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Abstract: Safety is a major concern for autonomous vehicle driving. The autonomous vehicles
relying solely on ego-vehicle sensors have limitations in dealing with collisions. The risk can be
reduced by communicating with other vehicles sharing sensed information. In this paper, we study a
real-time multisource data fusion scheme based on Dempster–Shafer theory of evidence (DS) through
cooperative vehicle-to-vehicle (V2V) communications. The classical DS can produce erroneous
outputs when confidences are highly conflicting. In particular, a false negative error on object
detection may lead to serious accidents. We propose a novel metric to measure distance between
confidences on the collected data taking the asymmetry in the importance of sensed events into
account. Based on the proposed distance, we consider the weighted DS combination in order to
fuse multiple confidences. The proposed scheme is simple, and enables the vehicles to combine
confidences in real-time. From real-world experiments, we show that it is feasible to lower the false
negative rate by the proposed data fusion scheme, and to avoid accidents using the proposed collision
warning system.

Keywords: autonomous vehicle; Dempster–Shafer evidence theory; data fusion; cooperative V2V
communication; collision warning

1. Introduction

Autonomous vehicles have been considered as a key technology for intelligent transportation
systems. According to the research by National Highway Traffic Safety Administration (NHTSA) in
2015, human error causes around 94% traffic crashes [1], and autonomous vehicles are expected to
reduce traffic crashes drastically by minimizing drivers’ mistakes [2]. The design of operating software
as well as diagnostics tool for autonomous driving have been actively investigated [3]. In particular,
a proper anti-collision system is one of the most crucial components of autonomous vehicle systems.

The information including location, distance between adjacent vehicles, and the vehicle velocity
can be obtained by the equipped sensors such as radar, Global Positioning System (GPS), and cameras.
Collision avoidance systems based on sensing data are actively studied [4,5], including systems to
fuse the sensing data obtained from multiple sensors, e.g., combining data from radar and cameras [6].
However, autonomous vehicle systems relying solely on ego-vehicle sensors have limitations in dealing
with the collisions due to reasons such as bad weather, sensor malfunctioning, or blind spots, etc. [7–9].
The risk can be reduced by utilizing sensed information from the neighboring vehicles through
Vehicle-to-Vehicle (V2V) communication [10,11] such as Dedicated Short Range Communications
(DSRC) [12] which can support safety applications in high data rates [13,14].
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In order to leverage sensed data from multiple vehicles in real-time, we require a data fusion
system with low complexity and high reliability. In multisensor systems, there is uncertainty caused by
inaccuracy of sensors or complicated sensing environment [15]. In this respect, the “Dempster–Shafer
theory of evidence (DS)” [16,17] is a widely used evidence theory to comprehensively fuse multisource
information including uncertainty. It does not require any priori information and requires a simple
calculation where the outcome can be reinforced as more data become available [18–20].

Although DS has many advantages, the classical DS combination may yield unreasonable
outputs when evidences are highly conflicting [18–20]. This is critical for autonomous vehicle safety,
i.e., vehicles may have erroneous sensing results. Data fusion can cause either false positive or false
negative errors. The former is a false alarm, i.e., the vehicle falsely identifies a nonexisting object as
an existing one. The latter represents misdetection of an existing object or obstacles. In the context
of autonomous vehicle safety, false negatives are significantly dangerous [21] according to the case
studies on autonomous vehicle accidents [22]. Therefore, we would like to put more emphasis on the
confidence in existence rather than nonexistence of objects, and this necessity results in an asymmetry
in the importance of sensed events. However, most of existing works do not consider this aspect.
Although there are many works which incorporate the degree of conflict into a fusion method [23–27],
the studies on evidence distance taking the aforementioned issue into account are rare. In this paper,
we develop a novel metric for evidence distance to measure conflict by assigning asymmetric weights
to sensed results and propose a real-time data fusion scheme based on the new metric. In addition,
we outline a V2V communication method for anti-collision systems in which the proposed data fusion
scheme can be effectively applied.

We summarize the main contributions of this paper as follows.

(1) A new metric for evidence distance for real-time data fusion. We propose a novel metric for autonomous
vehicle to measure distance between confidences on detected events of asymmetric importance.
Next, we propose real-time data fusion scheme based on the new distance, which combines
multiple sensing data from adjacent vehicles. We show that the proposed scheme has low
complexity, and one can obtain consistent output irrespective of the order of the data to be
combined, which is beneficial in the autonomous vehicle environment. In other words, the method
is insensitive to external factors that may affect data arrival time such as channel states or
vehicle speed.

(2) An integrated collision warning protocol for autonomous vehicles. We propose a cooperative collision
warning protocol integrating the proposed data fusion scheme. For real-time operation, the system
is composed of technologies in various fields that can guarantee low latency and high reliability.
By experiments, we show that the method takes only a few milliseconds to return credible
detection of nearby objects.

(3) Experiments with real-world data. By simulation, we show that the proposed scheme reduces
false negative errors as compared to the existing methods. In addition, we conduct real-world
experiments and show that the proposed system not only prevents collision from blind spots,
but also compensates for inaccurate sensing information.

A comprehensive evaluation of the proposed data fusion shows that our scheme reduces fault
diagnosis compared to the baseline methods. In addition, the proposed scheme has low complexity,
which enables combining gathered data in real-time. Next, experiment results reveal that the proposed
collision warning system with data fusion can successfully detect and avoid imminent collisions.

The rest of this paper is organized as follows. In Section 2, we present related works. In Section 3,
we introduce background evidence theory and propose the data fusion schemes based on a new metric
for evidence distance. The collision warning system that involves the proposed data fusion processes
is proposed in Section 4. Section 5 shows the performance evaluation and experiment results with
real-world data, and Section 6 concludes this paper.
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2. Related Work

There have been several works which implement DS-based multisource data fusion for
autonomous vehicle safety. In [28], a method for calculating the probabilities of existence of nearby
objects was proposed. From the local sensing results at ego-vehicle, the existence probability is
obtained by the DS fusion. A trajectory selection problem was considered in [29], which proposed a
decision-making algorithm based on multicriteria such as safety, comfort, and energy consumption.
The DS is used for risk assessment, which combines multiple local risk levels obtained from the
predefined multiple criteria. However, as their schemes rely only on ego-vehicle’s information, it has
limitations on collisions predictions. In [30,31], collision avoidance schemes based on occupancy grid
for autonomous vehicle were considered. The state of cells in occupancy grid is determined by the
DS that combines the Light Detection And Ranging (LiDAR) data. In [32], the authors proposed a
real-time object detection algorithm. The DS is used to fuse the features extracted from sparse point
clouds, and experimental results showed good efficiency in the urban traffic environments. However,
most of these works focus on the classical DS combination scheme, which may result in erroneous
output when the input confidences are highly conflicting.

To overcome the shortcoming of classical DS dealing with conflicting confidences, several distance
metrics for evidence and improved DS fusion schemes were proposed. The metric called the Jaccard
index, which is based on the cardinalities of the union and intersection of two subsets, is widely
used [24]. In [27], a new distance measure which is more sensitive to change of evidence was presented.
A pignistic probability transformation based distance measures were studied in [33,34]. Despite many
attempts, distance metrics accounting for the asymmetry in the importance of sensed events were
not fully studied. To incorporate new distance metrics in DS, modified DS fusion methods were
proposed. In [25], a new weighted DS combination scheme was proposed where weights are calculated
by distance measure. Moreover, in order to manage confidence conflicting, weighted combination
schemes based on conventional distance with uncertainty [26] or ambiguity measures [35,36] were
also proposed. However, the above state-of-the-art DS fusion schemes use a distance metric which
assumes the evidences are of equal importance. Therefore, it is difficult to apply those fusion methods
directly to the autonomous vehicle environment in which the evidences and related events potentially
differ in their importance.

