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Abstract: Fundus blood vessel image segmentation plays an important role in the diagnosis and
treatment of diseases and is the basis of computer-aided diagnosis. Feature information from the
retinal blood vessel image is relatively complicated, and the existing algorithms are sometimes
difficult to perform effective segmentation with. Aiming at the problems of low accuracy and low
sensitivity of the existing segmentation methods, an improved U-shaped neural network (MRU-NET)
segmentation method for retinal vessels was proposed. Firstly, the image enhancement algorithm and
random segmentation method are used to solve the problems of low contrast and insufficient image
data of the original image. Moreover, smaller image blocks after random segmentation are helpful
to reduce the complexity of the U-shaped neural network model; secondly, the residual learning
is introduced into the encoder and decoder to improve the efficiency of feature use and to reduce
information loss, and a feature fusion module is introduced between the encoder and decoder to
extract image features with different granularities; and finally, a feature balancing module is added to
the skip connections to resolve the semantic gap between low-dimensional features in the encoder and
high-dimensional features in decoder. Experimental results show that our method has better accuracy
and sensitivity on the DRIVE and STARE datasets (accuracy (ACC) = 0.9611, sensitivity (SE) = 0.8613;
STARE: ACC = 0.9662, SE = 0.7887) than some of the state-of-the-art methods.

Keywords: retinal blood vessel image; computer-aided diagnosis; U-shaped neural network;
residual learning; semantic gap

1. Introduction

Retinal blood vessel images are often used by doctors as a window to observe the response of
various diseases, such as hypertension, coronary heart disease, and diabetes, and vessel abnormalities
can reflect the severity of these diseases. Retinal blood vessels are the only blood vessels in the human
body that can be obtained without trauma. The fundus camera can directly take images of fundus
blood vessels and can respond clearly to microvessels and lesions. Therefore, the research of fundus
images has important medical application value. In order to make an effective diagnosis of the disease,
it is necessary to accurately segment blood vessels in the fundus. However, because the retinal blood
vessel image may have problems such as lesions, uneven lighting, noise, and low contrast between
small blood vessels and the background, it is difficult to completely segment the fundus blood vessel
image. Therefore, fundus blood vessel image segmentation has become a hot topic at home and abroad.

In recent years, many scholars have conducted extensive and in-depth research on automatic
segmentation of fundus blood vessel images and have proposed many segmentation methods.
These algorithms can be divided into supervised segmentation and unsupervised segmentation
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based on whether a gold standard image is required. Unsupervised fundus vascular segmentation
does not require a gold standard image as a segmentation standard. For example, Dash et al. [1]
proposed a morphological-based fundus image segmentation technology, which can use Kirsch edge
detection method to identify retinal vein from retinal image. The advantage of the method is that it can
identify the vasculature devoid of any tiny information, but the disadvantage is that the segmentation
of microvascular is insufficient. A matching filtering method designed by Zhang et al. [2] used a
multi-scale second-order Gaussian derivative filter and performs filtering in the direction score domain
to obtain the maximum response. This method has a good effect in dealing with complex vessels,
but there is a phenomenon of error segmentation. Abdallah et al. [3] employed a multi-scale tracking
method based on Heisson matrix feature vectors and gradient information. This method can extract
blood vessels, especially small blood vessels, at different resolutions. Although many scholars have
conducted in-depth research on the unsupervised segmentation method, its segmentation effect still
needs to be improved. Compared with the unsupervised segmentation method, the supervised
segmentation method can segment the fundus blood vessel images more effectively. For supervised
fundus blood vessel image segmentation, before being able to use end-to-end deep learning methods
for feature learning, researchers must manually extract image features based on prior knowledge
of the image. Orlando et al. [4], for example, adopted multi-scale linear detector response and
two-dimensional wavelet responses on the green channel as features, used structured output
support vector machine to train parameters of a fully connected conditional random field model,
and then used the trained conditional random field to segment blood vessels. This method can
effectively improve the performance index, but there will be error segmentation in the bright central
reflection area. Wang et al. [5] proposed a supervised learning method based on multi-feature and
multi-classifier fusion to segment retinal vessels. Four types of features were extracted, and the results
of decision tree and AdaBoost classifier were fused together to make a joint decision. This method
can effectively improve the accuracy and sensitivity of segmentation, but it needs to be improved
compared with the deep learning method. Although the above method has achieved certain effects,
the extraction of artificial features requires a wealth of prior knowledge, and it has a large subjectivity
for feature extraction, so it may cause problems such as insufficient microvessel segmentation and
incorrect segmentation.

