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Abstract: This article presents the development and application of a distinct adaptive control algorithm
that is based on fuzzy logic and was used to control the specific growth rate (SGR) in a fed-batch
biotechnological process. The developed control algorithm was compared with two adaptive control
systems that were based on a model-free adaptive technique and gain scheduling technique. A typical
mathematical model of recombinant Escherichia coli fed-batch cultivation process was selected to
evaluate the performance of the fuzzy-based control algorithm. The investigated control techniques
performed similarly when considering the whole process duration. The adaptive PI controller
with fuzzy-based parameter adaptation demonstrated advantages over the previously mentioned
algorithms—especially when compensating the deviations of the SGR. These deviations usually
occur when the equipment malfunctions or process disturbances take place. The fuzzy-based control
system was stable within the investigated ranges. It was determined that, regarding control quality,
the investigated control algorithms are suited to control the SGR in a fed-batch biotechnological
process. However, substrate feeding rate manipulation and limitation needs to be used. Taking into
account the time needed to design and tune the controller, the developed controller is suitable for
practical applications when expert knowledge is available. The proposed algorithm can be further
adapted and developed to control the SGR in other cell cultivations while running the process under
substrate limitation conditions.

Keywords: biotechnological process; adaptive control; specific growth rate control; fuzzy logic

1. Introduction

The modern food, chemical and pharmaceutical industry go hand in hand with biotechnology.
The production of various recombinant proteins is a big part of the sourcing of pharmaceutical
ingredients. These processes can be described as nonlinear and nonstationary, making modeling
and control a complicated control engineering task. In the biotechnology industry, this is even more
challenging due to strict safety regulations and operational constraints [1–3].

One of the most important control engineering tasks is the development of straightforward and
robust methods that could be used to monitor and control the specific growth rate (SGR) in industrial
bioreactors. This is often needed to successfully implement a Process Analytical Technology (PAT)
framework in bioengineering [4]. Nevertheless, currently, mostly relatively basic control systems are
used in most industrial-scale bioreactors, even though advanced control strategies are extensively
discussed in the academic community [5].

The biomass SGR, which can be described as the ratio between the biomass absolute growth rate
and the biomass amount accumulated in the culture broth, can be considered one of the most important
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variables in biotechnological processes. Not only does SGR influence the physiological state of a
microbial culture, it also defines the production of desired products, their quantity, and quality [3,6,7],
and also the rate of product synthesis. Effects like substrate inhibition or overflow are fairly common
in fed-batch bioreactors. However, these effects can be dealt with if controlled properly. A well set-up
control system is able to yield high product concentrations as well as high cell densities. This can be
reached by maintaining the substrate concentration at certain levels leading to a controlled biomass
growth rate [1] that can be achieved by changing the substrate feeding rate.

In many cases, biotechnological processes are controlled using PID (proportional–integral–
derivative) controllers, which usually operate in basic control systems. Temperature, pH and other
simple process variables are usually controlled in these systems. Control quality gravely relies
on the development and tuning of the controller and its ability to deal with process variability and
disturbances [1,2,4]. Common PID controllers that use constant tuning parameters are unable to achieve
the required control accuracy of the process since the dynamics significantly vary during the operation.
The academic community has proposed various PID controller parameter tuning approaches that take
into account time-varying operating conditions: rule-based fuzzy systems [8], first-principle models [9],
gain scheduling methods [10–12], and other techniques [1,2,13–15]. For exponentially evolving
processes, a technique based on feedforward-feedback control was proposed [16]. The proposed
methods provide a basis for both theory and practice enabling the utilization of adaptive control
algorithms in biotechnological process control and highlight that the application of these control
methods can add significant value to the performance of basic control systems.

In this work, a fuzzy-based adaptive control algorithm is developed and tested. The performance
of the presented controller is then compared with other adaptive control systems that are based on
a model-free adaptive technique and gain scheduling technique. These algorithms were applied to
control biomass specific growth rate in a typical production process of a bioreactor-scale fed-batch
recombinant protein. A mathematical model of the process was used to carry out numerical simulations.
The control system’s feedback signal was sampled using realistic intervals. The data were also corrupted
by additive noise during the simulation. During the simulation runs the performance of the system was
also evaluated. An impartial comparison is thus possible due to the fact that unknown experimental or
biological variability is avoided. Nevertheless, the extensive additional experimental investigations
are planned to test the control system performance under real conditions.