In [37], collision avoidance at intersections was studied with real-world experiments.
V2V communication is used to share each vehicle’s information such as velocity, and then vehicle
trajectories are estimated by Kalman filter. Based on trajectory estimation, each vehicle controls its
velocity to avoid collision. In [38], a system for cooperative collision avoidance for overtaking scenario
was proposed. For forward (rear-end) collision avoidance, the work in [5] uses deep learning, and the
authors of [39] presented a collision avoidance scheme considering the measurement uncertainty in
sensors. Although there exist many studies on collision prediction and avoidance, in-depth studies on
data fusion for cooperative sensing in autonomous vehicles are necessary.

3. Proposed Real-Time Data Fusion Method Based on a New Distance Metric

Autonomous vehicles can exchange sensing data acquired from various sensors through V2V
communication. In order to leverage sensing data from multiple sources in real-time, we require a data
fusion system with low complexity and high reliability. In this section, we introduce an inter-vehicle
data fusion method for identifying nearby objects.

We classify the type of sensing data into two categories: “object” and “trajectory”. The former
is associated with the existence of an object and, given that the object exists, the class of the object.
The latter is related with trajectory of an object such as position and velocity. According to these data
types, we will adopt different data fusion schemes. We first discuss data fusion associated with “object”
type data.
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3.1. Data Fusion for Object Information

3.1.1. Dempster–Shafer Theory of Evidence

In general, with more data available, higher credibility in the prediction can be achieved. At the
same time, under the autonomous vehicle environment, the decision should be made in real-time. In a
multisensor environment, there exists uncertainty due to limited accuracy of sensor measurements or
complicated sensing environment [15]. To address these issues, we adopt Dempster–Shafer theory of
evidence, in short DS [17], as a tool for combining gathered data in order to improve detection accuracy
by reinforcing the output based on the sensed data from peer vehicles. Misdetection of objects due to
erroneous sensing can be avoided by fusing the data obtained from peers. Moreover, DS is effective in
managing uncertainty in multisensor environments [15]. We begin by summarizing the mathematical
framework of DS [16,19,20,40,41].

In DS, the frame of discernment [17] is the set of all possible mutually exclusive and complete
states of system denoted by Θ. A Basic Probability Assignment (BPA) function m(·) is a mass function
which assigns confidence in each subset of Θ, i.e., m : 2Θ → [0, 1]. The BPA function satisfies the
following conditions,

m(∅) = 0, m(X) ≥ 0, ∀X ⊆ Θ, (1)

∑
X⊆Θ

m(X) = 1. (2)

In this paper, we will use term of confidences to indicate BPAs. The elements of the power set 2Θ

having a non-zero mass are called focal elements.
We combine multiple confidences into a single output using the DS rule of combination. Let us

consider two confidences, m1(X) and m2(X), which believe X is true. The DS fuses these
confidences [17], denoted by m1(X)⊕m2(X), as follows,

m1(X)⊕m2(X) =
∑Y∩Z=X m1(Y)m2(Z)

1−∑Y∩Z=∅ m1(Y)m2(Z)
. (3)

We determine the existence and class of an object by two consecutive stages of DS. Prior to
classifying objects, we identify whether a detected object indeed exists or not, i.e., an inaccurate sensor
can report that an object is detected even if there is nothing, and vice versa. Thus, we first identify
the existence, and, if the existence of an object positively identified, second determine the class of the
object. The process of the object information data fusion is depicted in Figure 1.

Object 

Non-existence

Existence

Uncertainty

Car

SUV

Bicycle

Pedestrian

< EXISTENCE >

< CLASS >

Figure 1. Determining the object type information.

3.1.2. Data Fusion for the Existence of Objects

For the problem of determining existence, the frame of discernment is given by ΘE =

{existence, non-existence}. In this paper, we use notation 2ΘE to represent the powerset of ΘE, i.e.,
2ΘE = {{existence}, {non-existence}, {uncertainty (=existence or non-existence)}} where the elements
are denoted by E, N, and U, respectively. Let us define mi

k(X) as the confidence at vehicle i about
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object k that is committed to X ∈ 2ΘE , and Mi
k = {mi

k(E), mi
k(N), mi

k(U)} is defined to be the set of

confidences. For two vehicles i and j, we can calculate mi
k(X)⊕mj

k(X) for each element X ∈ {E, N, U}
from (3) as follows,

mi
k(E)⊕mj

k(E) =
mi

k(E)m
j
k(E) + mi

k(E)m
j
k(U) + mi

k(U)mj
k(E)

1− κ
,

mi
k(N)⊕mj

k(N) =
mi

k(N)mj
k(N) + mi

k(N)mj
k(U) + mi

k(U)mj
k(N)

1− κ
, (4)

mi
k(U)⊕mj

k(U) =
mi

k(U)mj
k(U)

1− κ
,

where κ = mi
k(E)m

j
k(N)+mi

k(N)mj
k(E). For instance, given Mi

k = {0.88, 0, 0.12} and Mj
k = {0, 0.7, 0.3},

mi
k(E)⊕mj

k(E) is given by 0.88×0.3
1−0.88×0.7 ≈ 0.68.

Below we define U or the “uncertainty” element, in a rigorous manner. There are two types
of uncertainty. The first type is the uncertainty due to inherent limitation of a sensor. For example,
a vision sensor cannot detect objects behind obstacles. As shown in Figure 2, the vehicle cannot
recognize the existence of the completely occluded object unless a peer vehicle reports the object to
that vehicle even if the object is within the sensing area. In this case, the confidence assignments by
vehicle i about k is given by

mi
k(E) = mi

k(N) = 0, mi
k(U) = 1. (5)

The second type of uncertainty is from the limited accuracy of sensors. The accuracy of a sensor
may be known in advance from its manufacturer [42]. In addition, the confidence can be adjusted for
the environment such as weather condition or the distance to the object [16]. For example, we can
set the BPAs for clear and rainy days to {0.9, 0, 0.1} and {0.9− δ, 0, 0.1 + δ}, respectively, where δ is a
system parameter.

Obstacle

Uncertainty 

Area

Sensing

Area

Existence Non-existence Uncertainty

. . .

Object Location

? ?

No data

Data reception 

from V2

V1’s perception change 

for object k

V1

V2V

V2

Figure 2. Definitions of sensing and uncertainty areas. The object in uncertainty area can be perceived
through V2V communication.

