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Abstract: Knee Osteoarthritis (KOA) is a multifactorial disease that causes low quality of life, poor
psychology and resignation from life. Furthermore, KOA is a big data problem in terms of data
complexity, heterogeneity and size as it has been commonly considered in the literature with most
of the reported studies being limited in the amount of information they can adequately process. The
aim of this paper is: (i) To provide a robust feature selection (FS) approach that could identify
important risk factors which contribute to the prediction of KOA and (ii) to develop machine
learning (ML) prediction models for KOA. The current study considers multidisciplinary data from
the osteoarthritis initiative (OAI) database, the available features of which come from heterogeneous
sources such as questionnaire data, physical activity indexes, self-reported data about joint
symptoms, disability and function as well as general health and physical exams’ data. The novelty
of the proposed FS methodology lies on the combination of different well-known approaches
including filter, wrapper and embedded techniques, whereas feature ranking is decided on the basis
of a majority vote scheme to avoid bias. The validation of the selected factors was performed in data
subgroups employing seven well-known classifiers in five different approaches. A 74.07%
classification accuracy was achieved by SVM on the group of the first fifty-five selected risk factors.
The effectiveness of the proposed approach was evaluated in a comparative analysis with respect
to classification errors and confusion matrices to confirm its clinical relevance. The results are the
basis for the development of reliable tools for the prediction of KOA progression.

Keywords: knee osteoarthritis; prediction; feature selection; machine learning; clinical data; KL-
grade

1. Introduction

Knee Osteoarthritis (KOA) is the most common type compared with other types of osteoarthritis
(OA). KOA results from a complex interplay of constitutional and mechanical factors, including
mechanical forces, local inflammation, joint integrity, biochemical processes and genetic
predisposition. The specific disease causes significant problems when it occurs. In recent years, it has
been also realized that KOA is closely associated with obesity and age [1]. Moreover, KOA is
diagnosed in the young and athletes following older injuries [2]. The particularity of this disease is
that the knee osteoarthritic process is gradual with a variation in symptoms intensity, frequency and
pattern [3]. Due to the multifactorial nature of KOA, disease pathophysiology is still poorly
understood and prognosis prediction tools are under current investigation.
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Prognosis and treatment of KOA is a challenge for the scientific community. Increasing data
collection has led to an increasing number of studies employing big data and Al analytics applied in
the KOA research. As a result of this, several techniques have been reported in the literature in which
ML models were used to predict KOA [4]. In 2017, Lazzarini et al. developed five (5) ML models that
can be used to predict the incidence of knee OA in overweight and obese women. By integrating a
wide variety of biomedical data in their models, they showed that using a small subset of the available
information is possible to accurately predict the incidence of KOA by using Random Forest (RF) [5].
In another study, Halilaj et al. aimed to characterize different clusters of KOA progression and build
models to predict these clusters early [6]. LASSO regression models were used to predict joint space
narrowing and pain progression which are the most widely used surrogates of structural and
symptomatic disease status. Furthermore, Pedoia et al. [7] used MRI and multidimensional
biomechanics data attempting to meet the existing gap in multidimensional data analysis for
precision medicine in KOA. They achieved large-scale integration of compositional imaging and
skeletal biomechanics by using logistic regression as the ML model.

In 2019, Abedin et al. built two different prediction models, which achieved comparable
accuracy with the aforementioned studies. In this study elastic net and RF were used along with a
convolution neural network. The aim of this work was to explore whether the prediction accuracy of
a statistical model based on the patient’s questionnaire data is comparable to the prediction accuracy
based on X-ray image-based modeling to predict KOA severity [8]. In another study, in 2019 Nelson
et al. applied innovative ML approaches (e.g., K- means, t-SNE), specialized for a high dimension,
low sample size setting, to phenotyping in KOA in order to better define progression phenotypes
that may be more homogeneous and responsive to potential disease modifying interventions [9].
Moreover, in 2019 Tiulpin et al. proposed a novel method based on ML that directly utilizes raw
radiographic data, physical examination, patient’s medical history, anthropometric data and,
optionally, a radiologist’s statement (Kellgren and Lawrence (KL)-grade) to predict structural KOA
progression by using logistic regression and gradient boosting machine. They demonstrated that a
knee X-ray image alone is already a very powerful source of data to predict whether a particular knee
will have OA progression or not [10]. Futhermore, in the same year, Widera et al. used several ML
models (e.g., logistic regression, K-nearest neighbor, SVC (linear kernel), SVC (RBF kernel) and RF)
in combination with clinical data and X-ray image assessment metrics to develop predictive models
for patient selection that outperform the conventional inclusion criteria used in clinical trials [11].
However, few studies have tried to apply ML models for the prediction of KOA. There is still a lack
of knowledge on the contribution of self-reported clinical data on the KOA prognosis and their
impact on the training of the associated ML predictive models [12-17].

According to our knowledge, identification of risk factors for developing and especially
predicting KOA has been limited by an absence of non-invasive methods to inform clinical decision
making and enable early detection of people who are most likely to progress to severe KOA. Hence
the main purpose of this paper is twofold: (i) The prediction of KOA through the identification of risk
factors that are relevant with KL progression from a big pool of risk factors available in the
osteoarthritis initiative (OAI) database and (ii) the development of machine learning-based models
that can predict long-term KL progression. To accomplish the aforementioned targets, a robust ML
pipeline that involves a hybrid feature selection technique and well-known ML models was
implemented. Moreover, this paper also explores three different options with respect to the time
period within which data should be considered in order to reliably predict KOA progression. Finally,
a discussion on the nature of the selected features is also provided.

The paper is organized as follows. Section 2 gives a description of the datasets that were used in
our paper. In Section 3, the proposed methodology along with the necessary data pre-processing,
feature selection and validation mechanisms are presented. Results are given in Section 4. Discussion
of the results is provided in Section 5. Conclusions and future work are finally drawn in Section 6.
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2. Data Description

Data were obtained from the osteoarthritis initiative (OAI) database (available upon request at
https://nda.nih.gov/oai/). Specifically, the current study only includes clinical data from: (i) The
baseline; (ii) the first follow up visit at month 12 and (iii) the next follow up visit at month 24 from all
individuals being at high risk to develop KOA or without KOA. Eight feature categories were
considered as possible risk factors for the prediction of KL as shown in Table 1. Furthermore, our
study was based on Kellgren and Lawrence (KL) grade as the main indicator for assessing the clinical
status of the participants. Specifically, the variables “V99ERXIOA’” and “V99ELXIOA” were used to
assign participants into subgroups (classes) of participants whose KOA status progresses or not
(during labelling process).

Table 1. Main categories of the feature subsets considered in this paper.