The core idea of deep learning is to extract the main representation features from the original data
through a series of nonlinear transformations. This feature is multi-level and multi-angle, which also
makes the features extracted by deep learning method have stronger generalization and expressive
ability, which is exactly what the image segmentation process needs. Convolutional neural network,
as an effective deep learning model of image segmentation, has been widely concerned by researchers.
Gu et al. [6] proposed a context encoder network (CE-Net) to capture more high-level information,
to save spatial information, and to be used for 2D medical image segmentation. Although this method
has certain effects on various medical data sets, its accuracy still needs to be improved. Zhou et al. [7]
Proposed a neural network structure, UNET + +, for semantic and instance segmentation. By using
nested structure and improved hop connection structure, the segmentation performance of the model is
effectively improved. The disadvantage of the model is that the parameters increase greatly compared
with the original model. Soomro et al. [8] employed a fundus vessel segmentation method based on
deep convolutional neural network (CNN). Firstly, image enhancement was performed using fuzzy
logic and image processing strategy, and then, an encoding and decoding CNN model with skip
connection structure was proposed for retinal blood vessel segmentation.This method can effectively
improve the contrast between blood vessel and background, but there is over-segmentation in the
segmentation process. Kumawat et al. [9] adoped an improved local phase unit (ReLPU), which is
an efficient and trainable convolution layer. When the ReLPU layer is used at the top of the U-Net
segmentation network, it can effectively improve the segmentation performance of the U-Net model.
The disadvantage of this method is that it cannot segment the microvessels effectively. Tamim et al. [10]
proposed an improved Multi-Layer Perceptron (MLP) neural network that can automatically extract
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and distinguish blood vessels and background pixels in fundus images. This method has strong
robustness, but the model is more complex. Cheng et al. [11] used an improved U-Net model, that is,
adding dense block structures to the original model, which can effectively improve the accuracy, but the
segmentation sensitivity needs to be improved. Francia et al. [12] proposed a double U-Net model
structure of fundus image segmentation method. This method uses two U-Net models; the second
U-Net model adds residual structure. By adding the information flow extracted from the first U-Net
model to the second model, information loss can be effectively avoided. Pan et al. [13] developed
an improved U-Net model for retinal vascular segmentation. This method adds the Resnet module
to the original structure, which solves the problem that the traditional U-Net model cannot deepen.
However, the segmentation results show that the method cannot effectively segment the peripheral
blood vessels. Li et al. [14] used a new Resnet module to improve the U-Net. By adding more Resnet
modules, the network layer can be deepened, so the model can extract features better. However, with
the deepening of the network, the model becomes more complex.

Based on the above problems, such as discontinuous segmentation, difficult segmentation of
microvesselss and complex segmentation models, we propose a MRU-Net deep learning model
structure, i.e., a multi-scale residual U-shaped network model. The main work of our paper is
as follows:

• In MRU-Net, we add a multi-scale feature fusion module in the transition phase between the
encoder and decoder and extract the feature information with different granularities using
multi-scale dilated convolutions, so as to improve the model’s understanding of context
information and to improve the model’s segmentation ability for microvessels.

• In MRU-Net, we add a feature balance module in the skip connection between the encoder and
decoder to solve the problem of possible semantic gaps between low-dimensional features in the
encoder and high-dimensional features in the decoder.

2. Proposed Method

As shown in Figure 1, the retinal vessel segmentation framework proposed in this paper is divided
into two stages, namely training stage and testing stage. The overall process are as follows:

• Data preprocessing: The original retinal blood vessel image cannot be effectively segmented due to
factors such as uneven illumination, low noise, and low contrast. Therefore, image preprocessing
is required before training to ensure the maximum possible increase in contrast between the
retinal blood vessels and the background, thereby effectively improving the segmentation effect.

• Data expansion: Supervised segmentation training requires manual segmentation of images as
labels, so data acquisition is difficult, resulting in insufficient training data for deep learning
training. To solve this problem, we randomly divided each preprocessed image data into many
smaller image blocks to achieve the purpose of expanding the data set.

• Model training: The image block is divided into a training set and validation set according to the
ratio of 9:1. The training set is used as the input of U-Net model, and the corresponding gold
standard image block is used as the label. The gradient descent method is used to train the model.
According to the training effect of the training set and validation set, the model is continuously
optimized until the model reaches the optimum.