However, the classical DS combination may yield unreasonable outputs when evidences are
highly conflicting. This problem is due to combining in (3) which ignores the conflicts in evidence.
In order to illustrate this problem, let us consider the following example [19,40,43]. Given 3 events
Z = {A, B, C} and 2 Observers, Observer 1 and 2 assign m1(A) = 0.9, m1(B) = 0.1, m1(C) = 0.0 and
m2(A) = 0.0, m2(B) = 0.1, m2(C) = 0.9 as confidences in Z, respectively. Although Observers are quite
certain that either event A or C has occurred, the combination assigns the highest confidence to event
B as m1(B)⊕m2(B) = 1. Therefore, in order to deal with highly conflicting evidences, we consider the
evidence of distance in order to measure the degree of conflict among evidences [24,33].
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3.1.3. Proposed Metric for Evidence Distance

Based on the confidence assignment, in Jousseleme’s approach [24], the similarity between two
subsets is measured by their cardinality using the Jaccard index, |A∩B|

|A∪B| , and the distance increases with
the degree of conflict between two sets of confidences. Specifically, given two confidences m1 and m2

on the same frame of discernment Θ, the Jousselme distance between them is defined as follows [24],

d̄1,2 =

√
1
2
(mmm1 −mmm2)TP(mmm1 −mmm2), (6)

where mmm1 and mmm2 are |2Θ| × 1 vectors associated with m1 and m2, respectively, and P is |2Θ| × |2Θ|
matrix whose elements are defined by

P(A, B) =
|A ∩ B|
|A ∪ B| , ∀A, B ∈ 2Θ. (7)

The underlying premise of this approach is that elements of the frame of discernment are equally
important. However, in navigational safety, false negative is significantly dangerous [44,45]. That is,
the sensor did not report the existence of an object although the object existed. Therefore, we would like
to put more emphasis on the confidence of E than the other elements. This results in an asymmetrical
importance among the elements in the frame of discernment. In this paper, we propose a novel
distance metric to measure conflict by applying asymmetric weights to each element in the frame of
discernment, and the weighted DS combination [15,25,26,35] is considered to fuse the confidences
according to the proposed conflict distance.

Definition 1. For the proposed distance metric, we define the weighted cardinality for A ∈ 2Θ as follows,

|A|w := ∑
x∈A

w(x), (8)

where w(·) is a weight function w : Θ→ R++.

Through w(·), we can flexibly adjust the weights depending on the importance of the associated
elements, i.e., a larger weight indicates a higher importance. By doing so, we can put asymmetric
emphasis on the elements in the frame of discernment. Our approach generalizes the similarity
measure used by the existing methods in which the volume of similarity is determined by the number
of elements in subsets having identical weight [24,27]. We compute the weighted similarity matrix Q
as follows,

Q(A, B) :=
|A ∩ B|w
|A ∪ B|w

=
∑x∈A∩B w(x)
∑x∈A∪B w(x)

, ∀A, B ∈ 2Θ. (9)

For ΘE, given the confidences of vehicle i and j about object k, the distance between them is
defined by

dij
k =

√
1
2
(mmmi

k −mmmj
k)

TQ(mmmi
k −mmmj

k), (10)

where mmmi
k is 3× 1 vector of

(
mi

k(E) mi
k(N) mi

k(U)
)T. We show that the proposed distance in (10) satisfies

all four conditions on distance metrics, which are non-negativity, nondegeneracy, symmetry, and triangle
inequality [24].

Proposition 1. The proposed distance dij
k is a distance metric on 2ΘE .
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Proof of Proposition 1. For 2ΘE , we have 3 elements given by {E, N, U}. Let us denote the weighted
cardinalities corresponding to each element as w(e), w(n), and w(u), respectively, i.e., w(e) :=
∑x∈E w(x). We can compute the weighted similarity matrix Q by (9), and suppose that the matrix Q is
partitioned into the form such that

Q =

 1 0 Q(E, U)

0 1 Q(N, U)

Q(E, U) Q(N, U) 1

 =

[
A B
BT C

]
, where A =

[
1 0
0 1

]
, B =

[
Q(E, U)

Q(N, U)

]
. (11)

Let Q/A be the Schur complement of A in Q, which is defined by C − BT A−1B. Then, Q is
positive definite if and only if the following properties hold,

C1 : A � 0, C2 : Q/A = C− BT A−1B � 0. (12)

C1 is satisfied by property of identity matrix A. C2 can be expressed as

1 > Q(E, U)2 + Q(N, U)2

⇒1 >

(
∑x∈E∩U w(x)
∑x∈E∪U w(x)

)2

+

(
∑x∈N∩U w(x)
∑x∈N∪U w(x)

)2

=

(
w(e)
w(u)

)2

+

(
w(n)
w(u)

)2

(13)

⇒ (w(e) + w(n))2 > w2(e) + w2(n). (14)

The relation (13) can be derived by Definition 1 in (8) and E∪N = U. Inequality (14) holds due
to w(u) = w(e) + w(n), and w(·) > 0. Thus, (10) is an induced norm [24,46], which implies that it
satisfies all of four conditions on the metric distance.

We illustrate an example of the proposed distance metric in Figure 3. In both cases, Observers 1
and 2 have the same Jousselme distance given by 0.7649 due to the symmetry of confidences of E and
N. In our approach, given the weights as w(e) = 2, w(n) = 1, and w(u) = 3, we obtain new distance
d12

k for each case as 0.7147 and 0.8124, respectively. The result can be explained as follows. We assign
high importance to “existence” by w(e) > w(n). For the case of m1

k(E) = 0.9 and m2
k(N) = 0.6,

the level of conflict between confidences is high, but Observer 1 is highly confident of existence,
i.e., m1

k(E) = 0.9. In this case, it is regarded that two confidence vectors have a shorter distance than
that by the conventional metric. Contrary to this, Observer 1 in case 2 has relatively low confidence
in existence than case 1, i.e., m1

k(E) = 0.6. In spite of the same degree of conflict, by putting more
emphasis on E, the dissimilarity between the confidences become greater. Therefore, we obtain the
distance in case 2 given by 0.8124 > 0.7649, which will affect the result of data fusion. Next, we explain
how the existence of the object is determined based on the proposed distance.

E N U

0.9 0.0 0.1

0.0 0.6 0.4

E N U

0.6 0.0 0.4

0.0 0.9 0.1

Case 1 Case 2
Conventional

distance

Proposed

distance

Case 1
0.7649

0.7147

Case 2 0.8124

Distance

Figure 3. Example of the proposed distance given w(e) = 2, w(n) = 1, and w(u) = 3.

3.1.4. Proposed Data Fusion for Determining Existence

Based on the proposed distance, we leverage technique of the weighted DS combination rule
for data fusion [15,23,26,35]. Let us define Mi as the set of vehicles who can communicate with
vehicle i and i itself, and Ii as the set of detected objects which are located in vehicle i’s sensing area.
Denote the set of vehicles associated with vehicle i who can detect object k byMi(k) = {j ∈ Mi|k ∈ Ij}.
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Suppose the vehicle i currently receives n-th data point. Define the set of vehicles from which vehicle
i has received sensing data on object k including i as Mi(k)(n). We have that |Mi(k)(n)| = n + 1.
Without loss of generality (WLOG), we assume that j-th data is transmitted from vehicle j ∈ Mi(k) \ {i}.
Vehicle i calculates distances by (10) between mn

k and ml
k, ∀l ∈ Mi(k)(n − 1), and we define n × 1

similarity matrix [23,25,26], which is given by

SMni
k = 111− [dni

k dn1
k dn2

k · · · dnn−1
k ]T. (15)

where 111 is all-ones matrix. Due to symmetry property from Proposition 1, we have dij
k = dji

k , ∀j =
1, · · · , n, and thus Si(n) is a symmetric matrix. Based on (15), we can construct n-th block matrix Si(n)
such that

Si(n) =

[
Si(n− 1) SMni

k
(SMni

k )T 1

]
. (16)

Let us denote (p, q) element of Si(n) as Si
(p,q)(n). We define (n + 1)× 1 supplementary matrix

SU and credibility matrix CR [23,26], respectively, where p-th elements are defined by

SUp =
n+1

∑
q=1,q 6=p

Si
(p,q)(n), CRp =

SUp

∑n+1
p=1 SUp

, ∀p = 1, · · · , n + 1. (17)

Note that p = 1 represents the values from vehicle i, and the derived CRp can be regarded as the
weights on (p− 1)-th received confidence for all p ∈ [2, n + 1]. Let us define 3× 1 weighted confidence
vector about object k at vehicle i as m̃mmi

k. We calculate m̃mmi
k based on (17) such that

m̃mmi
k = (CR1 ×mmmi

k) +
n

∑
l=1

(CRl+1 ×mmml
k). (18)

The elements in (18) are the weighted confidences of E, N, and U. We define the set of elements of
m̃mmi

k as M̃i
k = {m̃

i
k(E), m̃i

k(N), m̃i
k(U)}. Next, we can apply the classical DS procedure in (3) to fuse M̃i

k
for n− 1 times [25,26,35,47]. The algorithm for existence calculation is presented in Algorithm 1.