2. Materials and Methods

2.1. Mathematical Model of the Biotechnological Process

In this study, the biotechnological process was simulated using the mathematical model of the
Escherichia coli BL21 strain. This strain also harbored a pBR322 plasmid derivative and was cultivated
in a recombinant fed-batch process. Mainly because this recombinant protein is used in typical
bioreactor-scale processes.

The cultivation of the selected recombinant protein can be described as a two-phase process.
The target of the first phase is to accumulate the bioreactor with a sufficient biomass. The specific growth
rate is usually relatively high for this phase. During phase two, the recombinant protein is produced.
During the described two phases, different optimal temperatures were defined and maintained for
each phase. In the simulated process, the broth temperature was maintained at 37 ◦C during the first
phase thus maximizing the biomass growth to an optimal level. At the start of the production process,
the temperature was reduced to 32 ◦C. The substrate feeding rate profiles and the induction time also
have a significant influence on the process performance. Therefore, they are also subject to model-based
optimization. The induction time (8 h) for the investigated process of a given total duration was
determined in [17] using model-based optimization techniques. During the model-based optimization
of the process [17], the process performance (productivity) index equal to the total target protein amount
at the end of the process was used. The off-line measurement techniques applied for biomass and target
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protein analysis in the investigated process are described in detail in [17]. For the online measurements
of the biomass concentrations, alternative techniques based on turbidity (optical density), permittivity
measurements or off-gas analysis can be used. For protein measurement, a promising alternative to
the applied techniques are model-based approaches (application of soft-sensors, generic estimators,
e.g., [18]) that would enable the online monitoring of the key process variables.

A mathematical model presented in [17] was used to simulate the described biotechnological
process. According to other studies, pre-optimized feeding rate profiles are used to control the biomass
growth and protein production [17]. This type of open-loop system can be controlled effectively only
then when no considerable process condition deviations or equipment disturbances/malfunctions take
place. Failure to do so may lead to deviations in the specific growth rate thus reducing the process
productivity. Therefore, the SGR was selected as the main controlled variable of this research that
would be maintained by controlling the substrate feeding rate. In this study, an adaptive closed-loop
control algorithm was used for keeping the optimal SGRs trajectory on track. The discussed process
can be described using the bellow provided differential equations.

dx
dt

= µ(s, T)x− u
x
w

(1)

ds
dt

= −qs(s, T)x + u
s f − s

w
(2)

dpx

dt
= qpx(µ, px) (3)

dw
dt

= u + Fsmp (4)

where x (g/kg) describes the biomass concentration. µ (1/h) is the biomass specific growth rate that is a
function of the glucose concentrations (g/kg) and culture broth temperature T (◦C). Here, w (kg) is the
culture broth weight, qs (g/(gh)) is the glucose specific consumption rate. The glucose concentration in
the feeding solution is noted as sf (g/kg) while px (U/(g biomass)) is the specific protein activity. qpx

(U/(gh)) is the specific protein accumulation rate; u (kg/h) and Fsmp (kg/h) are the substrate feeding and
the sampling rates, respectively.

SGR is modeled using the Haldane-type model [19]:

µ(s, T) = µmax
s

Ks + s
Ki

Ki + s
exp
(
α
(
T − Tre f

))
(5)

where µmax (1/h) is a maximal specific growth rate parameter. Ki and Ks (g/kg) are then inhibition and
Monod constants. How the temperature influences the growth rate is considered with the parameter
α (1/◦C). The optimal growth phase temperature is noted as Tref (◦C). The optimal temperatures that
yield the highest growth and protein synthesis rates were determined in the previous study [20].

The specific consumption rate of the substrate qs is given by the following expression:

qs(s, T) =
1

Yxs
µ(s, T) + m (6)

where m (g/(gh)) is a maintenance term and Yxs (g/g) is a conversion yield coefficient. This consumption
rate is proportional to the cell growth and rate of substrate consumption. The vital functions of the cell
are also considered by implementing a maintenance term.