Timeline of Visit
12 24

Category Description Baseline Months  Months
Subject Anthropometric parameters including height, R . .
characteristics weight, BMI, abdominal circumference, etc.
Behavioural Pa?ticipan'ts’ social behaviour and quality level of o . .
daily routine
Questionnaire data regarding a Participant’s
Medical history  arthritis-related and general health histories and . - -
medications
Medical imaging  Medical imaging outcomes (e.g., osteophytes and . ) )
outcome joint space narrowing)
. Block Food
Nutrition . . ° - -
Frequency questionnaire
Physical activity =~ Questionnaire results regarding leisure activities, etc. ° ° °
Physical measurements of participants, including
Physical exam isometric strength, knee and hand exams, walking ° ° °
tests and other performance measures
Arthritis symptoms and general arthritis or health-
Symptoms ° °

related function and disability

In this paper, we consider KL grades prediction as a two-class classification problem.
Specifically, the participants of the study were divided into two groups: (1) Non-progressors: Healthy
participants (KL grade 0 or 1) that remained healthy throughout the whole duration of the OAI study
(eight years) and (2) KOA progressors: Healthy participants who developed OA (KL > 1) during the
curse of the OAI study. So the main objective of the study is to build ML models that could
discriminate the two aforementioned groups and therefore be able to decide whether a new testing
sample (healthy participant) will develop OA (assigned in the progressors’ class) or not (assigned to
the non-progressors’ class). Secondary objectives of the paper are to: (i) Identify which of the available
risk factors contribute more to the classification output and as result can be considered as contributing
factors in the prediction of OA and (ii) explore three different options (a single visit, two visits within
a year and two visits within two years) with respect to the time period within which data should be
considered in order to reliably predict KOA progression. To achieve these targets, we have worked
on five different approaches in which different data subsets were considered comprising features
from the baseline combined (or not) with features from visits 1 (at month 12) and 2 (month 24). The
motivation behind this is to investigate whether data from the baseline are sufficient to predict the
progression of KOA or additional data from subsequent visits should be also included in the training
to increase the predictive accuracy of the proposed techniques. Detailed information as far as the
aforementioned data subsets is given in the following. Data resampling was applied at each of the
five datasets to cope with the problem of class size imbalance and generate dataset in which classes
are represented by an equal number of samples.
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e Dataset A (FS1): Progressors vs. non-progressors using data from the baseline visit

Input: This dataset only contains data from the baseline (724 features). After data resampling,
the participants were divided into two equal categories (Figure 1), as follows:

- Class Al (KOA progressors): This class comprises 341 participants who had KL 0 or 1 at
baseline, but they had also some incident of KL > 2 at visit 1 (12 months) or later until the end
of the OAI study in at least one of the two knees or in both.

- Class A2 (non-progressors): This class involves 341 participants with KL 0 or 1 at baseline,
with follow-up x-rays but no incident of KL > 2 for both of their knees until the end of the
OAI study.

Output: Classification outputs 0 and 1 corresponding to assignments to classes Al and A2,
respectively.

Participants healthy at baseline (with KL: 0 or 1)
N=1936

Exclude participants with missing values or
| with less than four follow up visits
Remove samples using stratified sampling

v

Eligible healthy participants at baseline
N=682

h 4 A

Participants having a KOA
incident (KL>1) at visit 1
(12 months) or later until
the end of the OAIl study in
at least one of the two
knees or in both
(N=341)

Participants having follow-
up x-rays but no incident
of KL22 for both of their
knees until the end of the

OAl study
(N=341)

Patient disposition

Class Al: KOA progressors Class A2: Non-progressors

e

Classification dataset

(¢

Features included:

Baseline features:
0

Xy

O O O
baseline visit 1 visit 2
(12 months) (24 months)

OAl study

Feature dimensionality

Figure 1. Flow chart of study design for dataset A.

e  Dataset B (FS2): Progressors vs. non-progressors using progression data within the first 12 months

Input: Dataset B contains data that declares the features” progression within the first 12 months.
Specifically, the Equation (1) denotes the way that this progression was calculated.

dxf; = x5 — x); \VjEF (1)
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k
iLj

baseline (visit 0), respectively; dxf; is the calculated progression of x;; within the time period

where x[; and x; are the j components (features) of sample x; measured at the visit k and the

between the k-th visit and the baseline and F denotes the subset of features that co-exist in both visits
(233 features for dataset B). As an example, let us consider the participant x;oo with a body mass
index (P01BMI) of 20 at the baseline visit (x{y949 = 20, where j = 49 is the index of feature PO1BMI).
Let us also assume that the participant’s BMI at visit 1 has increased to 25 (x15g,49 =25). Thus, the BMI
progression of the specific participant is calculated as dx{g4e =25—20=5. This calculation has been
performed for all the 233 features of dataset B.

After data resampling, the following two classes of participants were created (Figure 2), as
follows:

- Class B1 (KOA progressors): This class comprises progression data dx;; of 268 participants who
were healthy (KL 0 or 1) within the first 12 months (both at the baseline and the visit 1), but they
had an incident of KL > 2 at the second visit (24 months) or later (until the end of the OAI study).

- Class B2 (non-progressors): This class involves progression data dx;; from 268 participants with
KL 0 or 1 at the baseline, who had follow-up x-rays with no other incident of KL >2 in any of their
knees until the end of the OAI study.

Output: Classification outputs 0 and 1 corresponding to assignments to classes Bl and B2,
respectively.

Participants healthy within the first 12 months
(with KL: 0 or 1)
N=1863

Exclude participants with missing values or
with less than four follow up visits
Remove samples using stratified sampling

v

Eligible participants healthy within the first 12 months
N=536

v

Participants having a KOA

Patient disposition

Feature dimensionality

incident (KL>1) at visit 2
(24 months) or later until
the end of the OAIl study in
at least one of the two
knees or in both
(N=268)

Participants having follow-
up x-rays but no incident
of KL22 for both of their
knees until the end of the

OAI study
(N=268)

Class B1: KOA progressors
|

Class B2: Non-progressors

Classification dataset

—

(¢

Features included:
Features’ progression :

OAl study !
O

baseline

Figure 2. Flow chart of study design for dataset B.

dxi;

x

O O
visit 1 visit 2
(12 months) (24 months)
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o Dataset C (FS3): Progressors vs. non-progressors using progression data within the first 24 months

Input: Dataset C contains progression data dx7; within the first 24 months (until visit 2). The
dataset contains 275 features that co-exist in visit 2 and the baseline, whereas the same methodology
was used to calculate the features as given in equation (1) using k = 2. The participants were divided
into two equal categories (Figure 3), as follows:

- Class C1 (KOA progressors): This class comprises of 239 participants who had KL 0 or 1 during
the first 24 months, whereas a KOA incident (KL > 2) observed at visit 3 (36 months) or later
during the OAI course in at least one of the two knees or in both.

- Class C2 (non-progressors): This class involves 239 participants with KL grade 0 or 1 at baseline,
with follow-up X-rays and no further incidents (KL > 2) for both of their knees.

Output: Classification outputs 0 and 1 corresponding to assignments to classes C1 and C2,
respectively.

