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Abstract: Retrospective dosimetry is one of the most important tools of accident dosimetry for
environmental dose estimation when large-scale radiological incidents and nuclear mass-casualty
events occur. Electron paramagnetic resonance (EPR) dosimetry is a physical method for the
retrospective assessment of absorbed dose based on the measurement of stable radiation-induced
radicals in materials. Different from the fast disappearance of radials in aqueous systems, the radials
can persist indefinitely in some organized matrices. Therefore, environmental materials contained in
creatures from sea or land can be potentially used as environmental dosimeters for a retrospective
dose analysis. This study aims to assess the EPR signals of free radicals from environmental
biological samples, potentially for the retrospective dose estimation. The evaluated samples involve
ox bone, cyclina shell, clam shell, chitin from squid, and human tissue (enamel and fingernail). First,
we dehydrate and grind these materials to the powder with different sizes. Subsequently, all materials
were irradiated with different doses ranging from 5 Gy to 50 Gy using 6 MV linear accelerator,
and EPR spectra of these materials were obtained from the calculation of peak-to-peak amplitudes.
The dose-response curve of EPR signals versus irradiated dose for the six materials shows good
linearity (R2~0.99). For the grain-size experiment, the ox bone and tooth with 0.5 mm, the chitin with
0.1 mm, and the others with 1 mm have the strongest signal. For the storage temperature experiment,
the optimal temperature of storage is at −20 ◦C for tooth, fingernail, ox bone, and chitin, at 45 ◦C
for clam shell and cyclina shell where the signal fading is minimal. In conclusion, the developed
dose-response curves of the six materials may potentially help a fast, rough retrospective dose
reconstruction under the environment when radiation accidents occur.

Keywords: electron paramagnetic resonance; radiation accident; enamel; chitin; cyclina shell;
clam shell

1. Introduction

Since the recent Fukushima Daiichi nuclear disaster, concerns about nuclear mass-casualty
events has intensified. In the event of a large-scale radiological incident affecting populated areas,
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a quantitative assessment of the consequences for human health requires the availability of suitable
techniques and procedures for dose reconstruction. Therefore, retrospective assessment of the radiation
exposure is vital to the analysis of the radio-epidemiological studies and radiation risk. In addition,
retrospective dosimetry is a useful tool for timely assessments of exposures to the general population
and the evaluation of individual doses as a basis for the selection of appropriate countermeasures.

For a large-scale radiological accident, the exposure of radiation workers can be found from
personal monitors. However, for personnel not equipped with such a device, pursuing an alternative
approach is required. Electron paramagnetic resonance (EPR) dosimetry is a method of quantitating the
radiation-induced radicals, making it possible to measure the radiation dose absorbed by the irradiated
material [1–7]. Owing to this feature, EPR-based dosimetry has been established for many applications
such as radiation processing [8], identification of irradiated foods [9,10], radiation oncology [11],
evaluation of radiation risk [12], and archeological dating [13].

The tooth enamel is one of the substances established as a suitable dosimeter for individual
dose reconstruction following radiation accidents [14–16]. Chandra and Symons [17] have considered
the use of human fingernail for measurements of free radical production resulting from radiation
damage. However, these materials are only applicable if the human teeth or the fingernail can be
readily obtained from accident victims now deceased or from patients in the normal course of dental
treatment. The aim of the study is to investigate the use of materials contained in creatures from
sea or land potentially as an environmental dosimeter for a retrospective dose analysis in areas and
locations where radiation-monitoring measurements were not performed. In this work, EPR technique
was applied to irradiated biological samples, investigating the effect of irradiated dose, grain size,
and storage temperature with the period following irradiation on the EPR intensity.

2. Materials and Methods

2.1. Preparation of Biological Sample

The biological samples include human tissue (enamel and fingernail), ox bone, cyclina shell,
clam shell, and chitin that might be found on or around an irradiated area (Figure 1).
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Figure 1. Biological samples of (a) ox bone, (b) chitin, (c) cyclina shell, (d) clam shell, (e) tooth and
(f) fingernail.

Fifty male teeth were collected and soaked with 10 M NaOH in test tubes. After the tubes were
put into the ultrasonic bath at 50 ◦C for 72 h, the dentin could be easily separated from the enamel
using the disposable blade. All enamel was then placed in an oven at 60 ◦C for drying. Fingernail
samples were collected from about 50 different donors at different times. The fingernail samples were
on average 1.5 mm wide and 10 mm long. The ox bone is obtained by removing meat from 1 kg beef
short ribs and is placed in the oven until completely dry. The cyclina shells, clam shells and the chitin
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extracted from the neritic squid were washed and desiccated at ambient temperature until analyzed.
To reduce the mechanical noise caused by the mortar grinding or nail scissors, the powders of enamel,
clam shell, and cyclina shell were soaked in 1% acetic acid, while the fingernail and the chitin were
soaked in 1% water. Before EPR measurements, the samples need to be dried well to avoid microwave
absorption by water [18]. Until the samples were completely dry, each sample was weighed and
packed and each sample is 0.2 g.