Algorithm 1 Existence calculation for i about object k

1: function [E ,N ,U ] = EXISTENCE (Si(n− 1), Mj
k, ∀j ∈ Mi(k)(n))

2: Initialize : E ,N ,U ← 0
3: dnj

k ← Calculate conflict distance between mmmn
k and mmmj

k, ∀j ∈ Mi(k)(n) \ {n} from (10)
4: SMni

k ← 111− [dni
k dn1

k dn2
k · · · dnn−1

k ]T

5: Si(n)←

Si(n− 1) SMni
k

(SMni
k )T 1


6: Calculate m̃mmi

k based on Si(n) by (17) and (18)
7: {E ,N ,U} ← {m̃i

k(E), m̃i
k(N), m̃i

k(U)}
8: for t = 1, · · · , n do

9: E ← E ⊕ m̃j
k(E), N ← N ⊕ m̃j

k(N), U ← U ⊕ m̃j
k(U)

10: end for
11: return {E ,N ,U}
12: end function

Note that the proposed scheme has polynomial time complexity, which enables its real-time data
fusion. The DS rule in general has high computation complexity for data fusion, O(22|Θ|), which is a
main drawback. However, we have 3 elements in 2ΘE , and thus the complexity of calculating the DS
rule is O(1). Specifically, the vehicles which detect object k participate in the data fusion, thus vehicle i
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can obtain the fused output with O(|Mi(k)|) complexity for each time instant, which in turn we have
O(N) complexity in the worst case due to |Mi(k)| ≤ N. Furthermore, the considered data fusion
scheme is valid irrespective of the order of data arrivals as well.

Proposition 2. Given a set of data points, let Πu and Πv be the arbitrary order of data points where Πu 6= Πu

for u 6= v, and we denote corresponding outputs as M̃i
k(Πu) and M̃i

k(Πv), respectively. Then, we have
M̃i

k(Πu) = M̃i
k(Πv).

Proof of Proposition 2. Suppose that vehicle i receives n-th data. We suppose that there are different
data arrival orders which are denoted by Πu and Πv, |Πu| = |Πv| = n. The hat and check symbols
denote the notations related to Πu and Πv, respectively, e.g., Ŝi(n) and Ši(n) are similarity block
matrices in (16) corresponding to Πu and Πv. WLOG, we focus on the data comes from vehicle j.
Let us define the order of this data in Πu and Πv as Πj

u and Πj
u, respectively. For Πj

u-th data in Πu,
we can express the associated element in supplementary matrix such that

ˆSU
Πj

u+1
=

n+1

∑
q=1,q 6=Πj

u+1

Ŝi
(Πj

u+1,q)
(n) (19)

= (1− d̂Πj
ui

k ) + ∑
q<Πj

u

(1− d̂Πj
uq

k ) + ∑
q>Πj

u

(1− d̂qΠj
u

k ) (20)

= (1− d̂Πj
ui

k ) +
n

∑
q=1,q 6=Πj

u

(1− d̂Πj
uq) (21)

= (1− ďΠj
vi

k ) +
n

∑
q=1,q 6=Πj

v

(1− ďΠj
vq) = ˇSU

Πj
v+1

(22)

The equalities in (19) and (20) come from the definitions in (15) and (17), respectively. The third
equality in (21) holds due to the symmetry of the proposed distance. Finally, we can derive the last
equality, as the both Πj

u-th and Πj
v-th data refer to the same information from vehicle j. Therefore, we

have that

ĈR
Πj

u+1
× m̂Πj

u
k = ČR

Πj
v+1
× m̌Πj

v
k . (23)

We can apply this process to all the data points, which results in the same weighted output
irrespective of any arrival order.

We can extend Proposition 2 for any order of data points, which results in that given a set of data
points, we have the same final output irrespective of the order of fusion. This property guarantees
an independence of the data fusion scheme. In other words, as it is a data-driven fusion method,
we can focus on the data synthesis rather than external influence such as channel condition, etc. Finally,
we determine the existence of object if the calculated result from Algorithm 1 is greater than the
predefined threshold he, E ≥ he. Next, we proceed to the decision-making for object classification.

3.1.5. Proposed Data Fusion for Object Classification

Next, we consider the object classification process. The frame of discernment for classification is
given by the set of objects in the roads, e.g., ΘC = {Sedan, SUV, Pedestrian, Bicycle,· · · }. Let ck

i (X)

be the output from object detectors of vehicle i using about class X for object k. We define the set of
outputs as Ci

k = {c
i
k(X), ∀X ⊆ ΘC}. Any object detector providing confidence value for each element

in Ci
k can be applied, e.g., deep neural networks [48], classified vector quantization [49], and k-nearest

neighbor [50]. In general, the outputs from the object detection system are not suitable for direct use as
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confidences [51]. Instead, we apply temperature scaling technique [51] to classifier output, and the
calibrated result c̄i

k(·) is defined by

c̄i
k(X) =

exp(ci
k(X)/T)

∑Y∈2ΘC exp(ci
k(Y)/T)

, ∀X ∈ 2ΘC , (24)

where temperature T is a control parameter. We can tune the deviation among confidences by
adjusting the parameter T. This adjustment allows the result to be “soft” while preserving the existing
confidence [52]. The classifier assigns confidence (BPA) to each element of ΘC, and it satisfies the
conditions in (1) and (2). It is reasonable for a classifier to produce distinct probabilities for each
candidate class instead of a single output across multiple classes. Therefore, we have the same number
of focal elements to |ΘC|.

Next, we will calculate the distance of confidences as in (10) using calibrated confidences.
Assume that vehicle i receives n-th data point. Note that only the vehicles who identify “existence”
with respect to object k can have the corresponding class confidences, which is defined by Ei

k =

{j|mj
k(E) > 0, ∀j ∈ Mi(k)(n)}. The same procedure in (15)–(18) is applied to obtain the weighted

confidences, and the DS combination is performed with respect to the weighted confidences for |Ei
k| − 1

times. Let us denote the obtained DS combination results for classification as Wi
k(X), ∀X ∈ 2ΘC . Finally,

we choose the class with the highest confidence in the estimated class given by

CLi
k = arg max

X∈2ΘC

Wi
k(X) (25)

where CLi
k is the class decided at vehicle i about object k. The classification process is presented in

Algorithm 2.