• Effect test: Firstly, preprocess the test data in the same way; secondly, orderly segment the
test image; then, input the segmented image blocks into the trained U-Net model to obtain the
corresponding segmentation results; and finally, the segmentation results of each image block are
combined to obtain a complete retinal blood vessel segmentation image.
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Figure 1. Overview of the architecture framework: the upper part shows the training process of the
model; the lower part shows the test process of the model.

2.1. Image Preprocessing

2.1.1. Data Set

We used two datasets for validation experiments: the DRIVE dataset and STARE dataset.
The DRIVE dataset was derived from the Dutch Diabetic Retinopathy Screening Project [15],

in which 400 subjects were aged between 25 and 90 years. The DRIVE dataset randomly selected
40 retinal blood vessel images, of which 20 were used as the training set and 20 were used as the
training set. Each image is 584 × 565 in size, and each image has a corresponding expert manual
segmentation result and mask image.

The STARE dataset is from the University of California, San Diego [16]. It contains 20 retinal
blood vessel images with a size of 700 × 605, 10 healthy images, and 10 pathological images, and each
image is provided with a corresponding expert manual segmentation result image.

Figure 2 is a data example of the two datasets, and the three columns are original fundus blood
vessel image, manual segmentation of blood vessels, and masks. Since the masks are not given by
STARE, we manually created masks among them.

Figure 2. Data example: the images from left to right are the original image, the manually segmented
label, and the mask image.
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2.1.2. Image Enhancement

Original retinal blood vessel image data are three-channel image data. Due to the optical effect
when taking pictures, contrast between the blood vessels and the background in the fundus image
is low, so it cannot effectively distinguish the fundus blood vessels from the background image.
Image enhancement preprocessing can effectively enhance the contrast between retinal blood vessels
and the background. The image enhancement preprocessing process is divided into the following
four types:

• Through the contrast experiment, the green channel of the retinal blood vessel image has a higher
contrast, so the fundus blood vessel image of the green channel is selected for experiments.

• The green channel image is processed for data standardization, and the conversion formula is
as follows:

x =
xi − xmin

xmax − xmin
(1)

where Xi is the current pixel value, xmin is the minimum pixel value, and xmax is the maximum
pixel value.

• Limited contrast histogram (CLAHE) is used to equalize the normalized image, thereby increasing
the contrast between the blood vessel and the background image and making the image easier
to segment.

• Gamma adaptive correction is performed according to different pixel characteristics of blood
vessels and background images, thereby suppressing uneven light and centerline reflection in the
fundus image, and the gamma value was set to 1.2.

The top-down images in Figure 3 are DRIVE and STARE data images, respectively. From left
to right: the first column is the original image, and columns 2–5 are the green channel image,
the normalized image, the Clahe equalized image, and the gamma locally adaptive correction
image, respectively.

Figure 3. Examples of parts of the image enhancement process: (a) original image, (b) green channel,
(c) normalized, (d) Clahe processing results, and (e) gamma processing results.

2.1.3. Image Expansion

Due to the complexity of manual segmentation of retinal blood vessels, the number of existing
images is very scarce, and deep learning is a complex model structure trained based on a large amount
of data. When the number is small, the model will be overtrained, which will lead to overfitting. In this
paper, the original image data is randomly divided into smaller image blocks to increase the amount
of training data.
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We randomly cut the original image into 48 × 48 image blocks. The original high-dimensional
pixel image segmentation into many low-dimensional pixel images has two main advantages. On the
one hand, the high-dimensional image segmentation into more low-dimensional image blocks can
effectively play a role in expanding the data, thereby avoiding overfitting caused by a small amount of
data. On the other hand, compared with high-dimensional images, the complexity of model design
based on low-dimensional image blocks is lower because the U-Net model of low-dimensional images
does not need to design deeper layers to extract complex high-dimensional image features and it also
effectively reduces the loss of image information caused by the deepening of the model. Figure 4 is an
example of several image blocks randomly extracted from the preprocessed DRIVE fundus image.

Figure 4. Samples of random segmentation: (a) randomly extract 48 × 48 patch image blocks from the
preprocessed image and (b) the corresponding label from the gold standard image.