Participants healthy within the first 24 months
(baseline and visits 1 and 2 with KL: 0 or 1)
N=1834

Exclude participants with missing values or
e — with less than four follow up visits
Remove samples using stratified sampling

v

Eligible participants healthy within the first 24 months
N=478

v v

Participants having a KOA
incident (KL>1) at visit 3
(36 months) or later until

the end of the OAl study in

at least one of the two
knees or in both
(N=239)

Participants having follow-
up x-rays but no incident
of KL>2 for both of their
knees until the end of the

OAI study
(N=239)

Patient disposition

Class C1: KOA progressors Class C2: Non-progressors

Classification dataset

l
«f

Features included:
Features’ progression :
2
dij <

~

O O O
baseline visit 1 visit 2
(12 months) (24 months)

OAI study

Feature dimensionality

Figure 3. Flow chart of study design for dataset C.
e Dataset D (FS4): Progressors vs. non-progressors using data from the baseline visit along
with progression data within the first 12 months

Input: Dataset D contains 957 features from both datasets A and B. Specifically, it consists of 957
features from the baseline (xfj ,j = 1,...,724) along with progression data (dxiljj ,j =1,...,233) within
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the first 12 months. The list with the selected features from dataset D is given in the appendix. After
the application of data sampling, the participants were divided into two equal categories (Figure 4),

as follows:

- Class D1 (KOA progression): This class comprises 270 participants (KL 0 or 1) who were heathy
during the first 12 months (with no incident at the baseline and the first visit) and then they had
an incident (KL > 2) recorded at their second visit (24 months) or later until the end of the OAI

study.

- Class D2 (non-KOA): This class involves 270 healthy participants with KLO or 1 at baseline with
no further incidents in both of their knees until the end of the OAI data collection.

Output: Classification outputs 0 and 1 corresponding to assignments to classes D1 and D2,

respectively.

Patient disposition

Feature dimensionality

Participants healthy within the first 12 months

(with

N=1865

KL: 0 or 1)

Exclude participants with missing values or
—_— with less than four follow up visits
l Remove samples using stratified sampling

Eligible participants healthy within the first 12 months

N=540

4

Participants having a KOA
incident (KL>1) at visit 2
(24 months) or later until
the end of the OAI study in
at least one of the two
knees or in both
(N=270)

Participants having follow-
up x-rays but no incident
of KL22 for both of their
knees until the end of the

OAl study
(N=270)

Class D1: KOA progressors
\

Class D2: Non-progressors

Classification dataset

—

(¢

Features included:
Baseline features and
features’ progression :

{x)

S \
OAI study O/ |

baseline

1
K dxl-’j}

O O
visit 1 visit 2
(12 months) (24 months)

Figure 4. Flow chart of study design for dataset D.

e Dataset E (FS5): Progressors vs. non-progressors using data from the baseline visit along

with progression data within the first 24 months

Input: Dataset E contains 999 features combining datasets A and C. This set of features consists
of baseline data xgj ,j =1,...,724) as well as progression data (dxfj,j =1,...,275) within the first 24

months. Similarly, participants were divided into two equal categories (Figure 5), as follows:
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- Class E1 (KOA progression): This class comprises 248 participants who were healthy (KL 0 or 1)
in the first 24 months, but they had a KOA incident (KL > 2) at the third visit (36 months) or later
until the end of the OAI study in at least one of the two knees or in both.

- Class E2 (non-KOA): This class involves 248 healthy participants (KLO or 1) with no further
progression of KOA in both of their knees until the end of the OAI study.

Output: Classification outputs 0 and 1 corresponding to assignments to classes E1 and E2,
respectively.

Participants healthy within the first 24 months
(baseline and visits 1 and 2 with KL: 0 or 1)
N=1843

Exclude participants with missing values or
with less than four follow up visits
Remove samples using stratified sampling

v

Eligible participants healthy within the first 24 months
N=496

k.

Participants having a KOA Participants having follow-

Patient disposition

incident (KL>1) at visit 3
(36 months) or later until
the end of the OAl study in
at least one of the two
knees or in both
(N=248)

up x-rays but no incident

of KL22 for both of their

knees until the end of the
OAl study
(N=248)

Class E1: KOA progressors

Class E2: Non-progressors

Classification dataset

(¢

Features included:
Baseline features and
features’ progression :

0 2
[Xi,j , dxi,j}
ol « v

/ /

Feature dimensionality

/ - ANy .
O o @]
baseline visit 1
(12 months)

OAl study

visit 2
(24 months)

Figure 5. Flow chart of study design for dataset E.

3. Methodology

The proposed in this paper ML methodology for KOA prediction includes four processing steps:
(1) data pre-processing of the collected clinical data, (2) feature selection using the proposed
approach, (3) learning process via the use of well-known ML models and (4) evaluation of the
classification results. More details about the proposed methodology are presented in the following
sections.

3.1. Pre-Processing

Data cleaning was initially performed by excluding the columns with more than 20% missing
values compared to the total numbers of subjects. Subsequently, data imputation was performed to
handle missing values. Specifically, mode imputation was implemented to replace missing values of
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the categorical or numerical variables by the mode (most frequent value) of the non-missing variables
[18]. Standardization of a dataset is a common requirement for many ML estimators. In our paper,
data was normalised to [0, 1] to build a common basis for the feature selection algorithms that follow
[19]. Data resampling was employed to cope with the class imbalance problem. Specifically, the
majority class was reduced in order to have the same number of samples as in the minority class.

3.2. Feature Selection (FS)

A robust feature selection methodology was employed that combined the outcomes of six FS
techniques: two filter algorithms (Pearson correlation [20] and Chi-2 [21]), one wrapper (with logistic
regression [22]) and three embedded ones (logistic regression L2 [23], random forest [24] and
LightGBM [25]). Feature ranking was decided on the basis of a majority vote scheme. Specifically, we
performed all six FS techniques separately, each one resulting into a selected FS. A feature receives a
vote every time it has been selected by one of the FS algorithms. We finally ranked all features with
respect to the votes received.

The proposed feature selection proceeds along the following steps as shown in Figure 6.

Step 1: All features were normalized as described in Pre-processing Section

Step 2: We performed each one of the six FS techniques separately resulting to

the creation of the following six feature subsets FS;, i=1..,6
Step 3: Main loop

Step 3.1 For each feature j, we set V5=0, j=1,..,M where M the total

number of features
Step 3.2 Set j=1
Step 3.3 if feature j is selected in FS;j, then V;=Vj+1;

Step 3.4: Repeat step 3.3 for each one of the six FS techniques for
i=1,..,6

Step 3.5 Set j=j+1
Step 3.6 Terminate main loop if j>m otherwise go to step 3.3

Step 4: Rank features to descending order with respect to V; (that is the final

selection criterion)

End

Figure 6. Pseudocode for the implementation of the proposed feature selection (FS).

3.3. Learning Process

Various ML models were evaluated for their suitability in the task of KOA prediction. A brief
description of these models is given below.

We tested logistic regression [26] which is likely the most commonly used algorithm for solving
classification problems. Logistic regression models the probabilities for classification problems with
two possible outcomes. It’s an extension of the linear regression model for classification problems.
The interpretation of the weights in logistic regression differs from the interpretation of the weights
in linear regression, since the outcome in logistic regression is a probability between 0 and 1. We also
evaluated decision trees (DTs) [27] which are a non-parametric supervised learning method used for
classification and regression. They are simple to understand and to interpret. DTs require little data
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preparation and perform well even if their assumptions are somewhat violated by the true model
from which the data were generated.