According to research on various recombinant proteins as target products, the SGR and the
temperature are stated as the essential parameters that influence the protein production rate [19].
However, it could be that both parameters, depending on the particular target product, may differ.
Inclusion body formation and soluble protein formation could be taken as an example, since the first
requires a relatively high value of the SGR compared to the second process [20–25]. In the simulation,
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the mathematical model of the target accumulation rate of the product qpx considers the actual protein
activity and the influence of the SGR:

qpx(µ, px) =
1

Tpx
(pmax(µ)–px) (7)

pmax(µ) =
µKm

Kµ + µ+ µ2/Kiµ
(8)

where Tpx (h) is a protein accumulation time constant. The maximal specific protein activity is noted as
pmax(µ) (U/(g biomass)). This parameter also depends on the SGR: Km (U/(g biomass)), Kµ (1/h) and
Kiµ (1/h) are Monod and inhibition constants, respectively. The oxygen uptake rate OUR (g/h) was
described using the Luedeking–Piret-type model [25,26]:

OUR = (Yoxµ+ mox)xw (9)

where Yox (g/g) is a coefficient describing the conversion yield and mox (g/(gh)) is a maintenance term.
Equations (1)–(9) were used for modeling the described fed-batch process’ behavior and to analyze

the proposed adaptive closed-loop control algorithm’s control performance. In this research it is
presumed that the bioreactor is ideally mixed and neither actuators nor measurement devices cause
significant time delays that may influence the control quality. The identified model parameter values
used in this simulation can be found elsewhere [19].

2.2. Adaptive Control Algorithm

Considering the implementation of an SGR control algorithm in an industrial biotechnological
process, it should be user-friendly and relatively simple, subject to standard control and measurement
equipment, easy to tune and to develop. Adaptation properties that consider the parameter change
over time during the process should also be considered in these type of control algorithms. Based on
the above considerations, a PI controller with fuzzy-based parameter adaptation was developed
and investigated.

The application of an ordinary PID controller is limited due to the nonstationary and nonlinear
behavior of the described biotechnological processes. An adaptation of the controller parameters may
be needed because of the dynamic response variation considering the systems operation point. To fulfill
the control quality and stability requirements, an adaptation of the controller parameters is needed.
This can be realized by using adaptive control techniques. Therefore, a fuzzy model was designed
and implemented to adapt the PI controller parameters in real time. As the SGR cannot be directly
measured online, a state estimator and an auxiliary variable for the calculation of the signal were
used [19]. These variables are then used for the feedback loop and fuzzy model input. In this study,
it was decided that the OUR would be a suitable additional variable due to the fact it not only reflects
the cultures physiological state but has a good correlation with the SGR. Nevertheless, it is possible to
accurately measure it during a bioreactor-scale cultivation process. The obtained results show that the
biomass concentrations calculated from the estimated SGR fit well to the measured (reference) biomass
concentrations. Figure 1 represents the general structure of the developed fuzzy-based PI controller.
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Figure 1. General structure of the fuzzy-based adaptive PI control system for specific growth rate control.

2.2.1. Fuzzy-Based Algorithm Design

To create a fuzzy-based adaptive PI controller, input and output variables for the fuzzy system
need to be defined. Since the function of the fuzzy model is to adapt the PI controller parameters,
controller gain Kc and integration time constant Ti parameters were selected as the output variables.
Both Ti and Kc depend on the process variables as described in [19]:

Kc ∝ k0w (10)

Ti ∝
k1

OUR/w + k2
(11)

where k0, k1 and k2 are fixed parameters, the values of which are subject to optimization and were
calculated and discussed in detail in [19]. The aim of the optimization was to find a set of the parameters
that minimizes the tracking error (e.g., integral time absolute error (ITAE)) of the designed control
system when using the Equations (10) and (11) for controller parameter adaptation. Since the PI
controller parameters mainly depend on OUR and w, both process variables need to be used in the fuzzy
system. To decrease the complexity of the fuzzy system, the ratio of these two process variables was
used as the input for the fuzzy system. According to the heuristic knowledge available, the following
rules were created for the fuzzy system:

IF OUR/w is poor, THEN Ti is big
IF OUR/w is excellent, THEN Ti is small
IF OUR/w is poor, THEN Kc is small
IF OUR/w is excellent, THEN Kc is big

Both for the input and output of the fuzzy model, two Gaussian membership functions were
selected. To avoid the extensive overlapping of the membership functions, the number of used
membership functions per parameter was decreased to two (see Figure 2).