2.2. MRU-Net Structure

U-Net [17] has a good effect in the field of medical image segmentation, and many scholars have
made different improvements on the segmentation of U-Net network in medical images. The limitation
of U-Net and its variants is that. in order to learn more abstract feature information in an image,
continuous convolution and pooling operations will be performed, but resolution of image features
will be reduced with the deepening of the network. The intuitive expression is that, as the network
level deepens, the detailed information in the image will be seriously lost. Based on this, we designed
a new U-Net structure, namely MRU-Net. As showned in Figure 5, the proposed model is mainly
composed of three modules: a feature encoder–decoder module, a multi-scale feature fusion module,
and a skip connection module.

2.2.1. Encoder–Decoder Structure

In the traditional U-Net structure, each block in the encoder and decoder contains two convolution
layers and a pooling layer, but frequent convolution and pooling will cause the image to lose
more semantic information. As the depth of the network deepens, the phenomenon of gradient
disappearance may occur. In order to avoid the gradient disappearing and speeding up network
convergence, the traditional convolution module is replaced by the Resnet module. In addition,
the convolution operation with a step size of 2 is used to replace the traditional pooling operation
in order to reduce the loss of image information as much as possible. The feature map obtained by
the convolution operation has the same dimensions as the feature map obtained by the traditional
pooling method.
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Figure 6 shows the proposed Res-Block structure. Among them, dropout is used to randomly
inactivate some neurons to prevent overfitting during model training; Batch Normalization (BN) is used
to normalize the activation value of hidden layer neurons, which can prevent the gradient vanishing
due to noise in the retina and can improve the expression ability of the model; each convolutional
layer in the paper uses linear correction units for feature extraction. Relu can effectively reduce the
complexity of the network and increase the convergence rate of the network. Its formula is as follows:

F(x) =

{
0 x ≤ 0
x x > 0

(2)

Figure 5. Improved U-shaped neural network (MRU-Net) structure: the structure of the MRU-Net
model is described in the lower right corner of the figure, including the methods used for
encoder–decoder, feature fusion, and skip connection.

Figure 6. Res-Block structure: each convolution process includes three processes: dropout, BN, and relu.

2.2.2. Feature Fusion Module

Medical image segmentation is different from traditional scene segmentation and has higher
requirements for fine-grained segmentation. The retinal blood vessel image is more complicated,
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and the difference is large in different parts, such as the main part of the blood vessel and microvessel
part. We propose a multiscale dilated convolution [18] fusion method. The fusion method mainly relies
on different dilation rates to provide multiple effective fields of view, thereby detecting segmented
objects of different sizes. In mathematics, the dilated convolution calculation under two-dimensional
signals is shown as follows:

y[i] = ∑
k

x[i + rk]w[k] (3)

Among them, x is the input feature map, w is the filter, and r is the expansion rate,
which determines the stride of sampling the input signal. It is equivalent to convoluting input x
with upsampled filters produced by inserting r− 1 zeros between two consecutive flter values along
each spatial dimension. The schematic diagram of the dilated convolution is shown in Figure 7.

Figure 7. Schematic diagram of dilated convolution.

Context semantic information is mainly determined by the size of the receiving domain. If the
receiving domain can provide more abundant information, then more context information can be used.
Pooling operations are usually used to increase the receptive field to extract image features at different
scales, but the pooling operation also brings loss of image semantic information. In order to overcome
this shortcoming and to effectively extract image features of different dimensions, we have adopted the
dilated convolution operation mentioned above. Dilated convolution can expand the receptive field
arbitrarily without the need to introduce additional parameters and can use the context information of
the image, so it is very suitable for multi-scale image segmentation tasks.

Our proposed multi-scale feature fusion module is shown in Figure 8. Generally, the convolution
of a larger receptive domain can extract more abstract features of a large object, while the convolution
of a small receptive domain is better for small objects. We use three branches to receive the semantic
information in the encoder module. Firstly, the dilated rate in the dilated convolution is set to 1,
2, and 3 to expand the receptive field, thereby extracting feature information of different scales in
the encoder module; then, the image semantic features extracted from different dilated rates are
combined; and finally, in order to reduce the parameters and computational complexity, the Conv
(1 × 1) convolution operation is used to reduce the channel dimension of the feature map to 1/3 of the
original dimension.

2.2.3. Res-Dilated Block

One of the main features of the U-Net model is the addition of a skip connection structure between
the encoder and decoder. Decoding is a process of recovering coding sampling, in which there will
inevitably be loss of information. The addition of a skip connection structure can supplement the
original information in the coding structure to the decoding structure, which helps to supplement the
lost semantic information.