K-Nearest Neighbor (KNN) [28] as well as non-linear support vector machines (SVM)
algorithms [29], which can deal with the overfitting problems that appear in high-dimensional spaces.
In the classification setting, the KNN algorithm essentially boils down to forming a majority vote
between the K most similar instances to a given “unseen” observation. Similarity is defined according
to a distance metric between two data points. A popular one is the Euclidean distance method.
Furthermore, SVMs are a set of supervised learning methods used for classification, regression and
outlier’s detection. They are effective in high dimensional spaces and still effective in cases where the
number of dimensions is greater than the number of samples.

The ensemble technique Random Forest (RF) [30] was also evaluated using DT models as weak
learners. RF classifier creates a set of decision trees from randomly selected subsets of training set. It
then aggregates the votes from different decision trees to decide the final class of the test object.
XGboost [31] and naive Bayes [32] algorithms were also considered. XGboost model is a sum of CART
(tree) learners which try to minimize the log loss objective and the scores at leaves. These scores are
actually the weights that have a meaning as a sum across all the trees of the model. Furthermore, they
are always adjusted in order to minimize the loss. Moreover, naive Bayes methods are a set of
supervised learning algorithms based on applying Bayes’ theorem with the “naive” assumption of
conditional independence between every pair of features given the value of the class variable. Naive
Bayes learners and classifiers can be extremely fast. The decoupling of the class conditional feature
distributions means that each distribution can be independently estimated as a one-dimensional
distribution.

Hyperparameter selection was implemented to optimize the performance of our models and to
avoid overfitting and bias errors. Each model was optimized with respect to a number of preselected
hyperparameters (Table 2). Specifically (i) ‘gamma’: [0, 0.4, 0.5, 0.6], ‘maximal depth”: [1, 2, 3, 4, 5, 6,
7, 8], ‘minimum child and weight’: [1, 3, 4, 5, 6, 8] were optimized for XGboost, (ii) ‘criterion”: [‘gini’,
‘entropy’], ‘minimum samples leaf’: [1, 2, 3], ‘minimum samples split: [3, 4, 5, 6, 7] and ‘number of
estimators”: [10, 15, 20, 25, 30] for random forest, (iii) ‘maximal features’: [‘auto’, ‘sqrt’, ‘log2’],
‘minimum samples leafs”: [1, 2, 3, 4, 5, 6, 7, §, 9, 10, 11] and ‘minimum number of decision splits”: [2,
3,4,5,6,78,9,10, 11, 12, 13, 14, 15] for decision trees, (iv) ‘C’: [0.001, 0.01,0.1,1,2,3,4,5,6,7,8,9,
10] and “kernel’: ['linear’,’sigmoid’,'rbf’,"poly’] for SVMs, (v) ‘k-parameter’: [5, 7, 9, 12, 14, 15, 16, 17]
for KNN and (vi) “penalty’: ['11’, “12] and ‘C’: [100, 10, 1.0, 0.1, 0.01] for logistic regression.

Table 2. Hyperparameters description.

ML Models Hyperparameters Description
Minimum loss reduction required to make a further partition on a
Gamma
leaf node of the tree.
. Maximum depth of a tree. Increasing this value will make the model
Maximal depth . .
XGboost more complex and more likely to overfit.
Minimum sum of instance weight (hessian) needed in a child. If the
Minimum child and tree partition step results in a leaf node with the sum of instance
Weight weight less than min_child_weight, then the building process will
give up further partitioning.
Criterion The function to measure the quality of a split.
Mini 1
Random 1n1mulzr;fsamp ®® " The minimum number of samples required to be at a leaf node.
Forest Number of
. The number of trees in the forest.
estimators
Maximal features ~ The number of features to consider when looking for the best split.
Mini 1
Decision 1n1m1;r;;iiamp ®® " The minimum number of samples required to split an internal node
Trees

Minimum number
of leafs The minimum number of samples required to be at a leaf node.
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Regularization parameter. The strength of the regularization is

C . .
inversely proportional to C.
SVMs
Kernel Specifies the kernel type to be used in the algorithm.
KNN k-parameter Number of neighbors to use by default for k neighbors queries.
Logistic Penalty Used to specify the norm used in the penalization.
Regression C Inverse of regularization strength; must be a positive float.

3.4. Validation

A hold out 70-30% random data split was applied to generate the training and testing subsets,
respectively. Learning of the ML was performed on the stratified version of the training sets and the
final performance was estimated on the testing sets. We also evaluated the classifiers performance in
terms of the confusion matrix as an additional evaluation criterion.

Confusion matrix is a way to evaluate the performance of a classifier. Specifically, a confusion
matrix is a summary of prediction results on a classification problem (Table 3). To be created the
confusion matrix, the number of correct (true) and incorrect (false) predictions are summarized with
count values and broken down by each class.

Table 3. Confusion matrix.

Actual Classes

Positive Negative
Positive  True Positive  False Positive
Negative False Negative True Negative

Predicted classes

4. Results

In this section, we present the most important risk factors as they have been selected by the
proposed hybrid FS methodology. Moreover, the overall performance of the models is presented in
relation to the number of selected features and then reference is made to the models with the highest
accuracies. Results are initially given per dataset and an overall assessment is provided at the end.
The efficacy of the proposed FS methodology is also compared with the performance of the six
individual FS criteria.

4.1. Prediction Performance

The proposed ML methodology was applied on each of the five datasets. Specifically, the
proposed FS was executed on the pre-processed versions of the datasets ranking the available
features with respect to their relevance with the progression of OA. Then the proposed ML models
were trained on feature subsets of increasing dimensionality (with a step of 5). These feature subsets
were generated by sorting the features according to the selected ranking. This means that the
proposed ML models were trained to classify KOA progressors and non-progressors based on the
first (5, 10, 15, etc.) most informative features and the testing classification accuracies were finally
calculated until the full feature set has been tested. The classification results on the five datasets are
given below.

° Dataset A

Figure 7 depicts the testing performance (%) of the competing ML models with respect to the
number of selected features for dataset A. In particular, DTs failed in this task, recording low testing
performances (in the range of 42.44-65.85%). In contrast, the other models had an upward trend in
the first 20-60 features, followed by a steady testing performance in most of the cases. Specifically,
the logistic regression model showed an upward trend with respect to selected features in the first
30-50 features, with a maximum of 71.71% at 50 features (which was the overall best performer). The
inclusion of additional features led to a small reduction in the accuracies achieved.
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Figure 7. Learning curves with testing accuracy scores on dataset A for different machine learning

(ML) models trained on feature subsets of increasing dimensionality.

Table 4 summarizes the results of logistic regression, XGboost, SVM, random forest, KNN, naive
Bayes and DT on the two-class problem. A moderate number of features (in the range of 30-55) was

finally selected by the majority of the ML models (in five out of the seven), whereas the overall

maximum was achieved by LR on a group of fifty selected (50) risk factors. KNN and DTs selected
more features (145 and 85, respectively) leading to low accuracies. The second highest accuracy was
received for SVM and Naive Bayes (70.73% in both), whereas lower accuracies were obtained by NB,
RF and XGboost.