Algorithm 2 Classification fusion for vehicle i about object k

1: function [C] = CLASS (Ci
k, ∀i ∈ Ei

k)
2: Initialize : C,W = ∅,
3: for i ∈ Ei

k do

4: c̄i
k(X)← exp(ci

k(X)/T)

∑
|ΘC |
j=1 exp(cj

k(X)/T)
, ∀X ∈ 2ΘC

5: end for
6: c̃i

k(X) ← Calculate the weighted confidences according to (10) and (15)–(18) based on c̄i
k(X),

∀X ∈ 2ΘC

7: for j = 1, · · · , |Ei
k| − 1 do

8: Wi
k(X)←Wi

k(X)⊕ c̃j
k(X), ∀X ∈ 2ΘC

9: end for
10: C ← arg maxX∈2ΘC Wi

k(X)
11: return C
12: end function

We can show that the data fusion for classification also has polynomial time complexity as follows.
Under the classification fusion, as explained previously, we have independent confidences for each
class. Consequently, the valid power set of ΘC is equal to ΘC, which results in O(|ΘC|2) complexity
to calculate the distance between confidences. Therefore, in total, the complexity of the class fusion
process is O(|Ei

k||ΘC|2).
The integrated decision-making is outlined in Algorithm 3. The algorithm uses functions of

EXISTENCE and CLASS from Algorithms 1 and 2. Given the collected data, vehicle i first validates the
existence of the reported object (step 3). If the existence is confirmed (step 4), the algorithm determines
the class of the detected object by fusing the shared confidences (step 5). An example is illustrated
in Figure 4. There are 3 vehicles, V1–V3, and an object k which is within the sensing ranges of them,
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e.g., MV1(k) = {V1,V2,V3}. Unlike V2 and V3, it is impossible for V1 to detect k, as the object is
located in the uncertainty area of V1. Moreover, we assume that V3 fails to detect the object due to,
e.g., bad weather or sensor malfunctioning. We set the confidences for each vehicle as in the tables
in Figure 4. As only V2 recognizes the object, it has class confidences, i.e., E1

k = {V2}. In this case,
through inter-vehicle communications, V1 receives the detection results, then verify the existence of
the object. From Algorithm 3, V1 can derive the final outputs for existence and class as {0.58, 0.34, 0.08}
and {0.5, 0.31, 0.19}, respectively. We set he = 0.5, thus V1 is able to not only indirectly detect the
presence of the object, but also find the class of the object.

From the experiments in Section 5, we will show that the proposed method operates in real-time,
and thus is suitable for the autonomous vehicle environment. Next, we discuss data fusion algorithm
for “trajectory” type data.

Algorithm 3 Decision-making for vehicle i about object k

1: Given Mj
k, Cj

k, ∀j ∈ Mi(k)(n), Si(n− 1), he
2: Derive Ei

k based on Mj
k andMi(k)(n)

3: [E ,N ,U ] = EXISTENCE (Si(n− 1), Mj
k, ∀j ∈ Mi(k)(n))

4: if E ≥ he then

5: [C] = CLASS (Ci
k, ∀i ∈ Ei

k)
6: end if

V2

V3

V1

Obstacle

O
X

X? =

V2 V3V1
V1's

Final decision

Object Location

(x,y,z)

Existence Non-existence Uncertainty

0.9 0.05 0.05

Object Location

None (x,y,x)

Existence Non-existence Uncertainty

0.05 0.8 0.15

Object Location

? (x,y,z)

Existence Non-existence Uncertainty

0.0 0.0 1.0

Existence Non-existence Uncertainty

0.58 0.34 0.08

Car Bike Person

0.5 0.31 0.19

V2’s detection list

V3’s detection list

V1’s detection list

Inter-vehicle data fusion process

Sensing area

(Uncertainty) (Existence) (Non-existence) (Existence)

Data fusion results

( = 2, = 1, = 3 )

Car Bike Person

0.5 0.31 0.19

Car Bike Person

- - -

Car Bike Person

- - -

Existence

Non-

existence

Figure 4. Example of multisource inter-vehicle data fusion process.

3.2. Data Fusion for Trajectory Information

The fusion of trajectory information of the object requires a different approach from object type
information. The trajectory information for the detected object consists of the measured position,
velocity, and the measurement accuracy of the sensor. As explained previously, sensors have an
inherent limitation in accuracy. We will use a “multisensor weighted data fusion” technique [53–55] so
as to combine the reported sensing results and accuracy. The technique provides a fast and robust
scheme to overcome the dynamic changes in the vehicular environment.

Let us define vj
k and γ

j
k as the velocity of object k measured by vehicle j and the associated

accuracy, respectively. These data are transmitted to nearby vehicles through V2V communications.
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We denote f i
k as the fused output based on the data gathered at vehicle i about object k. As in the

case of classification, only the vehicles with mj
k(E) > 0, ∀j ∈ Mi(k)(n) have the data on object k.

Thus, we have that

f i
k = ∑

j∈Ei
k

wj
kvj

k (26)

where wj
k is the weight of vj

k, and ∑j∈Ei
k

wj
k = 1. We assume that the sensor

measurements are independent and follow a normal distribution with standard deviation
γ

j
k (measurement accuracy) [56,57]. According to the extreme value theory of multivariate

function [54,55,58], we can obtain the weights corresponding to the minimum mean square error
as below.

wj
k =

1

(γ
j
k)

2 ∑l∈Ei
k

1
(γl

k)
2

. (27)

The weights in (27) can be interpreted that large variance (low accuracy) results in low weight on
measurements. Note that this scheme does not require any prior information, and computing (26) has
polynomial time complexity, O(|Ei

k|). In our experiment, on Intel(R) Core(TM) Xeon 2.4 GHz, it takes
only 7× 10−6 s on average in combining 1000 points of velocity data, which is a negligible delay.
Likewise, we can combine the location data as well, which are used to estimate the object trajectories.

4. Proposed Collision Warning System and V2V Communications

In this section, we propose a collision warning system and V2V communications integrated with
the proposed multisource inter-vehicle data fusion methods.

4.1. Overall System Model

For autonomous vehicles, it is necessary for the embedded collision warning system to quickly
perceive the surrounding environment and make decisions. In Figure 5, we illustrate an overall
architecture of the proposed collision warning system. We summarize the components of the system
as follows. Each vehicle obtains raw data from the equipped sensors such as cameras and radars.
Through the object detection process, the object class and its confidences are extracted from the raw
data. The trajectory information such as location and velocity are tagged to the object information in
real-time. Next, we propose a compact message format for communications to achieve low latency.
The encapsulated messages is shared via V2V communication, which provides high data rates and
reliability such as DSRC. Next, the aforementioned data fusion algorithms are applied to determine
the states of the detected objects. Based on them, the future trajectories of the detected objects are
estimated by Kalman filter with cosine effect compensation [59,60]. From the estimated trajectories,
the proposed system warns an imminent collision. In this paper, we mainly consider collision warning
protocol of the system in detail.

Object type
(Class &

Confidence)

Trajectory type
(Location &

Velocity)

Predetermined 

message format

Object sensing

V2V

communication

Data fusion &

Decision making

Collision 

determination

TX RX

Existence Class Trajectory
Y

N

Object

Collision warning

protocol

Figure 5. Proposed collision warning system.
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4.2. Object Sensing

Let us consider methods to obtain object type data. Recently, LiDAR-based autonomous vehicle
systems have been investigated [31,32,61]. However, due to its high cost [62], most of commercial
vehicles such as Tesla and Mercedes-Benz adopt the computer vision as primary object detection
rather than LiDAR [45]. Therefore, in this paper, we mainly consider the vision-based object detection
system [63,64].