Because the U-Net model is a deep structure, as the depth of the model increases, the extraction
of image feature information will become more abstract. Ibtehaz et al. [19] have shown that, if skip
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connection is directly used to merge low-dimensional image information and high-dimensional
image information, a semantic gap may be generated due to the large difference between image
features, which will affect the segmentation effect. Based on this, in the skip connection, we add
the Res-Dilated module that combines the residual network and dilated convolution. On the one
hand, the high-dimensional representation information of the image is extracted, and on the other
hand, the detailed representation information in the receptive field extraction image is increased.
The Res-Dilated structure is shown in Figure 9.

Figure 8. Feature fusion: first, different dilated convolution rates are used for feature extraction,
and then, a 1 × 1 convolution operation is used to reduce the feature map, thereby reducing
computational complexity.

Figure 9. Res-Dilated block: adding an dilated convolution structure to Resnet.

2.2.4. Loss Function

In U-Net model training, the loss function we use is a binary cross-entropy loss function.
The formula of the loss function is designed as follows:

L = − 1
n

n

∑
i=1

ŷilogyi + (1− ŷi)log(1− yi) (4)

Among them, ŷi is the expected output, that is, the real data label, and the value is ŷi ∈ {0, 1};
yi is the actual output, and the value is yi ∈ [0, 1]. In the U-Net network training process, in order to
improve its training performance and to obtain better segmentation results, we use Adaptive Moment
Estimation (Adam) with the Nesterov momentum term as the optimization algorithm of the model
training process. Compared with traditional optimization algorithms, the Adam optimizer has the
advantages of high computing efficiency, small memory consumption, and adaptive adjustment of the
learning rate. It can also better process noise samples and has a natural annealing effect.
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3. Experiment

We used DRIVE and STARE as datasets, where DRIVE contained 40 images (20 training and
20 test images) and STARE contained 20 images (10 training and 10 test images). We extracted the
training image with 48 × 48 pixels, and DRIVE randomly extracts about 190,000 image blocks while
STARE randomly extracts about 181,500 image blocks. The extracted image blocks were used as the
input of the model, 90% of them were used for training data, and 10% of them were used as validation
data. In the test set, the image blocks with pixel values of 48 × 48 were moved with the height and
width of 5 pixels to extract the image blocks in the test set. The number of training epochs was 20,
and the batch size was 64. The environment of this experiment was set up on a Linux system. Network
construction and experimental tests were implemented based on Keras and TensorFlow. The GPU
configuration was GTX 1080Ti. In the experiment, the parameter quantity of the model was 942,020,
and the parameter size was about 3.59 M. The training time of each epoch was about 47 s, the total
training time was about 15.6 min, and the total test time was about 53 s.

3.1. Evaluation Indicators

For retinal blood vessel image segmentation, the pixels in the image were actually divided into
a blood vessel image and a background image. In order to make a qualitative evaluation of the
experimental results of this article, we used several general retinal vessel segmentation performance
evaluation indicators:

• Sensitivity (SE): The ratio of the total number of correctly segmented blood vessel pixels to the
total number of manually segmented blood vessel pixels.

• Accuracy (ACC): The ratio of the total number of correctly segmented blood vessels and
background pixels to the pixels of the entire image.

• precision: The ratio of the actual blood vessel pixels in the segmented blood vessel pixels.
• F1 value: The result of combining sensitivity and precision. When the F1 value is high, the method

is more effective.
• Area Under Curve (AUC): The area under the receiver operating characteristic (ROC) curve.

The larger the value, the better the segmentation effect.

Sensitivity =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

F1 = 2× Precision× Sensitivity
Precision + Sensitivity

(8)

Among them, TP, TN , FP, and FN respectively represent true positive, true negative, false positive,
and false negative.

Jaccard =
| G ∩ P |
| G ∪ P | (9)

where G is the set of ground truth pixels and P is the set of predicted pixels.

3.2. Experimental Results

3.2.1. Subjective Assessment Results

We performed experiments on two databases: DRIVE and STARE. Several sets of images were
randomly selected from the test results of the two databases. Figures 10 and 11 show the intuitive
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effects of the method in this paper. In the figure, the DRIVE data image and the STARE data image
are respectively from top to bottom. Among them are (a) preprocessed images, (b) gold standard
images manually segmented by experts, (c) images obtained by segmentation using U-Net models,
and (d) images segmented by our proposed method.