Table 4. Best testing accuracies achieved for ML model along with the confusion matrix, the optimum

number of features and the hyperparameters of the ML models employed. A1 and A2 denote classes

1 and 2 of dataset A, respectively.

Models Accuracy Confus.lon Features Parameters
(%) Matrix
. Al A2
ReLgrg;sS;Zn 7171 Al 73 28 50 Penalty: 11, C: 1.0
A2 30 74
Al A2
Naive Bayes 70.73 Al 72 29 55 GaussianNB
A2 31 73
Al A2
SVM 70.73 Al 75 26 45 C =2, kernel = sigmoid
A2 34 70
KNN 66.83 Al /;81 1:; 145 leaf_size.: 1, n_m.eighbors: 12,
A2 45 59 weights: distance
Al A2 max_features: log2,
Decision Tree 65.85 Al 68 33 85 min_samples_leaf: 4,
A2 37 67 min_samples_split: 11
68.78 Al A2 30
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Al 71 30 criterion: gini, min_samples_leaf: 3,
Random . ] it 7 Himators:
Forest A2 34 70 min_samp es_sp115. , n_estimators:

Al A2 0 depth: 1

XGboost 678 Al 69 32 45 gamma: % max_cepth: 4

min_child_weight: 4
A2 34 70
° Dataset B

Figure 8 demonstrates the testing performance (%) of the competing ML models with respect to
the number of selected features for dataset B. The following remarks could be extracted from Figure
8: (i) Considerably lower accuracies were achieved by all the competing ML models compared to the
ones received in dataset A; (ii) LR and NB gave the maximum testing performance of approximately
64% at 25 features (which was the overall best performer in dataset B). The addition of more features
did not increase the testing performance of the model but led to a reduction in the accuracies
achieved. (iii) Low testing performances were accomplished by the rest of the ML models (in the
range of 42.24-62.11%). The accuracies and confusion matrixes reported in Table 5 verify the
aforementioned results. In all the competing models, the best accuracies were recorded using a
relatively small number of selected risk factors (less or equal to 40).

65

(o)}
o

w
8]

Testing accuracy (%)
ul
(@]

\

—— XGboost \ /
401 — Random Forest \
—— Decision Tree \‘J
—— Naive Bayes
— svM
— KNN

Logistic Reg.

25 50 75 100 125 150 175 200 225

Number of features

35

Figure 8. Learning curves with testing accuracy scores on dataset B for different ML models trained
on feature subsets of increasing dimensionality.

. Dataset C

Less informative features with small generalization capacity are contained in dataset C, as
reported in Figure 9 and Table 6. Unlike the previous two datasets, the best testing performance for
dataset C was received at 225 features using DTs (66.67%). In general, unstable and low testing
performances were observed for the majority of the employed ML models. The second highest
accuracy was received for SVM (65.28%), whereas lower accuracies were obtained by the rest of the
models. A significant number of features (more than 100) was also required in five out of the seven
FS approaches highlighting the inability of dataset C features to provide useful information for the
progression of KOA.



Appl. Sci. 2020, 10, 6797 14 of 25

Table 5. Best testing accuracies achieved for each ML model along with the confusion matrix, the
optimum number of features and the hyperparameters of the ML models employed. B1 and B2 denote
classes 1 and 2 of dataset B, respectively.

Accuracy Confusion

Models %) Matrix Features Parameters
Logistic Bl B2
Regression 63.98 Bl 48 22 25 Penalty: 11, C: 1.0
B2 36 55
Bl B2
Naive Bayes 63.98 Bl 50 20 35 GaussianNB
B2 38 53
Bl B2
SVM 61.49 Bl 46 24 35 C: 6, kernel: linear
B2 38 53
KNN 57 76 B1 ]2?1) ]372 15 leaf size: 1, n_neighbors: 16, weights:
B2 61 30 uniform
Bl B2 .
Decision Tree 58.39 Bl 41 29 15 max_fea’cure's: auto, mm_samples_leaf:
B2 38 53 1, min_samples_split: 6
Bl B2
Random criterion: gini, min_samples_leaf: 2,
Forest 6211 bl 48 22 15 min samplis split: 7,n e};tim_ators: 30
B2 39 52 - - =
Bl B2
XGboost 6025 Bl 44 26 40 gamma: 0.4, max_depth: 7,
min_child_weight: 5
B2 38 53
70 XGboost
651 —

Logistic Reg.

Testing accuracy (%)
(6,1 ul )]
o (9,1 o

H
(9]

40

25 50 75 100 125 150 175 200 225

Number of features

Figure 9. Learning curves with testing accuracy scores on dataset C for different ML models trained
on feature subsets of increasing dimensionality.
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Table 6. Best testing accuracies achieved for each ML model along with the confusion matrix, the
optimum number of features and the hyperparameters of the ML models employed. C1 and C2
denote classes 1 and 2 of dataset C, respectively.

Accuracy Confusion

Models %) Matrix Features Parameters
Loisti Cl 2
Re;’f;:zfm 6111 Cl 49 15 35 Penalty: 11, C: 1.0
c2 41 39
Cl 2
Naive Bayes 59.03 c1 23 41 160 GaussianNB
c2 18 62
Cl 2
SVM 65.28 Cl 48 16 65 C: 5, kernel: rbf
C2 34 46
KNN 6111 c1 g; ng 120 leaf size: 1, n_ne.ighbors: 5, weights:
47 33 uniform
Cl 2 .
Decision Tree 66.67 Cl 44 20 5 max_fea’cure.s: auto, mm_sarnples_leaf:
2 28 52 2, min_samples_split: 8
Cl 2
Random criterion: gini, min_samples_leaf’: 1,
Forest 59.72 cL o727 140 min samplges split:g n eitirr:ators: 25
c2 31 49 - - T
Cl 2 .
XChoost 625 Cl 44 20 150 n_est.lmators =100, max_depth =8§,
learning_rate = 0.1, subsample = 0.5
C2 34 46

° Dataset D

The combination of datasets A and B proved to be beneficial in the task of predicting KOA
progression. Specifically, the following conclusions are drawn from the results reported in Figure 10
and Table 7: (i) The best performance (74.07%) was achieved by the SVM on the group of the fifty-
five selected risk factors with linear kernel penalty and C = 0.1 (Dataset D). This performance was the
overall best one achieved in all five datasets. (ii) The second highest accuracy was received for the
logistic regression (72.84%), whereas lower accuracies were obtained by the rest of the models. (iii)
SVM and LR followed a similar progression in the reported accuracies with respect to the number of
selected features with an upward trend in the first 20-55 features, followed by a slight performance
decrease as the number of features increases. (iv) KNN gave moderate results with a maximum
testing performance of 71.6% at 75 selected features. (v) Low testing accuracies were obtained by RF,
XGboost and DT in the range of 42.59-66.67%.