2.2. EPR Measurement

The samples were measured at National Tsing Hua University using an Elexsys E-580 spectrometer
(Bruker, Karlsruhe, Germany) equipped with the super-high-Q resonator cavity (SHQE; scan width
constant: 3431–3530, magnetic field modulation amplitude: 0.1 mT, magnetic field modulation
frequency: 100 kHz, microwave frequency: 9.75 GHz and microwave power: 15 mW). The Elekta
Synergy linear accelerator was used as the radiation source for the biological sample. The peak-to-peak
height of EPR signal is obtained by calculating the differences between peaks and troughs of EPR
spectra using the amplitude method [19,20]. The EPR signal of each sample contains mechanically
induced signal (MIS), native or background signal (BKS) due to the presence of organic radicals,
and radiation-induced signals (RIS) [21,22]. Before the exposure experiment, we repeat the measurement
of each sample three times and average the results. This averaged value is hereafter subtracted from
the measured EPR signal of the irradiated sample to correct the baseline, aiming to remove the MIS
and BKS values.

2.3. Experimental Design and Sample Irradiation

The Elekta Synergy linear accelerator is used as radiation source. The dose outputs of the
accelerator were calibrated based on the TG-21 protocol under the following conditions: source-to-axis
distance (SAD) = 100 cm, field = 10 cm × 10 cm, 1 cGy = 1 Monitor Unit. The expansion of EPR
dosimetry into the area of retrospective dose assessment requires a clear understanding of response
curve specific to the sample in question. Therefore, the calibration curve (the dose-response curve) of
EPR signal intensity versus absorbed dose is established. Each kind of the collected biological samples
was split into five sets which were irradiated using a 6 MV photon beam to 5, 10, 20, 40 and 50 Gy to
generate the dose-response curve. Note that each set is consisting of three replicates (where the copies
with the variation below 5% were selected). In addition, the grain size and the storage temperature
were investigated for improving the EPR dosimetry of each biological sample. For grain size test,
the biological samples ground with a pestle and mortar were divided into four powder size (1 mm,
0.5 mm, 0.3 mm and 0.1 mm) using the standard sieve. For storage temperature test, the sample was
stored at three temperatures of −20 ◦C, 4 ◦C and 45 ◦C with a variable thermostat system.

3. Results

3.1. EPR Spectra

Figure 2 shows the EPR spectra of the six materials received to 5 Gy of photon irradiation.
Clam shell, cyclina shell, tooth, and fingernail have a clear and great signal structure, while the EPR
intensities of ox bone and chitin are small. As the EPR signal is through the measured material
containing substances with unpaired electron spins, the chemical composition of the material plays
an important role in the spectral features. The main chemical component of ox bone is Ca3(PO4)2;
chitin is (C8H13O5N)n; clam shell and cyclina shell are CaCO3; tooth enamel is Ca10(PO4)6(OH)2;
fingernail is [S-R-C(NH2)COOH]n. The ox bone has a complicated and weak spectrum and may be
seen as a combination of many different radicals. The similarity of the spectral features in the clam
shell and the cyclina shell were observed. The majority of radiation-induced radicals in the clam shell,
the cyclina shell, chitin and tooth enamel are carbonate derived [9,15,23] whereas the fingernail may be
the sulfonyl radicals [24].
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Figure 2. Typical EPR spectra of (a) chitin, (b) ox bone, (c) clam shell, (d) cyclina shell, (e) tooth and (f)
fingernail exposed to 5 Gy photon irradiation.

3.2. Dose-Response Curve

The EPR signal intensities of the six materials as a function of absorbed dose shows that the EPR
signal intensity increases linearly with absorbed dose ranging from 5 to 50 Gy (shown in Figure 3).
When the relationship between EPR signal intensity of stable paramagnetic center and the dose has a
linear or almost linear character, the material can be used as a promising dosimeter for quantification
of radiation doses. The linear function was fitted to the data using the least square method. All the
coefficient of determination, R2, of the materials can achieve 0.99, indicating a high degree of linearity
within this dose range. The slope of the function represents the degree of the radiation sensitivity of
the material. Therefore, the clam shell, cyclina shell, tooth enamel, and fingernail have large sensitivity
compared to the ox bone and chitin.
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3.3. Grain Size

Grain size between 0.1 and 1 mm is commonly recommended and the maximum sensitivity is
varied by the grain size specific to the material [25]. Therefore, the granular effect of the material on
the sensitivity of EPR spectra is examined in this section. The grain size of each material is grouped
into four sizes of 0.1, 0.3, 0.5 and 1 mm. As shown in Figure 4, the grain size of 1 mm for the clam shell,
the cyclina shell and fingernail have the strongest EPR intensity, while the size of ox bone and the tooth
is 0.5 mm and chitin is 0.1 mm. Liu et al., (2015) reported that the sensitivity of EPR spectra to exposed
dose tends to increase with grain size and reaches saturation [26]. Note that the grain size in 0.1 mm
usually shows a different result, which may be due to its lower sensitivity, resulting in a large variation.
Aside from the 0.1 mm, the trends of EPR signals as the increase of grain size show upward trends for
clam shell, cyclina shell, and fingernail, and stable trends for chitin, ox bone, and tooth, respectively.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 8 

radiation sensitivity of the material. Therefore, the clam shell, cyclina shell, tooth enamel, and 

fingernail have large sensitivity compared to the ox bone and chitin. 