DRIVE analysis: the first and third lines in Figure 10 are two normal retinal images. On the
whole, our proposed method achieves better results than the U-Net model, especially in some details,
our method has better segmentation results. The first line in the figure marks some details of the
differences. It can be seen that the result of U-Net model segmentation has a problem of blood vessel
rupture, and our proposed method solves this problem well; as can be seen from the third line of
the figure, compared with the U-Net model, our method has a better effect on the segmentation of
microvessels and the small vessels have been completely retained. The images in the second and
fourth rows of the figure have noise caused by the lesion. The U-Net model is sensitive to noisy data,
resulting in a poor segmentation effect. The segmentation effect proposed in this paper also has a more
effective segmentation effect in the face of noisy data.

Figure 10. Comparison of DRIVE segmentation results: (a) original image, (b) ground-truth, (c) U-Net
segmentation results, and (d) MRU-Net segmentation results.

STARE analysis: the three lines of image data in Figure 11 indicate the comparison of the
segmentation effects of the U-Net model and the method in this paper. In the first and third rows,
U-Net has segmentation breakage and missing vessel segmentation problems; the second line of the
retinal blood vessel image is more complicated, and there are many microvessels. Our proposed
method also has good results in the face of complex blood vessel images. From this, we can see that
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our proposed method have a better solution to the problem of microvessel and blood vessel rupture
and can perform more coherent and effective segmentation of microvessel.

Figure 11. Comparison of STARE segmentation results: (a) original image, (b) ground-truth, (c) U-Net
segmentation results, and (d) MRU-Net segmentation results.

In order to show the effect of our proposed method more intuitively, the ROC curves of the
two data sets shown in Figure 12 are given. From the ROC curve, it can be intuitively seen that the
algorithm in this paper has a higher true positive rate and a lower false positive rate and that the blood
vessel segmentation error is smaller.

(a) DRIVE ROC results (b) STARE ROC results

Figure 12. ROC curve: (a) DRIVE ROC results and (b) STARE ROC results.

3.2.2. Indicator Evalution Results

We conducted two comparative experiments, including (a) model structure comparison and
(b) comparison of methods.

In order to explore the improvement effect of the model, the experimental results of different
model structures were compared and analyzed, aiming to explore the influence of the improvement
of each module on the experimental model. As shown in Figures 13 and 14, Non-FF indicates the
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experimental results without feature fusion, Non-RD refers to the experimental effect without the
Res-Dilated module, and Non-R refers to the experimental results without the Resnet module for
encoder and decoder. Through the comparison of experimental results, it can be found that adding
feature fusion module can effectively improve the sensitivity (SE) of model segmentation and that the
fundus image can be more detailed and effective segmentation; the addition of the Res-Dilated module
and Resnet module can reduce the semantic gap between encoder and decoder and effectively improve
the transmission of features and reduce the loss of features, so that the overall evaluation index of the
model is also improved. On the other hand, although the Resnet and Res-Dilated methods can improve
the model, the most significant improvement is the addition of the feature fusion method. Because the
size of blood vessels in fundus retinal images is different, the motivation of multi-scale information
fusion design is to use different expansion rates to capture multi-scale features, so it can effectively
retain the information of microvessels, thus improving the detection accuracy of vascular edges and
microvessels. From the data point of view, the value of sensitivity (SE) has been significantly improved,
which also reflects that the feature fusion method designed by us improves the segmentation accuracy
of more blood vessels.

Figure 13. Comparison of DRIVE results: comparison of the indexes of different model structures in
our proposed method.

Figure 14. Comparison of STARE results: comparison of the indexes of different model structures in
our proposed method.
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In addition, in order to evaluate the effectiveness of our method, the AUC value, F1 value,
sensitivity, and accuracy of this method and other methods are compared. Tables 1 and 2 show
the comparison results of this method and other methods. In the DRIVE dataset, the AUC, F1,
sensitivity, and accuracy of the proposed method segmentation results reached 0.9837, 0.8444, 0.8618,
and 0.9611, respectively. Among them, the AUC, F1, and SE achieved the best results. Compared
with other methods, the accuracy rate also has a higher improvement effect, which is only slightly
lower than that in [20]. In the STARE dataset, the AUC value, F1 value, sensitivity, and accuracy of
the proposed method segmentation results reached 0.9856, 0.8143, 0.7887, and 0.9662, respectively.
Among them, the AUC and F1 reached the optimums, ACC was slightly lower than Xiao et al. [20],
SE was slightly lower than Lu et al. [21], and good segmentation results are obtained in general.
In addition, the confidence ranges of the accuracy of DRIVE and STARE are [0.9604, 0.9625] and
[0.9647, 0.9671], respectively.