° Dataset E

In dataset E, the SVM-based approach exhibited an upward trend with respect to selected
features in the first 20-70 features, with a maximum of 71.81% at 70 features (which was the best in
the category). The inclusion of additional features led to a small reduction in the accuracies achieved
(Figure 11). Similarly to SVM, LR gave the second highest accuracy (71.14%) for less features (55).
XGboost also gave a comparable performance (70.47%) in a subset of 45 selected features. Lower
testing accuracies were received by the rest of ML models (Table 8).
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Figure 10. Learning curves with testing accuracy scores on dataset D for different ML models trained

on feature subsets of increasing dimensionality.

Table 7. Best testing accuracies achieved for each ML model along with the confusion matrix, the

optimum number of features and the hyperparameters of the ML models employed. D1 and D2

denote classes 1 and 2 of dataset D, respectively.

Accuracy

Confusion

Models (%) Matrix Features Parameters
Logisti D1 D2
Re;’fel::;gn 7284 D1 54 27 55 Penalty: 11, C: 1.0
D2 17 64
D1 D2
Naive Bayes 68.52 D1 44 37 20 GaussianNB
D2 14 67
D1 D2
SVM 74.07 D1 56 25 55 C: 0.1, kernel: linear
D2 17 64
KNN 716 D1 15)51 ];62 75 algorithm: auto, lleaf_size:.l,
D2 20 6l n_neighbors: 17, weights: uniform
D1 D2 .
Decision Tree 61.73 DI 56 25 30 max_featur.es: auto, mm_sa’mples_leaf:
2 37 a4 3, min_samples_split: 10
Random bl D2 criterion: gini, min_samples_leaf: 3,
Forest 66.67 bl 4734 20 min_samples_split: 3, n_estimators: 25
D2 20 61 - - =
D1 D2
XGboost 6481 DI 51 30 15 gamma: 0.6, max_depth: 1,
min_child_weight: 8
D2 27 54
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Figure 11. Learning curves with testing accuracy scores on dataset E for different ML models trained
on feature subsets of increasing dimensionality.

Table 8. Best testing accuracies achieved for each ML model along with the confusion matrix, the
optimum number of features and the hyperparameters of the ML models employed. E1 and E2 denote
classes 1 and 2 of dataset E, respectively.

Accuracy Confusion

Models %) Matrix Features Parameters
Logisti E1l E2
Re;fel:zfm 7114 E1 50 17 55 Penalty: 11, C: 1.0
E2 26 56
Nai El E2
B:;‘;z 6846  E1 48 19 230 GaussianNB
E2 28 54
E1l E2
SVM 71.81 E1 50 17 70 C: 1, kernel: sigmoid
E2 25 57
KNN 63.76 £l ::; }135 20 algorithm: auto, l.eaf_size:' 1,
0 35 47 n_neighbors: 16, weights: uniform
Decision E1 E2 max_features: auto,
Tree 66.44 El 45 22 95 min_samples_leaf: 2,
E2 28 54 min_samples_split: 12
El E2 criterion: gini, min_samples_leaf: 1,
Random . . .
Forest 67.11 El 42 25 55 min_samples_split: 3, n_estimators:
E2 24 58 30
El E2
Xgboost 7047  E1 43 24 45 gamma: 0.6, max_depth: 2,

min_child_weight: 1
E2 20 62
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Table 9 cites the best accuracies achieved in each of the five datasets. The combined effect of
baseline features (dataset A) and progression data dx,-1,]- (dataset B) had a positive effect on the
prediction capacity of the proposed methodology, as clearly shown in Table 7 where the testing
accuracy in dataset D is increased by 2.36% compared to the result obtained in dataset A. A minor
difference (0.1%) is observed on the accuracies reported for datasets A and E, demonstrating that
dx?; progression data have a negligible effect on the predictive capacity of the proposed
methodology and therefore could be omitted. The accuracies received in datasets B and C reveal that
the baseline features are crucial for predicting KOA progression.

Table 9. Summary of all reported results.

Data Used in the Training

Best Testing Num. of
Dataset Baseli M12 Progress M24 Progress  Performance (%) Best Model Selected
A5¢MN®  Wrt Beseline ~ Wrt Baseline Achieved Features
A . 71.71 Logistic 50
Regression
Logisti
B . 63.98 ogistic 25
Regression
C . 66.67 Decision 225
Tree
. . 74.07 SVM 55
E . . 71.81 SVM 70

4.2. Selected Features

Figure 12 shows the first 70 features selected by the proposed FS approach for datasets A to E.
Features are visualised with different colors and marks depending on the feature category they
belong. The following conclusions could be drawn from the analysis of Figure 12: (i) Symptoms and
medical imaging outcomes seem to be the most informative feature categories in dataset D in which
the overall best performance was achieved. Specifically, eleven medical history outcomes and ten
symptoms were selected in the first 55 features that gave the optimum prediction accuracy; (ii)
nutrition and medical history characteristics were also proved to be contributing risk factors since
approximately 20 out of the first selected 55 features were from these two feature categories (in
dataset D). The full list of selected features for dataset D is provided in the appendix; (iii) similar
results with respect to the selected features were extracted from the analyses in datasets A and E (in
Figure 12a,e) that gave comparative prediction results (close to 72%); (iv) a different order in the
selected features was observed in datasets B and C (as depicted in Figure 12b,c). The low accuracies
recorded in these datasets (less than 67%) verify that the contained in these datasets features are less
informative; (v) overall, it was concluded that a combination of heterogeneous features coming from
almost all feature categories is needed to predict KL progression highlighting the necessity of
adopting a multi-parametric approach that could handle the complexity of the available data.

4.3. Comparative Analysis

To evaluate the effectiveness of the proposed FS methodology, a comparison was performed in
this section between the hybrid FS mechanism and the six well known FS techniques (the ones that
are contained within the selection mechanism of the proposed methodology). The comparison was
performed on dataset D that gave the overall best prediction performance. SVM was finally used to
evaluate the prediction capacity of all the FS techniques considered here.
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Figure 12. Features selected in datasets A to E in (a—e), respectively. Axis y (selection criterion) denotes

how many times a feature has been selected (6 declares that a specific feature has been selected by all

six FS techniques and so on). Features have been ranked based on the selection criterion Vj and are

visualised with different colors each one representing a specific feature category.

We performed and validated all six FS techniques separately, each one resulting into a different
feature subset. SVM was finally trained on the resulted feature spaces of increasing dimensionality
and the optimum feature subset was identified per case. As indicated in Table 10, the majority of the
competing FS techniques provided lower testing performances compared to the proposed FS
methodology. The wrapper technique based on LR was the only one that achieved an equal testing
performance (%) with the proposed FS methodology. Specifically, the wrapper FS achieved its
maximum accuracy at 70 features, while the proposed FS methodology achieved the same accuracy

score using a smaller feature subset (55 features).

Table 10. Testing performance (%) of the competing FS techniques with respect to the number of

selected features for dataset D.