 

Figure 3. Dose response curve for the six biological samples. 

3.3. Grain Size 

Grain size between 0.1 and 1 mm is commonly recommended and the maximum sensitivity is 

varied by the grain size specific to the material [25]. Therefore, the granular effect of the material on 

the sensitivity of EPR spectra is examined in this section. The grain size of each material is grouped 

into four sizes of 0.1, 0.3, 0.5 and 1 mm. As shown in Figure 4, the grain size of 1 mm for the clam 

shell, the cyclina shell and fingernail have the strongest EPR intensity, while the size of ox bone and 

the tooth is 0.5 mm and chitin is 0.1 mm. Liu et al., (2015) reported that the sensitivity of EPR spectra 

to exposed dose tends to increase with grain size and reaches saturation [26]. Note that the grain size 

in 0.1 mm usually shows a different result, which may be due to its lower sensitivity, resulting in a 

large variation. Aside from the 0.1 mm, the trends of EPR signals as the increase of grain size show 

upward trends for clam shell, cyclina shell, and fingernail, and stable trends for chitin, ox bone, and 

tooth, respectively. 

 

Figure 4. Dose response curve of different grain size for the six biological samples. 

  

Figure 4. Dose response curve of different grain size for the six biological samples.

3.4. Storage Temperature

Since the loss (fading) of EPR intensity in irradiated samples with the passage of time is affected
by the storage of the samples under different temperature [5,27], the temperature dependence of
material storage is investigated. The evaluated materials irradiated by 5 Gy photons were grouped.
Subsequently, the grouped samples were maintained at three temperatures of −20 ◦C, 4 ◦C, and 45 ◦C,
respectively. EPR recordings were made at three-time points of 1 h, 168 h and 336 h at the same
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temperature. Representative fading curves for the six materials as a function of storage period up to
14 days are shown in Figure 5. The fading curves show the reduction of 6–25% for the clam shell,
9–15% for the cyclina shell, 2–13% for the tooth, 7–60% for fingernail, 8–38% for chitin, and 9–29% for
ox bone. The reduction of fading effect for tooth, fingernail, chitin and ox bone can be considerably
reduced at lower temperatures (−20 ◦C), but the fading effect for clam shell and cyclina shell shows the
opposite results. The fading effect for tooth is relatively small, regardless of the storage temperature
range [15]. When storage temperature increases, the signal loss of fingernail, chitin, and ox bone with
the passage of time was most severe, conforming to the chemical concepts on reaction kinetics and
diffusion mobility of radical species. The background signal in the shells is possibly due to trace
manganese ions in the calcium lattice. The opposite trends of the shells may lie in the changes of Mn2+

background signal during the sample preparation between measuring the background EPR signals
and measuring the post-exposure EPR signals [28]. It was clearly seen that the fading effect of EPR
signal highly depends on the storage temperature and period after irradiation.
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Figure 5. EPR signal fading for the six biological samples stored at −20, 4 and 45 ◦C.

4. Discussion and Conclusions

Herein, the present work reveals that EPR technique can be successfully applied to the identification
of irradiated clam shell, cyclina shell, fingernail, tooth, chitin and ox bone. All the biological samples
show a good linearity of the measured EPR signals against the dose, despite the fact that the chitin and
ox bone have lower radiation sensitivity. The optimized grain size for maximizing the signal is 1 mm
for the clam shell, cyclina shell, and fingernail, 0.5 mm for ox bone and tooth and 0.1 mm for chitin.
The fading of EPR signal with the passage of time can be considerably alleviated by control the storage
temperature at −20 ◦C for tooth, fingernail, ox bone and chitin and at 45 ◦C for clam shell and cyclina
shell. These results preliminarily support that the biological samples have the potential to become
an environmental dosimeter for retrospectively giving a fast rough estimate of dose level under the
environment when radiation accidents occur.

On the other hand, our results were obtained by sample preparation of the biological materials
before radiation; this can be considered as one of main uncertainties of the presented analysis.
In an actual event, real tissue will have been irradiated in situ before the samples are collected and
analyzed, but the biological samples in the study are prepared before irradiation. The procedure for
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sample preparation may affect the nature of the materials (such as water content) and its behavior to
radiation, leading to any effect of ionizing radiation to be undependable as a surrogate for retrospective
studies [29,30]. This may need further calibration work to overcome the issues. Nevertheless, our study
has shown the potential use of the six materials as environmental dosimeters and justify continued
efforts to develop the method of environmental dose estimation.
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