In addition to object type data, trajectory data including location and velocity can be obtained
through the radar [42]. However, to obtain precise measurements, the system requires a supplemental
calibration process to compensate measurement errors caused by “cosine effect” [59,60,65]. The radar
can measure relative speed of the object precisely if the target moves directly in a direction of radar
signal. Otherwise, the measured value does not coincide with the actual velocity. Let φi

k be the angle
between the direction of vehicle i’s radar signal and moving direction of object k. Note that information
about object k can be obtained by utilizing historic trajectories. We denote the the measured and
compensated velocities about object k for i as Vi,k

M and Vi,k
C , respectively. Then, we can calculate the

compensated value by Vi,k
C =

Vi,k
M

cos φi
k
. In the following, we describe how to transmit these data.

4.3. Message Format

The proposed data format is shown in Figure 6. It is composed of the number of detected objects
(N), sensor accuracies (A), confidence (L), and trajectory data. The sensor accuracy is in 4-byte floating
point format which contains vision sensor accuracy. The rest are used to set uncertainty of confidences
and calculate (26) and (27). Next, the size of confidence part varies depending on the predetermined
list of classes, ΘC, and we allocate 2 bytes of short data type for each class. The position of the
detected object is 24 bytes long consisting of longitude (x), latitude (y), and height (z), which follows
the GPS coordination. We use the float data type of 4 bytes for conveying velocity information.
The aforementioned field is repeated for N times, thus the size of the entire packet is given by
13 + N(2× L + 28) bytes.

# of 

object

(N)

1 byte

Bus

X %

Sedan

Y %

L-3 Pedestrian

Z %

Accu-

racy

(A)

12 bytes

(2×L+28) bytes

Confidence

(L)

Position

(x, y, z)

Velocity

(V)

2×L bytes 24 bytes 4 bytes

(2×L+28) bytes

Confidence

(L)

Position

(x, y, z)

Velocity

(V)

2×L bytes 24 bytes 4 bytes

Vision 

sensor

accuracy

Position

accuracy

Velocity

accuracy

Figure 6. Proposed message format.

Next, we consider the latency of transmitting vehicle information in the proposed message format.
Suppose we use a standard SAE 2735 Basic Safety Message (BSM) format [66] which contains ID,
position, speed, heading, etc. We will set the basic BSM to be 500 bytes long, which consists of 300 bytes
for the default size of BSM [67,68] plus reserved space for other application such as high-end security.
If the system classifies 16 categories and detects 20 objects (L = 16, N = 20), the proposed entire safety
message is about 1.7 Kbytes, which takes only a few milliseconds in existing V2V communications
such as DSRC [11].
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4.4. V2V Communication Systems

In this section, we investigate V2V communication system to share the data. Specifically, we define
a V2V communication process to maintain the information up to date as possible, and take full
advantage of the previously presented data fusion scheme.

Each vehicle is equipped with cameras that record surroundings in F frame-per-second (FPS).
We denote k-th video frame as Fk. For a general video, F is fixed, e.g., F = 30. In each frame, the vehicle
performs object detection, and the result is broadcast periodically every 100 ms according to the
standard [69]. Likewise, the detection results of other vehicles arrive periodically. For vehicle i,
the data fusion output with respect to k-th frame and set of vehicles from which the data is successfully
received, X, is denoted by Γik

X . We describe the proposed data communication process with an example
presented in Figure 7 as follows.

(i) Data transmission: at each round, the vehicle transmits the most recently obtained result rather
than the combined one, i.e., for the second transmission, V1 sends Γ14

{1} instead of Γ14
{1,2,3}. This is

because of protecting originality and avoiding data contamination.
(ii) Data fusion and update: for every frame, as soon as the vehicle acquires the sensing result, the data

combination between the acquired and received data is performed using the data fusion method
proposed in Section 3. In this process, note that every received data has an expiration time of
100 ms, i.e., if a new data is not received within 100 ms from the same vehicle, the data is deleted.
This case implies that either the transmitted message is obstructed or the vehicle has left the area
of interest. In both cases, it can be considered that the data is invalid. For instance, between F6

and F7, V1 updates its data fusion output as Γ16
{1,3} rather than Γ16

{1,2,3} as there is no new data from
V2 and the stored data is expired.

In order to implement this procedure in practice, data fusion should be completed within a short
time. Nevertheless, the proposed data fusion method is feasible due to low complexity. Furthermore,
from Proposition 2, the vehicle no longer has to consider the order of fusion.

Decision 

making

V1

V2

0ms 100ms

Data

transmission

200ms

V2V3 V3

, , , , , , ,

Data

transmission

Figure 7. Example of the considered data communication system and real-time data fusion process. V1
can receive several data within the predetermined cycle (100ms), and a decision-making algorithm
updates the fused output in real-time.

4.5. Collision Determination

The fused output of the trajectory information can be applied to estimate the future trajectory of
the detected objects. However, in practice, as the measurement has certain level of noise, it is hard
to predict trajectories of vehicles correctly. Therefore, we employ a Kalman filter for noise mitigation
and precise estimation [70]. We assume that the sensors monitor nearby objects with tV time interval
which is identical to regular video frame. For simplicity, we consider 2-dimensional case mainly in
this section, and it can be extended to 3-dimension simply with the same manner. The state and
control input of Kalman filter at time t are defined by x[t] and u[t], respectively, which consists of x-y
coordinates of positions (s), velocities (v), and accelerations (a) such that

x[t] = (sx[t] sy[t] vx[t] vy[t])T, u[t] = (ax[t] ax[t])T. (28)
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Let us denote the measurements of position and velocity at time t as y[t]. Then, the process
dynamics can be expressed as

x[t + 1] =


1 0 tV 0
0 1 0 tV

0 0 1 0
0 0 0 1

 x[t] +


(tV )2

2 0

0 (tV )2

2
1 0
0 1

 u[t] + Np[t], y[t] =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 x[t] + Nm[t], (29)

where Np[t] and Nm[t] represent process and measurement noises which are white and independent
normal distributions with zero mean and noise covariance matrices Q and R, respectively, i.e., Np ∼
N (0, Q) and Nm ∼ N (0, R). From (28) and (29), we can estimate trajectory of objects precisely [71].

Next, in order to determine collision, we define the “safety area” of the objects [31,72,73], which is
a circle of radius Rs as depicted in Figure 8. Note that under the proposed system, we can determine
collisions precisely by utilizing class information. We decide an accident when safety areas of objects
and ego-vehicle are overlapped. In other words, along with the estimated trajectories, vehicles examine
whether the safety areas overlap, and the anti-collision system would be triggered if an collision
is predicted.

Overlapped safety area

Current 

safety area

Estimated 

safety area

Safety area Compensation 

+ Estimation

Estimated 

trajectory

Accident

Figure 8. Safety area and collision determination.

5. Simulation and Experimental Results

In this section, we evaluate the performance of the proposed systems. First, we investigate the
latency and improvement of the proposed data fusion schemes. Second, we test for accident scenarios
using real-world data. The first scenario concerns predicting accidents caused by blind spots, which
can be avoided using V2V communications. The second scenario shows how an erroneous detection
can be corrected.