Table 1. Evaluation of DRIVE Results.

Method Year AUC F1 ACC SE Jaccard

U-Net - 0.9740 0.8203 0.9517 0.7978 -
Gao et al.[22] 2017 0.9772 - 0.9636 0.7802 -
Hu et al. [23] 2018 0.9759 - 0.9533 0.7772 -

Xiao et al. [20] 2018 - - 0.9655 0.7715 -
Feng et al. [24] 2019 0.9678 - 0.9528 0.7625 -
Jin et al. [25] 2019 - 0.8237 0.9566 0.7963 -

Guo et al. [26] 2019 0.9806 0.8249 0.9561 0.7891 -
Gu et al. [6] 2019 0.9779 - 0.9545 0.8309 -

Pan et al. [13] 2019 0.9811 - 0.9650 0.8310 -
Sekou et al. [27] 2019 0.9874 0.8252 0.9690 0.8398 0.7026
Cheng et al. [11] 2020 0.9793 - 0.9559 0.7672 -
Orujov et al. [28] 2020 - 0.5500 0.9390 - 0.3800

Our 2020 0.9837 0.8444 0.9611 0.8618 0.7291

Table 2. Evaluation of STARE Results.

Method Year AUC F1 ACC SE Jaccard

U-Net - 0.9827 0.7917 0.9648 0.7128 -
Dasgupta et al. [29] 2017 - 0.8133 - 0.7872 -

Hu et al. [23] 2018 0.9751 - 0.9632 0.7543 -
Xiao et al. [20] 2018 - - 0.9693 0.7469 -
Lu et al. [21] 2018 0.9801 - 0.9628 0.8090 -

Feng et al. [24] 2019 0.9700 - 0.9633 0.7709 -
Jin et al. [25] 2019 0.9832 0.8143 0.9641 0.7595 -

Sekou et al. [27] 2019 0.9849 0.7929 0.9705 0.7695 0.6682
Tamim et al. [10] 2020 - 0.7717 0.9632 0.7806 -
Orujov et al. [28] 2020 - 0.5335 0.8650 - 0.3677

Our 2020 0.9856 0.8143 0.9662 0.7887 0.6864

We performed t-tests for each performance index, and the experimental results are shown in
Table 3. From the results of the t-test, we can see that, compared with other methods, our method has
significant differences in the performance of AUC, F1, and SE. In addition, we compare the operation
time of the model, and the results are shown in Table 4. Our method takes about 15.6 min to train the
model and 2.3 s to segment an image in the test set, which is totally acceptable in the medical field.
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Table 3. t-test result of each index (p < 0.05 significant).

Data Set AUC F1 ACC SE

DRIVE 0.0060 0.0002 0.0956 5.14× 10−6

STARE 0.0216 0.0454 0.1787 0.0173

Table 4. Computation time for processing one image.

Methods Time GPU

[30] 92 s Tesla K20c
[31] 0.64 s -
[32] 1.3 s Tesla K40
[33] 0.5 s -
[24] 0.063 GTX1070
[34] 70 s -
Our 2.2 s GTX 1080Ti

4. Discussion

In this paper, the application of a full convolution neural network in fundus blood vessel
segmentation is studied. Traditional machine learning methods cannot effectively segment low-contrast
microvessels, and there are problems of low segmentation accuracy and sensitivity. Based on
this, an improved U-Net model is proposed, which not only realizes the information fusion of
high-dimensional features and low-dimensional features but also improves the efficiency of feature
use. In this study, experiments were conducted on DRIVE and STARE fundus image databases,
and image blocks were randomly extracted to increase the amount of network training data to avoid
network overfitting.

In terms of network structure design and parameter setting, based on the traditional U-shaped
network, the network is defined as a structure block connected by upsampling or downsampling
operations. According to the characteristics of small amount of experimental data, this study randomly
extracts image blocks to reduce the dimension of image data, so as to reduce the complexity of the
network model. Only three downsampling and three upsampling operations are used. In order to
make full use of the feature information extracted from the network and to minimize the loss of feature
information, the convolution operation with step size of 2 is used to replace the traditional pooling
operation and each structural block is changed to Res-Block. In order to enhance the generalization
ability of the network and to better identify the small vessel structure, dropout, batch normalization
layer, and relu activation function were added before each convolution layer. Then, in order to
better extract the context semantic information of the image and to effectively segment the vascular
structure of different scales, we propose a multi-scale dilation convolution fusion method based
on dilation convolution. In addition, in order to solve the semantic gap between the encoder and
decoder, we propose a Res-Dilated block to replace the skip connection in the traditional U-Net model.
As shown in Figures 10–13, the traditional U-shaped network can be improved to better segment the
blood vessels with central line reflection and the microvessels with low contrast, so that the sensitivity,
F1 value, accuracy, and area under ROC curve (AUC) index of this research algorithm are improved.