Whether a fuzzy application is implemented successfully depends on a number of factors. One of
these are the membership functions of the fuzzy model. However, these are usually decided upon
subjectively. One way to improve the performance of the fuzzy model is the use of genetic algorithm
(GA). Various studies have shown that GAs and other heuristic algorithms are able to improve the
systems performance by optimizing the membership functions [27–29]. Due to its simplicity and
straightforwardness, a genetic algorithm [30] was selected to find the optimal membership function
parameters. GAs adapt a direct analogy of natural evolution to perform global optimization in order
to solve highly complex problems. It assumes that the possible problem solution is individual and can
be described by a set of parameters. These parameters are coded as genes of a chromosome and can
be structured by a string of concatenated values. Variable representation is defined by the encoding
scheme that can be represented by various forms like binary or real numbers, depending on the used
data. The search space of the data is usually defined by the problem. In this research, the fuzzy
model membership function parameters were coded in the chromosomes. At the beginning, an initial
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chromosome is randomly generated. Then, the fitness values of all chromosomes are evaluated by
calculating the objective function in a decoded form. The integral time absolute error (ITAE) value of
the SGR setpoint tracking was selected as the fitness function since this criterion was also used for the
systems performance evaluation. Determined by the fitness of each individual, the best chromosomes
are grouped, based on the lowest ITAE value, and the group with the lowest value is then selected in
the selection process. The genetic operators like crossover and mutation are applied to this selected
population in order to improve the next generation solution. The process is repeated until the population
converges to the global minimum or another termination criterion is reached. In the reproduction
phase, the fitness value of each chromosome is evaluated, and it is used in the selection process to
provide bias towards fitness individuals. Then, a crossover algorithm is initiated once the selection
process is completed. The background operator in genetic algorithms is mutation. The parameters of
the GA directly depend on the number of variables. In the recommendations provided by the authors
of the GA, the number of generations should be equal to Nvar * 20 + 10, and the population number is
calculated as Nvar * 50 by default. After manual tuning of the membership function parameters based
on heuristic knowledge of the process, 10 membership function parameters were selected for further
optimization with the GA, thus simulating 210 generations with 500 populations. The large number
of generations did not bring significant changes, so it was decided to use 50 generations for testing.
The mutation and crossover parameters were left at their default values. In Table 1, the parameters
used for the GA are presented.
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Figure 2. Fuzzy model membership functions: model input membership functions (a), model output
Ti membership functions (b), model output Kc membership functions (c).

Table 1. Genetic algorithm parameters.

Number of Generations Individuals in One Generation Mutation Probability Crossover Probability

50 500 0.1 0.9

This GA was used to search for the optimal parameters of the fuzzy controller membership
functions. Each individual represents a simulation of the biotechnological process where the PI
controller parameters are adapted using the generated fuzzy model. The structure of the controller is
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constant and does not change during the simulation of the process. The GA searches for the optimal
fuzzy model structure by defining the membership function parameters. In the applied genetic
algorithm, the only termination criterion was the predefined number of generations. This allowed
avoiding early convergence and local optima. After 50 iterations the GA was stopped as shown in
Figure 3.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 13 
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The developed PI controller with fuzzy-based adaptation was implemented in the model simulation
and used for the performance evaluation of the system. The Kc and Ti dependencies are presented in
Figure 4.
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2.2.2. Performance Evaluation

A typical pattern of several setpoints of different length and amplitude also including disturbances
of the specific growth rate were selected and modeled to evaluate the behavior of the designed
control model. An example of the setpoint profile of the SGR in a simulated process run is shown in
Figure 5. The control quality was tested in various operation points of the process by changing the
SGR setpoint every hour from 3 to 8 h. These switching points are characterized by different SGR
setpoints and accumulated biomass concentrations. Additionally, in order to evaluate the controller’s
ability to remain stable and compensate disturbances at various process phases, short pump faults
were simulated at 4.5, 7.5 and 9 process hours.
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The ITAE criterion was selected to evaluate and compare the performance of the developed
control algorithm. The adaptive PI controller with fuzzy-based parameter adaptation was compared
with the gain scheduling (GS) and model-free adaptive (MFA) algorithms investigated in [19] using
the same mathematical model of the biotechnological process (Equations (1)–(9)). The GS method
uses additional or already existing online measurements to adapt the controller parameters using the
derived functional relationships. The identification of such relationships requires an in-depth analysis
of the dynamic properties of the controlled process. The MFA control technique is an alternative
data-based approach that does not require deep process knowledge needed for the creation of the
process mathematical model. A two-layer neural network with an input layer that has a time-delayed
sequence of the tracking errors [19] was used for comparison.

3. Results

An example of the control performance of the developed PI controller with fuzzy-based parameter
adaptation is presented in Figure 6. The system remains stable in a wide setpoint range. Additive
white Gaussian noise was used to corrupt the OUR signal during the simulations.

