads is computed for a specific interval of time as per Equation (5):

Ēdisplay =
n

∑
s=0

(
P̄Screen−shot(s)× T̄screen−shot(s)

)
(5)

where P̄Screen−shots(s) is the total power consumed by the ads at specific interval T̄screen−shots(s),
herewith s is the number of screenshots.

P̄Screen−shot(s) = ∑
Kεs

(
C̄(RkGkBk)

)
(6)

Furthermore, the power consumption of each screenshot is the sum of the cost of pixel values as
in Equation (6). The prior pixel values are found by RGB (red, green, blue) values of the screenshot.

C̄(RkGkBk) = rR + gG + bB + c (7)

4.3. Gamma Correction

Gamma correction is a nonlinear operation used to encode and decode luminance in images and
videos. The digital camera captures an image; its intensity is not balanced as human perception [17];
therefore, gamma correction is applied to it. The purpose of this correction is to balance the pixels of
the image according to human perception (eye intensity) by applying the gamma correction formula:

V̄c = Ā× V̄γ
uc (8)

here Ā is the arbitrary constant, V̄uc is the uncompressed image obtained from the Google Play Store
and γ is the gamma correction value. In order to compress and reduce the pixels of an image, γ value is

Appl. Sci. 2020, 10, 6889 9 of 12

considered to be less than 1 [18]. However, in mobile apps we apply gamma correction on mobile ads
to reduce the hidden energy consumption of mobile devices. In order to apply gamma correction, first,
the mobile ad converts the image into a bitmap image (it is a vector drawing in Android), then this
image is passed to the gamma correction function. In this function, we set the threshold value of 250
and reduce the width and height of the image up to less than equal to the threshold value. After the
image-reduction step, image decoding starts in which the compressed matrix applies to each image
pixel. Through this process, illumination of pixels is adjusted, which reduces the size and quality of
the image. The modified image is encoded and converted into a bitmap object which passes to the
mobile app. Due to this process, a considerable amount of hidden energy is saved, which directly
increases the battery lifetime of a mobile device.

5. Evaluation and Experiments

In this section, we describe and evaluate the experimentation of the proposed gamma correction
algorithm as presented in Algorithm 1. In particular, we categorize the experiment to address the
following research questions.

• RQ1: Can image-compression technique (gamma correction) reduce the energy consumption of
the mobile app?

• RQ2: Does gamma correction efficiently increase battery lifetime and performance the of a
mobile device?

Algorithm 1: Gamma correction on mobile ads.
Initially;
Image← get-image(URL);
Bit-image← Bitmap-covert(Image);
Gamma correction (Bit-image)
W← Bit-image.Width;
H← Bit-image.Height;
if W ≥ threshold value & H ≥ threshold value then

SW←W/half;
SH← H/half;
Goto IF(W&H ≥ threshold− value)

D-image← decode(Bit-image);
foreach Pixels ∈ Bit− image do

C-Image← Compress-matrix(Bit-image);
E-image← encode(C-Image);
B-image← Bitmap-covert(E-image)
return Gamma correction(B− image);

5.1. Experiment Setup

To examine the performance of the proposed approach, the experiments are performed on the
Samsung Core Prime, Huawei Mate 10 lite and Q mobiles, as listed in Table 2. The Android application
along with ad (considered as an image) builds on the Android studio. The gamma correction (image
compression) technique is applied on the image to reduce the hidden energy cost of mobile ads in
the application. For the sake of fare energy comparison, we use the same application with or without
an image-compression technique. Furthermore, both applications run for 7 min on a mobile device
and we compute the hidden energy cost of mobile ads using the Android profiler. Furthermore,
this energy is also computed for verification by trapen energy profiler. For pictorial representation of
result, Matlab is used. Therefore, calculation shows that the proposed mechanism is suitable for the
app developer while developing an app in the presence of mobile ads.

Appl. Sci. 2020, 10, 6889 10 of 12

Table 2. Tools and subjected apps for experiment.

Name Purpose

Android profiler Recording energy consumption
Trapen profiler Recording energy consumption
Android studio For Code

Device for experiment Q mobile, Samsung core prime, Huawei mate 10 lite
Matlab Pictorial representation of findings

RERAN tool Recording the manual generated workload
Android applications for experimentation Cam Scan, Nature Photo Editor, Blind traveler app, Karvan Card

5.2. Rq1: Gamma Correction Reduces the Energy Consumption of the Mobile App

Traditionally, gamma correction is used to manipulate the pixels of a digital camera image, due to
which the human eye can view a fully illuminated image [18]. However, in this work, we use correction
on mobile ads to reduce the size and adjust the pixels of the image to reduce the quality of mobile ads.
Moreover, the quality is maintained up to the point where the content can read easily, hence, it is a
“win–win” situation for the developer, end user, and third party Google Store. Figure 3 shows that
the energy consumption of gamma-corrected applications is low compared to other non-corrected
versions of the applications.