5.1. Simulation Results: Performance Evaluation of Data Fusion Schemes

We first evaluate the delays for the proposed data fusion schemes in Section 3. The simulations
are performed on Intel(R) Core(TM) Xeon 2.4GHz using MATLAB R2014a. We calculate average
latency of performing Algorithms 1 and 2, and trajectory data fusion in (26) and (27) to synthesize
randomly generated 10 data points for 1000 iterations. Specifically, to satisfy conditions in (1) and (2),
the confidence for existence, m(E), is modeled by normal distribution N (0.5, 0.03), and the rest are
divided into equally for “nonexistence” and “uncertainty”, i.e., m(N) = m(U) = 1−m(E)

2 . We consider
16 classes, and the corresponding confidences are also generated according to N (0.5, 0.03). As a
representative, velocity is mainly considered for trajectory type data, which follows N (70, 0.01) [74].
The results are presented in Table 1.
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Table 1. Time consumptions of the proposed data fusion schemes for 10 data points.

Data Type Object Trajectory
Existence Classifiction

Value [s] 4.8× 10−4 5.0× 10−4 2.8× 10−6

Obviously, the data fusion for object type data takes larger calculation time compared to that
of trajectory type. Nevertheless, the latency is only about 1ms for entire data fusion processes,
which demonstrates that the proposed data fusion scheme can operate in real-time.

Next, we compute the performance of the proposed scheme in terms of the false negative rate
(FNR) defined by

FNR =
Number of false negatives

Number of false negatives + Number of true positives

where “true positive” and “false negative” are existence and nonexistence decisions conditional on the
existence of object, respectively. We assume that there is an object and 10 vehicles. Each vehicle
has one sensor which is in either normal or defective state. Depending on the state of the sensor,
vehicles allocate the confidence in existence or nonexistence according to normal distribution with
N (0.7, 0.09). The rest are divided into other elements uniformly to satisfy the condition in (2),
e.g., a vehicle i with normal sensor can have Mi

k = {0.8, 0.1, 0.1}.
In Figure 9, we plot the average FNR values for 10,000 iterations by changing the number

of normal sensors. We compare the proposed scheme with classic DS, the weighted DS based on
Jousselme distance [25], and the modified DS scheme presented in [26]. As shown in Figure 9, in all
cases, the proposed schemes outperform the other data fusion methods in terms of reducing FNR.
Specifically, for five normal sensors case, our method can reduce FNR about 18% compared to all the
baselines. In addition, the proposed scheme achieves FNR reductions over classic DS (64.8%), Ref. [25]
(50.9%), and [26] (65.5%) for seven normal sensors case. This result shows that we can improve the
driver’s safety, even if there are high conflicts among confidences. In the following, we experiment
how the proposed collision warning scheme can prevent from predicted accidents in real-world.
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Figure 9. Comparisons of the false negative rates.

5.2. Experimental Parameters

The two different image sensors (camera) supporting HD (1280 × 720) and full HD (1920 × 1080)
resolutions videos with 30 FPS are used to capture real-time vehicular environment. A YOLOv3 [48]
is exploited to object detection and classification. We consider 5.9 GHz DSRC network for V2V
communication. For compatibility, we consider the proposed packet header contains detection results
encapsulated with the basic payload of 500 bytes [75]. The packet is transmitted in 10 Hz period,
which is applicable for safety message formats such as Cooperative Awareness Message (CAM),
Decentralized Environmental Notification Message (DENM), and BSM used in DSRC. We consider
the weighted similarity matrix which has elements such that Q(E, U) = 100/101, Q(N, U) = 1/101.
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The collision occurrence scenarios are modeled by MATLAB on Intel(R) Core(TM) Xeon 2.4 GHz with
NVIDIA GeForce 1080Ti GPU. The detailed experimental parameters are presented in Table 2.

Table 2. Experimental parameters.

Parameter Value

Video(Image) size [pixels] 1280 × 720, 1920 × 1080

Frame per second 30 FPS

Object detection (ML) YOLOv3

Number of classifications 16

Basic message size 500 bytes/msg

Message transmission period 10 Hz

Frequency 5.9 GHz

Bandwidth 10 MHz

Modulation and coding scheme 16 QAM

Data rate 18 Mbps

Safety area (Car, Human) 4.8 m, 0.5 m

Deceleration rate 5 m/s2

Distance accuracy 0.1 m

Velocity accuracy 0.1 m/s

5.3. Experimental Result 1: Anti-Collision via V2V

In this scenario, we perform experiments of the proposed anti-collision system with real-world
data. As shown in Figure 10a–c, V1 cannot recognize the pedestrian who suddenly appears from
an uncertainty area caused by parking cars in a narrow street. However, V2, which comes from the
opposite site, is able to detect the pedestrian. The actual images of vehicles’ front view are presented
in Figure 10a,b including detection results. A top-view illustration is depicted in Figure 10c. V1 with
36 km/h and V2 with 47 km/h speed drive and a distance between them is about 20 m. A pedestrian
walks westwards as 5.5 km/h in 15 m away from V1.

(a) (b)

Parking 

car

Parking 

car

Parking 

car

Parking 

car
V2V

Pedestrian

V2

V1

V2

(c)

Figure 10. Collision scenario: (a) Front image of V1 which cannot detect a pedestrian. (b) Front image
of V2 which can detect a pedestrian. (c) Top-view illustration of this scenario.

In Figure 11, we plot the measured and estimated values of position, velocity, and calculated
acceleration of the pedestrian. In Figure 11b, it is shown that the cosine effect compensation can have a
high impact on measurements. As pedestrian and V2 come closer, the angle between them increases,
which causes the measured velocities to be smaller than actual values. It can be seen that the estimated
values are quite close to ground truth values. The precise estimations in Figure 11a,b result in correct
acceleration values (direction) as in Figure 11c.
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Figure 11. The received measurement and estimated trajectory about pedestrian at V1: (a) Position
comparison. (b) Measured and estimated velocities about x and y axes with and without cosine effect
compensation. (c) Comparisons of the calculated acceleration (direction).

Next, we explore how confidences of V1 change over time. We assume that the current frame of
V1 and V2 starts at t = 0. In this frame, V2 detects seven objects including the pedestrian, which takes
22.46 ms. The detection outcome is encapsulated as the proposed format with 1053 bytes. The delay is
only 4.68 ms. As soon as V1 receives data from V2 at t = 27.1 ms, the data fusion is performed. As the
pedestrian is located in the uncertainty area of V1, we set confidences to {0.0, 0.0, 1.0}. V1 takes 0.88 ms
of processing time in the decision-making, prediction, and the decision to issue warning. In addition,
the data fusion system returns the highest confidence on the detection of a person. The whole decision
process takes only about 27.9 ms. During the process, the confidence on existence changes from 0.0 to
0.66. We impose 0.5 threshold to determine existence of object. The detailed changes in confidences
are illustrated in Figure 12; it shows that V1 can start to decelerate after moving by the distance of
only 0.27 m even if V1 cannot directly recognize the pedestrian. The detailed results are addressed in
Table 3.
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Figure 12. Changes of confidences about {E, N, U} for V1.
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Table 3. Experimental results for the anti-collision case.