In order to more intuitively compare the improvement effect of the U-Net model and the
segmentation performance of blood vessels, this study compared a variety of deep learning methods
including U-Net model. In general, compared with the original U-Net model, the MRU-Net model
has less noise points in the vessel probability map. From the details, the results of this study can
better segment the small vessels and retain the integrity of the vessels, and the continuity of the
vessels is better. In order to observe the influence of lesions on vascular segmentation more intuitively,
by comparing with the experimental results of the original U-Net model, it can be seen from Figure 10
that the MRU-Net network proposed in this study can better segment blood vessels and is less affected
by the lesion area. Compared with other methods, it can be seen from the detection indicators that our
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method achieves an optimal effect in three indicators of F1, SE, and Jaccard in the DRIVE dataset and
that the AUC index is only slightly lower than that in the literature [27]. Although the ACC index is
better than most methods, it needs to be improved. In the STARE dataset, our method achieves the
best results in AUC, F1, and Jaccard; the ACC index is only slightly lower than in the literature [20,27];
and SE is slightly lower than in the literature [20].

Our main contribution is to propose a simple and effective multi-scale information fusion module,
which uses the parallel convolution layer with different dilated rates to sample the feature map and to
get the feature information of different scales, which improves the detection performance of vessel
edges and microvasculature. In order to visually show the contribution of this paper, we compare and
analyze the effect of feature fusion and Resnet. The results on the DRIVE dataset are shown in Table 5.
It can be seen from Table 5 that feature fusion has a good effect on model improvement.

Table 5. Comparative analysis of feature fusion and Resnet.

DRIVE FF Resnet

AUC 0.9825 0.9773
F1 0.8420 0.8167

ACC 0.9618 0.9548
SE 0.8310 0.7905

It can be seen from the intuitive results and indicator evaluation results that our proposed
method has excellent effects on retinal vessel image segmentation. For complex blood vessel images,
standards close to manual segmentation by experts can be obtained. In addition, we invited five
experts with medical image processing background to evaluate the subjective results. Among them,
four experts think our method is effective for the segmentation of fundus images, and another expert
points out that some of our segmentation results are excessive segmentations hoping to be improved
in future research.

5. Conclusions

Using artificial intelligence to assist doctors in segmenting retinal blood vessel images is helpful
to doctors quickly diagnosing the disease and has important practical significance. We propose
an improved U-Net model structure for the current fundus vessel image segmentation with poor
segmentation effect and difficult microvessel segmentation. The model structure adds a residual
learning unit to the encoder structure and decoder structure of the traditional U-Net model, which is
more conducive to the transmission and retention of information; a feature fusion module is added in
the transition phase of the model’s encoding structure and decoding structure, which aims to extract
feature information of different granularities in the original image, which is more conducive to retaining
fine-grained image features, so that tiny blood vessels can be better segmented; the Res-Dilated module
is introduced in the skip connection, which can make the decoding structure network supplement
the original information while reducing the semantic gap between the encoding and decoding stages.
Through experimental verification analysis on two datasets of DRIVE and STARE, our proposed
method has an excellent segmentation effect. This proposed method achieved 0.9611, 0.8618, and 0.9837
in DRIVE and 0.9662, 0.7887, and 0.9856 on STARE for respectable accuracy, sensitivity, and AUC
performance metrics. Compared with the current methods, our method has better performance on
the whole.

Although our method has good performance, it still needs further improvement. Our method can
effectively segment microvessels, but some of them may still be discontinuous. In addition, based on
the current experimental conditions, we only tested on DRIVE and STARE datasets, and more clinical
data are needed for verification in the future. Our future work is to continue to optimize the effect
of retinal microvascular segmentation. On the one hand, contrast between the blood vessel and the
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background is increased by optimizing the preprocessing steps; on the other hand, the segmentation
effect is improved by continuously improving the model.
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