Figure 3. Mobile ad energy consumption.

5.3. Rq2: Gamma Correction Efficiently Increases the Battery Lifetime and Performance of the Mobile Device

According to existing research on the mobile ecosystem [3–7], we can say that the energy
consumption of the mobile device has a nonlinear relationship with the lifetime of battery and
performance of the mobile device. Similarly, Figure 4 illustrates, after gamma correction on mobile
applications, that it consumed less mobile battery. Hence, the gamma correction increases the lifetime
of mobile battery and the performance of the mobile device. Thus, our technique provides a way for a
developer to reduce the hidden energy cost of the mobile application.

Appl. Sci. 2020, 10, 6889 11 of 12

Figure 4. The impact of gamma correction on mobile applications.

6. Conclusions and Future Work

Developing an energy-efficient mobile application in the presence of mobile ads is a daunting
task for the software developer. Unfortunately, much existing work focuses either on finding and
estimation the energy consumption of a mobile app. Furthermore, other online resources focus on
the performance of the mobile application. Thus, due to lack of guidance, the developer is unable to
design an energy-efficient mobile application. Therefore, in this paper, we proposed a way to optimize
mobile ads in applications. In this work, we apply gamma correction to a mobile application to reduce
the size of mobile ads. Furthermore, in order to reduce the quality of mobile ads, gamma correction
adjusts every pixel of the mobile ad. Due to this, our proposed work minimizes the hidden energy cost
of mobile ads, which directly increases the lifetime and performance of the mobile app. The simulation
result validates that our proposed work efficiently reduces the energy consumption of a mobile
application. In the future, we plan to integrate other image-compression techniques with gamma
to further optimize the energy depletion of mobile applications and extend our research for the
iOS platform.

Author Contributions: Conceptualization, A.R.H., S.u.I. and H.A.K.; Formal analysis, I.U.D. and A.B.G.; Funding
acquisition, A.A.; Investigation, A.R.H.; Methodology, A.R.H., S.u.I. and H.A.K.; Software, A.R.H., Project
administration, S.u.I. and A.A.; Resources, S.u.I.; Supervision, S.u.I. and H.A.K.; Validation, I.U.D. and A.B.G.;
Writing—Original draft, A.R.H., H.A.K. and S.u.I.; Writing—Review & editing, A.B.G., I.U.D. and A.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by King Saud University, Riyadh, Saudi Arabia, through Researchers
Supporting Project number RSP-2020/184.

Acknowledgments: Authors acknowledge the support by University Malaysia Sabah, COMSATS University
Islamabad, and National University of Computer & Emerging Sciences, FAST, Islamabad for providing means to
conduct the study. Also, this work was supported by the King Saud University, Riyadh, Saudi Arabia, through
Researchers Supporting Project under Grant RSP-2020/184.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Capponi, A.; Fiandrino, C.; Kantarci, B.; Foschini, L.; Kliazovich, D.; Bouvry, P. A Survey on Mobile
Crowdsensing Systems: Challenges, Solutions, and Opportunities. IEEE Commun. Surv. Tutor.
2019, 21, 2419–2465. [CrossRef]

2. Wang, X.; Athanasios, V.; Vasilakos, M.C.; Yunhao, L.; Ted, T.K. A survey of green mobile networks:
Opportunities and challenges. Mob. Netw. Appl. 2012, 17, 4–20. [CrossRef]

http://dx.doi.org/10.1109/COMST.2019.2914030
http://dx.doi.org/10.1007/s11036-011-0316-4

Appl. Sci. 2020, 10, 6889 12 of 12

3. Lee, S.; Go, M.; Ha, R.; Cha, H. Provisioning of energy consumption information for mobile ads.
Pervasive Mob. Comput. 2019, 53, 49–61. [CrossRef]

4. Cai, H.; Gu, Y.; Vasilakos, A.V.; Xu, B.; Zhou, J. Model-driven development patterns for mobile services in
cloud of things. IEEE Trans. Cloud Comput. 2016, 6, 771–784. [CrossRef]

5. Gui, J.; Li, D.; Wan, M.; Halfond, W.G. Lightweight measurement and estimation of mobile ad energy
consumption. In Proceedings of the 2016 IEEE/ACM 5th International Workshop on Green and Sustainable
Software (GREENS), Austin, TX, USA, 16 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7.