FS Criteria

Filter Wrapper
Algorithms Algorithms Embedded Proposed FS
. Logistic Logistic Random . Criterion
Features  Chi-2  Pearson Regression Regression (L2) Forest LightGBM

5 58.02 62.35 62.96 54.32 45.68 56.17 63.58
10 63.58 63.58 59.88 51.23 48.77 50.00 57.41
15 61.11 58.02 51.85 50.62 50.62 53.70 61.11
20 53.09 61.11 57.41 48.77 50.62 50.00 66.05
25 60.49 65.43 60.49 51.85 56.79 53.70 66.05
30 64.81 70.37 70.37 60.49 58.02 51.23 64.2
35 66.67 65.43 62.96 56.79 58.02 53.70 66.05
40 59.26 66.67 65.43 60.49 60.49 54.32 67.28
45 64.81 67.90 69.75 54.32 58.02 46.30 67.9
50 63.58 67.28 68.52 55.56 60.49 48.77 67.9
55 64.81 69.75 64.81 53.09 59.88 53.09 74.07
60 69.75 67.28 65.43 55.56 59.88 55.56 72.22
65 61.73 64.81 70.99 60.49 58.64 54.94 69.75
70 68.52 66.67 74.07 56.17 56.17 54.32 71.6
75 68.52 64.81 72.22 54.32 51.85 59.26 69.14




Appl. Sci. 2020, 10, 6797 20 of 25

80 66.05 66.67 69.14 58.02 58.02 59.88 69.14
85 66.05 66.67 72.84 53.70 59.26 57.41 72.22
90 67.90 56.79 73.46 58.64 62.96 53.09 66.67
95 66.67 56.79 69.14 59.88 61.11 55.56 70.37
100 62.96 59.88 72.22 61.73 56.79 55.56 70.99

5. Discussion

This paper focuses on the development of a ML-empowered methodology for KL grades
prediction in healthy participants. The prediction task has been coped as a two-class classification
problem where the participants of the study were divided into two groups (KOA progressors and
non-progressors). Various ML models were employed to perform the binary classification task (KOA
progressors versus non-progressors) where accuracies up to 74.07% (Dataset D) were achieved.
Within the secondary objectives of the paper were to identify informative risk factors from a big pool
of available features that contribute more to the classification output (KOA prediction). Moreover,
we explored different options with respect to the time period within which data should be considered
in order to reliably predict KOA progression.

Three different options were investigated as far as the time period within which data should be
considered in order to reliably predict KOA progression. To accomplish this, we worked with 5
different datasets. We first examined whether baseline data (dataset A) could solely contribute in
predicting KOA progression. Going one step further, the features ‘progression within the first 12
months or 24 months was also considered as an alternative source of information (datasets B and C).
The aforementioned analysis in Section 4 revealed that: (i) a 71.71% prediction performance can be
achieved using features from the baseline, (ii) features’ progression cannot solely provide reliable
KOA predictions and (iii) a combination of features is required to maximize the prediction capability
of the proposed methodology. Specifically, the overall best accuracy (74.07%) was obtained by
combining datasets A and B that contain features from the baseline visit along with their progression
over the next 12 months. Considering a longer period of time (24 months) in the calculation of
features’ progression resulted to lower prediction accuracies (71.81%).

The proposed FS methodology outperformed six well-known FS techniques achieving the best
tradeoff between prediction accuracy and dimensionality reduction. From the pool of approximately
700 features of the OAI dataset, fifty-five were finally selected in this paper to predict KOA. As far as
the nature of the selected features, it was concluded that symptoms, medical imaging outcomes,
nutrition and medical history are the most important risk factors contributing considerably to the
KOA prediction. However, it was also extracted that a combination of heterogeneous features coming
from almost all feature categories is needed to effectively predict KL progression.

Seven ML algorithms were evaluated for their suitability in implementing the prediction task.
Table 7 with the summary of all reporting result indicates that LR and SVM were proved to be the
best performing models. The good performance of SVM could be attributed to the fact that SVM
models are particularly well suited for classifying small or medium-sized complex datasets (both in
terms of data size and dimensionality). LR was the second-best performer providing the highest
prediction accuracy in datasets A and B and the second highest in datasets D and E. The fact that a
generalized linear model such as LR accomplishes high performances indicates that the power of the
proposed methodology lies on the effective and robust mechanism of selecting important risk factors
and not so much on the complexity of the finally employed classifier. Identifying important features
from the pool of heterogeneous health-related parameters (including anthropometrics, medical
history, exams, medical outcomes, etc.) that are available nowadays is a key to increase our
understanding of the KOA progression and therefore to provide robust prediction tools.

A few studies have recently addressed the problem of predicting KOA progression from
different perspectives and employing different data sources. A weighted neighbor distance classifier
was presented by Ashinsky et al. to classify isolated T2 maps for the progression to symptomatic OA
with 75% accuracy [13]. Progression to clinical OA was defined by the development of symptoms as
quantified by the WOMAC questionnaire 3 years after baseline evaluation. MRI images and PCA
were employed by Du et al. to predict the progression of KOA using four ML techniques [33]. For KL



Appl. Sci. 2020, 10, 6797 21 of 25

grade prediction, the best performance was achieved by ANN with AUC = 0.761 and F-measure =
0.714. An MRI-based ML methodology has been also proposed by Marques et al. to prognose tibial
cartilage loss via quantification of tibia trabecular bone where a odds ratio of 3.9 (95% confidence
interval: 2.4-6.5) was achieved [15]. X-ray combined with pain scores have been utilized by Halilaj et
al. to predict the progression of joint space narrowing (AUC = 0.86 using data from two visits
spanning a year) and pain (AUC = 0.95 using data from a single visit) [6]. Similarly, another two
studies (Tiulpin et al. [10] and Widera et al. [11]) made use of Xray images along with clinical data to
predict KOA progression using either CNN or ML approaches achieving less accurate results. The
current paper is the only one employing exclusively clinical non-imaging data and also contributes
to the identification of important risk factors from a big pool of available features. The proposed
methodology achieved comparable results with studies predicting KL grades progression
demonstrating its uniqueness in facilitating prognosis of KOA progression with a less complicated
ML methodology (without the need of big imaging data and image-based deep learning networks).

Among the limitations of the current study is the relatively large number of features (55) that
were finally selected as possible predictors of KOA. The selected features come from almost all
feature categories highlighting the necessity of adopting a rigorous data collection process in order
to formulate the input feature vector that is needed for the ML training. Moreover, the ML models
employed are opaque (black boxes) and therefore they are insufficient to provide explanations on the
decisions (inability to explain how a certain output has been drawn). To overcome the
aforementioned challenges, it is important for Al developers to build transparency into their
algorithms and/or enhance the explainability of existing ML or DL networks.