Figure 6. Specific growth rate (SGR) (system output variable) (a), substrate feeding rate (control
variable) (b), oxygen uptake rate (OUR) (c) and biomass concentration (d) trajectories during the
simulated process.
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The change over time of the corresponding PI controller tuning parameter is presented in Figure 7.
The controller gain parameter Kc (see Figure 7a) changes over time by approx. 10% only due to the fact
that the parameter correlates with the culture broth weight w that increased only slightly during the
simulated process. The integration time constant Ti (see Figure 7b) follows the changes of the OUR
(see Figure 6c) profile and, therefore, reflects the significantly varying dynamics of the process.

0 2 4 6 8 10
t (h)

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

K
C

 (
kg

)

(a)

0 2 4 6 8 10
t (h)

3

4

5

6

7

8

T
i (

h)

10-3

(b)

Figure 7. Development of the PI controller tuning parameters during the simulated process, (a) the
controller gain parameter Kc, (b) the integration time constant Ti.

The performance evaluation summary of all the methods can be found in Table 2. Here one
can see that the PI controller with fuzzy-based adaptation was able to perform similar to the gain
scheduling PI and MFA control algorithms in the investigated process with a given setpoint profile
and acting disturbances.

Table 2. Performance results of the investigated control algorithms.

Control Type
ITAE

MFA Adaptation GS Adaptation Fuzzy Adaptation

Setpoint-tracking 0.6865 × 10−3 0.6592 × 10−3 0.6723 × 10−3

Disturbance rejection 0.3783 × 10−3 0.3962 × 10−3 0.3431 × 10−3

Setpoint-tracking and disturbance rejection 0.7598 × 10−3 0.7357 × 10−3 0.7349 × 10−3

All methods performed very similarly during setpoint tracking, while the fuzzy-based adaptation
model performed best during disturbance rejection when comparing with the other two models.
The MFA model tends to perform better in phase II of the cultivation process as shown in Figure 8.
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When handling disturbances in the system, the PI controller with fuzzy-based parameter adaptation
is able to outperform the GS and MFA algorithms in the first phase of the process; however, the MFA
algorithm is again better suited for the second phase of the process as seen in Figure 9.
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4. Discussion

In general, the investigated control techniques perform similarly when considering the whole
process duration. The type of controller that should be selected, therefore, depends on the existing
knowledge of the process and the control type. The adaptive PI controller with fuzzy-based parameter
adaptation demonstrates advantages over the gain scheduling PI and model-free adaptive algorithms
when compensating the SGR deviations that could be caused by various process disturbances or
equipment malfunctions. The gain scheduling PI approach requires deep process knowledge and
analytical skills to develop the adaptation model. This control type performs best when no disturbances
or malfunctions are present in the system. The MFA controller tends to perform best during the second
phase of the process. At phase II, the recombinant protein is produced, thus the SGR is lower.

The study also revealed that the fuzzy-based control system was stable within the investigated
ranges. Considering practical implementation, the developed adaptive control system requires off-gas



Appl. Sci. 2020, 10, 6818 11 of 12

analyzers/flow meters and continuous-flow peristaltic pumps, so that the control system’s sampling
interval stays within defined ranges. This can occur due to the time constants of the measuring
devices or gas transport delays. Based on the simulation result, it can be concluded that, in regard
to control performance, the described control algorithms are applicable for SGR control in fed-batch
biotechnological processes if a substrate feeding rate manipulation and limitation approach are
used. Considering the time needed to design and tune the controller, the fuzzy-based PI controller
is suitable for practical applications when expert knowledge is attainable in form of a qualitative
understanding of the relationships between various important process variables. Such knowledge is
usually available from the process operators. The developed controller also performed better when
handling disturbances and setpoint-tracking in the first phase of the process. Principally, the proposed
approach could be applied in other aerobic cultivation processes with significant oxygen uptake rates.
Nevertheless, the fuzzy model needs to be adapted, especially taking into account different OUR ranges
and implemented feed-rate controllers. Hence, the fuzzy-based control algorithm is an attractive
alternative approach to control the SGR in fed-batch recombinant protein production processes.

In future work, the authors plan to perform further investigations and to split the fuzzy-based
adaptation system into two smaller separate fuzzy models for each phase, respectively. This should
more accurately approximate the process dynamics and consequently improve the control performance
at the second phase.
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