6. Corral, L.; Georgiev, A.B.; Sillitti, A.; Succi, G. Can execution time describe accurately the energy consumption
of mobile apps? an experiment in Android. In Proceedings of the 3rd International Workshop on Green and
Sustainable Software, Hyderabad, India, 1 June 2014; ACM: New York, NY, USA, 2014; pp. 31–37.

7. Gui, J.; Mcilroy, S.; Nagappan, M.; Halfond, W.G. Truth in advertising: The hidden cost of mobile ads for
software developers. In Proceedings of the 37th International Conference on Software Engineering, Florence,
Italy, 16–24 May 2015; IEEE Press: Piscataway, NJ, USA, 2015; pp. 100–110.

8. Cruz, L.; Abreu, R. Performance-based guidelines for energy-efficient mobile applications. In Proceedings
of the 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems
(MOBILESoft), IEEE, Buenos Aires, Argentina, 22–23 May 2017; pp. 46–57.

9. Behrouz, R.J.; Sadeghi, A.; Garcia, J.; Malek, S.; Ammann, P. Ecodroid: An approach for energy-based ranking
of Android apps. In Proceedings of the Fourth International Workshop on Green and Sustainable Software,
Florence, Italy, 18 May 2015; IEEE Press: Piscataway, NJ, USA, 2015; pp. 8–14.

10. Hao, S.; Li, D.; Halfond, W.G.; Govindan, R. Estimating mobile application energy consumption using
program analysis. In Proceedings of the 2013 35th International Conference on Software Engineering (ICSE),
San Francisco, CA, USA, 18–26 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 92–101.

11. Hao, S.; Liu, B.; Nath, S.; Halfond, W.G.; Govindan, R. Puma: Programmable ui-automation for large-scale
dynamic analysis of mobile apps. In Proceedings of the 12th Annual International Conference on Mobile
Systems, Applications, and Services, Bretton Woods, NH, USA, 16–19 June 2014; ACM: New York, NY, USA,
2014; pp. 204–217.

12. Corral, L.; Georgiev, A.B.; Janes, A.; Kofler, S. Energy-aware performance evaluation of Android custom
kernels. In Proceedings of the 2015 IEEE/ACM 4th International Workshop on Green and Sustainable
Software (GREENS), Florence, Italy, 18 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–7.

13. Rahimi, M.R.; Venkatasubramanian, N.; Mehrotra, S.; Vasilakos, A.V. On optimal and fair service allocation
in mobile cloud computing. IEEE Trans. Cloud Comput. 2015, 6, 815–828. [CrossRef]

14. Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The sensable city: A survey on the deployment and
management for smart city monitoring. IEEE Commun. Surv. Tutor. 2018, 21, 1533–1560. [CrossRef]

15. Liu, X.; Zhao, S.; Liu, A.; Xiong, N.; Vasilakos, A.V. Knowledge-aware proactive nodes selection approach
for energy management in Internet of Things. Future Gener. Comput. Syst. 2019, 92, 1142–1156. [CrossRef]

16. Sun, G.; Zhou, R.; Sun, J.; Yu, H.; Vasilakos, A.V. Energy-efficient provisioning for service function chains
to support delay-sensitive applications in network function virtualization. IEEE Internet Things J. 2020, 7,
6116–6131. [CrossRef]

17. Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. A multiscale retinex for bridging the gap between color images
and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [CrossRef] [PubMed]

18. Gupta, B.; Tiwari, M. Minimum mean brightness error contrast enhancement of color images using adaptive
gamma correction with color preserving framework. Optik 2016, 127, 1671–1676. [CrossRef]

Sample Availability: Data can be made available upon reasonable request to the corresponding author.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.pmcj.2019.01.002
http://dx.doi.org/10.1109/TCC.2016.2526007
http://dx.doi.org/10.1109/TCC.2015.2511729
http://dx.doi.org/10.1109/COMST.2018.2881008
http://dx.doi.org/10.1016/j.future.2017.07.022
http://dx.doi.org/10.1109/JIOT.2020.2970995
http://dx.doi.org/10.1109/83.597272
http://www.ncbi.nlm.nih.gov/pubmed/18282987
http://dx.doi.org/10.1016/j.ijleo.2015.10.068
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Problem Statement
	Motivation
	Problem
	Evaluation
	Hypothesis

	Overview of the Proposed Work
	Static Model
	Dynamic Model
	System Model
	Network Model
	Display Model

	Gamma Correction

	Evaluation and Experiments
	Experiment Setup
	 Rq1: Gamma Correction Reduces the Energy Consumption of the Mobile App
	 Rq2: Gamma Correction Efficiently Increases the Battery Lifetime and Performance of the Mobile Device

	Conclusions and Future Work
	References