6. Conclusions

This paper focuses on the development of a ML-based methodology capable of (i) predicting
KOA progression (and specifically KL grades progression) and (ii) identifying important risk factors
which contribute to the prediction of KOA. The proposed FS methodology combines well-known
approaches including filter, wrapper and embedded techniques whereas feature ranking is decided
on the basis of a majority vote scheme to avoid bias. Finally, a variety of ML models were built on
the selected features to implement the KOA prediction task (treated as a two-class classification
problem where a participant is classified to either the class of KOA progressors or to the non-
progressors’ class). Apart from the selection of important risk factors, this paper also explores three
different options with respect to the time period within which data should be considered in order to
reliably predict KOA progression. The nature of the selected features was also discussed to increase
our understanding of their effect on the KOA progression. After an extensive experimentation, a
74.07% classification accuracy was achieved by SVM on a group of fifty-five selected risk factors (in
dataset D). Understanding the contribution of risk factors is a valuable tool for creating more
powerful, reliable and non-invasive prognostic tools in the hands of physicians. For our future work,
we are planning to also consider image-based biomarkers and areas with valuable information
derived from biomechanical data that are expected to further improve the predictive capacity of the
proposed methodology. ML explainability analysis will also be considered to capture the effect of the
selected features on the models’ outcome.
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Table Al. Selected features that led to the overall best Knee Osteoarthritis (KOA) prediction
performance in our study.

Feature Description Category
1 PO2WTGA A?o.v.e .we1ght cut-off for age/gender group (calc, used for study Sub]eét .
eligibility) characteristics
2 VOOWPRKN2 Right knee pain: stairs, last 7 days Symptoms
3 VOORXANALG  Rx Analgesic use indicator (calc) Medical history
4 VOOPCTSMAL ?CI;)ICCI; Brief 2000: error flag, percent of foods marked as small portion Nutrition
5 VO0GLUC Used glucosamine for joint pain or arthritis, past 6 months Medical history
6 VOOGLCFQCV  Glucosamine frequency of use, past 6 months (calc) Medical history
7 VO0CHON Used chondroitin sulfate for joint pain or arthritis, past 6 months Medical history
8 VOOCHNFQCV  Chondroitin sulfate frequency of use, past 6 months (calc) Medical history
9 VOOBAPCARB Block Brief 2000: daily % of calor%es from carbohydrate, alcoholic Nutrition
beverages excluded from denominator (kcal) (calc)
Righ i hi iffness: han half th f h
10 PO2KPNRCY ight knee pain, aching or stiffness mf)r.e t .an alf the days of a month, Symptoms
past 12 months (calc, used for study eligibility)
Medical i i
11 PO1IXRKOA Baseline radiographic knee OA status by person (calc) edica’ imaging
outcome
12 POISVLKOST  Left knee baseline x-ray: evidence of knee osteophytes (calc) Medical imaging
outcome
13 PO01OAGRDL Left knee baseline x-ray: composite OA grade (calc) Medical imaging
outcome
14 P01GOUTCV Doctor said you had gout (calc) Medical history
15  VOOWTMAXKG Maximum adult weight, self-reported (kg) (calc) Sub]e?t .
characteristics
16 VOOWSRKN1 Right knee stiffness: in morning, last 7 days Symptoms
17 VOOWOMSTFR  Right knee: WOMAC Stiffness Score (calc) Symptoms
18 VOOSF1 In general, how is health Behavioural
19 VOORKMTTPN  Right knee exam: medial tibiofemoral pain/tenderness present on exam Physical exam
20 VOOREXCOMP Isometric strength: right knee flexion, able to complete (3) Physical exam
measurements
21 VOOPCTFAT Block Brief 2000: daily percent of calories from fat (kcal) (calc) Nutrition
22 VOOPCTCARB  Block Brief 2000: daily percent of calories from carbohydrate (kcal) (calc) Nutrition
23 VOOPASE Physical Activity Scale for the Elderly (PASE) score (calc) Physical activity
Charlson Comorbidity: have emphysema, chronic bronchitis or chronic . .
24 VOOLUNG obstructive lung disease (also called COPD) Medical history
25 VOOKSXLKN1  Left knee symptoms: swelling, last 7 days Symptoms
26 VO0OFFQSZ16 Block Brief 2000: rice/dishes made with rice, how much each time Nutrition
27 VOOFFQSZ14 Block Brief 2000: white potatoes not fried, how much each time Nutrition
28 VOOFFQSZ13 Block Fr1ef 2000: french fries/fried potatoes/hash browns, how much Nutrition
each time
29 VOOFFQ69 Bl?ck Brlefv 2000: regular soft drinks/bottled drinks like Snapple (not diet Nutrition
drinks), drink how often, past 12 months
30 VOOFFQ59 Block Brief 2000: ice cream/frozen yogurt/ice cream bars, eat how often, Nutrition
past 12 months
31 VOOFFQ37 Block Brief 2000: fried chicken, at home or in a restaurant, eat how often, Nutrition
past 12 months
32 VOODTCAFFN  Block Brief 2000: daily nutrients from food, caffeine (mg) (calc) Nutrition
33 VOODILKN11 Left knee difficulty: socks off, last 7 days Symptoms
34 VOOCESD13 CES-D: how often talked less than usual, past week Behavioural
35 VO00ABCIRC Abdominal circumference (cm) (calc) Sub]e?t .
characteristics
36 TIMET1 20-m walk: trial 1 time to complete (sec.hundredths/sec) Physical exam
37 STEPST1 20-m walk: trial 1 number of steps Physical exam
38 PASE6 Leisure activities: muscle strength/endurance, past 7 days Physical activity
Left ki i hi iffness: han half th f h
39 PO2KPNLCY eft knee pain, aching or stiffness m(nje 't ‘a'n alf the days of a month, Symptoms
past 12 months (calc, used for study eligibility)
. Subject
40 POIWEIGHT Average current scale weight (kg) (calc) characteristics
41 POISVRKOST  Right knee baseline x-ray: evidence of knee osteophytes (calc) Medical imaging

outcome
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42

43

44

45

46

47

48

49
50
51

52
53
54
55

PO1SVRK]JSL
POIRXRKOA2
POIRXRKOA
POIRSXKOA
P01OAGRDR
POILXRKOA2
POILXRKOA

PO1BMI
PO1IARTDRCV
KSXRKN2

KPRKN1
DIRKN?7
rkdefcv
Ikdefcv

Right knee baseline x-ray: evidence of knee lateral joint space narrowing
(calc)

Right knee baseline x-ray: osteophytes and JSN (calc)

Right knee baseline radiographic OA (definite osteophytes, calc, used in
OALI definition of symptomatic knee OA)

Right knee baseline symptomatic OA status (calc)
Right knee baseline x-ray: composite OA grade (calc)

Left knee baseline x-ray: osteophytes and JSN (calc)

Left knee baseline radiographic OA (definite osteophytes, calc, used in
OAI definition of symptomatic knee OA)

Body mass index (calc)

Seeing doctor/other professional for knee arthritis (calc)

Right knee symptoms: feel grinding, hear clicking or any other type of
noise when knee moves, last 7 days

Right knee pain: twisting/pivoting on knee, last 7 days

Right knee difficulty: in car/out of car, last 7 days

Right knee exam: alignment varus or valgus (calc)

Left knee exam: alignment varus or valgus (calc)

Medical imaging
outcome
Medical imaging
outcome
Medical imaging
outcome
Medical imaging
outcome
Medical imaging
outcome
Medical imaging
outcome
Medical imaging
outcome
Subject
characteristics
Medical history

Symptoms

Symptoms

Symptoms
Physical exam
Physical exam
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