V1 V2 Output

Existence
Existence 0.0 0.85 0.66

Non-existence 0.0 0.05 0.03
Uncertainty 1.0 0.1 0.31

Class Person - 0.153 0.153
Other 15 classes (car, bus, · · · ) - 5.64 ×10−2 5.64 ×10−2

Latency

Detection time [ms] 24.09 22.46
Communication delay [ms] - 4.68 28.02

(message size [bytes]) (-) (1053) (totally)
Estimation+Decision [ms] 0.88 -

Finally, we investigate a collision scenario through the environment modeling as shown in
Figure 13. Each object has own safety area, e.g., car has 4.8 m and human is set to 0.5 m. Prediction line
indicates future trace until 7 s later, and star dots imply that the accident is expected to happen when
moving objects reach those locations. Vehicles are assumed to decelerate with 5 m/s2 [76]. Figure 13b,c
shows the locations of objects without and with the proposed system only after 1.2 s, respectively.
In Figure 13b, we can find that an accident occurs between V1 and pedestrian. On the other hand,
V1 can slow down its speed by receiving data from V2, and avoids the predicted collision as shown in
Figure 13c. From experimental results, we show that the proposed inter-vehicle data fusion takes less
than 30 ms from object detection to decision-making. In addition, the existence of the pedestrian in
blind spot can be identified by the proposed data fusion scheme. These results demonstrate that we
can prevent from the predicted accident in real-time.
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Figure 13. Snapshots of the scenario modeling: (a) Traces at t = 0 s. (b) Traces at t = 1.2 s without the
proposed system. (c) Traces at t = 1.2 s with the proposed system.

5.4. Experimental Result 2: Sensing Failover

The next scenario concerns a detection failover through V2V cooperation. As shown in Figure 14,
V1 with constant speed of 50 km/h is moving in a narrow space. However, V2 driving in 5 m/s2 cannot
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obtain a clear video of V1 due to broken sensor. Therefore, in this case, V1 is regarded as “nonexistence”
rather than “uncertainty” by V2, which represents a false negative error [44]. In addition, we assume
that V1 cannot communicate with other vehicles due to a malfunction of the communication tools or
lack of communication capability. We assume that there are similar problem at V3, i.e., it is hard to
obtain clear image on V1. Under this set-up, V2 cannot perceive the movement of V1 at all, and the
crash of V1 and V2 is imminent. However, the other cars (V4, V5) located at nearby V1 can recognize
the movement of V1 as presented in Figure 14e,f. They transmit this information to the V2 from which
the accident can be avoided. The cameras equipped at V2–V5 record V1’s movement simultaneously.
We manipulated cameras at V2 and V3 so that they produce blurred videos. Figure 14a,c shows the
original clear front views, and Figure 14b,d shows the blurred images at the same time.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 14. The video images captured at vehicles and detection results: (a) The original image at V2.
(b) The blurred image at V2. (c) The original image at V3. (d) The blurred image at V4. (e) The front
view of V4. (f) The front view of V5. (g) Top view illustration.
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We compare the measurements and estimation of V1 in Figure 15. Due to the dynamics of V1,
the angles between nearby vehicles are changed, which results in inaccurate measurements as shown
in Figure 15b. However, Figure 15a–c demonstrates that we obtain precise estimation values by the
proposed scheme, and the predicted collisions are avoided.
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Figure 15. V2’s combined measurement and estimated trajectory results about V1: (a) Position
comparison. (b) Measured and estimated velocities with respect to x and y axes with and without
compensation. (c) Calculated acceleration comparisons.

We demonstrate how the confidences change as data sources are added in Figure 16.
Especially, we compare the performance of the proposed scheme with the conventional weighted
data fusion method exploiting Jousselme’s distance. For abnormal states of V2 and V3, we assume that
they have high confidence in “nonexistence” about V1, and the other vehicles are set to have confidence
in existence of V1 as 0.7 and 0.9, respectively. In Figure 16a,b, we plot changes of confidences for the
proposed and existing weighted DS schemes, respectively. The detailed parameters and experimental
results are presented in Table 4. As the data are received sequentially, we can find that the confidence
in existence is changed in both figures. However, under the baseline scheme, the final confidence
on existence is 0.48, which in turn makes V2 decide “nonexistence”. Contrary to this, the proposed
scheme shows 0.58 confidence in existence, thus V2 can recognize V1 successfully. From this result, it is
shown that the proposed scheme can reduce the false negative error as compared to the conventional
data fusion method.

Next, we consider latency. The maximum packet length is 993 bytes, which requires only 4.4 ms
to receive the packet, and we have 21 ms processing delay for detection. It takes 0.85 ms on average
for V2 to perform decision-making including the estimation of future trajectory of V1. Moreover,
V2 decides that the target object is a car. In total, only 29.36 ms is required until V2 begins decelerating,
which is much shorter than human reaction time.

An environment modeling for this scenario is shown in Figure 17. As shown in Figure 17b, it is
predicted that the accident will happen after 0.7 s. However, under the proposed system, V2 can stop
as soon as recognizing movement of the V1 as in Figure 17c.
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Figure 16. Confidence comparison: (a) Changes of the confidences based on the proposed data fusion
scheme. (b) Changes of the confidences under the weighted data fusion scheme.

Table 4. Experimental results for the sensing failover case.

V2 V3 V4 V5 Output(V2)

Existence
Existence 0.1 0.1 0.7 0.9 0.58

Non-existence 0.8 0.75 0.1 0.05 0.42
Uncertainty 0.1 0.15 0.2 0.05 0.0

Class Car - - 0.153 0.153 0.329
Other 15 classes (person, bus, · · · ) - - 5.64 ×10−2 5.64 ×10−2 4.47 ×10−2

Latency

Detection time [ms] 21.53 23.44 22.41 24.36
Communication delay [ms] - 2.28 3.88 4.15 29.39

(message size [bytes]) (-) (513) (873) (933) (totally)
Estimation+Decision [ms] 0.85 - -
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Figure 17. Environment modeling: (a) Traces at t = 0 s. (b) Traces at t = 0.7 s without the anti-collision
system. (c) Traces at t = 0.7 s with the proposed system.



Appl. Sci. 2020, 10, 6834 23 of 27

6. Conclusions

In this paper, we studied a real-time inter-vehicle data fusion scheme for autonomous vehicle
safety which combines multiple sensing results transmitted by adjacent vehicles through V2V
communication. First, we proposed a novel metric to measure distance between conflicting confidences
on the detected event. We considered a new similarity matrix which takes asymmetric weights of the
existence of an object which can be flexibly adjusted depending on its importance. Our approach is
applicable to autonomous vehicle by reducing fault diagnosis in vehicular environment, especially false
negative errors. According to the proposed distance measure, the weighted DS combination was used
to fuse multiple confidences. It was shown that the proposed data fusion scheme has polynomial
time complexity, which enables real-time combination of confidences. From simulation, we also show
that the proposed scheme can work in real-time and achieve a lower false negative rate compared to
both the classical and existing weighted DS fusion schemes. By conducting real-world experiments,
we show that the accidents can be prevented by our method. Moreover, even when the ego-vehicle
measurements are incorrect, the proposed system can overcome sensing failures through the real-time
data fusion via inter-vehicle cooperation.

For future work, we plan to investigate collision avoidance maneuver based on vehicle kinematic
model which can be utilized in real-world scenarios such as overtaking and lane changing. As an
application of this technique, we will consider a compensation method for trajectory estimation errors
by comparing possible maneuvers and estimated movement. Moreover, precise mapping of the
surrounding environment is required for reliable maneuver. We also plan to use the data obtained
from the vision sensors with the deep learning-based Simultaneous Localization and Mapping (SLAM)
method for future research.
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