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Abstract: The study of brain electrical activity (BEA) from different cognitive conditions has attracted
a lot of interest in the last decade due to the high number of possible applications that could be generated
from it. In this work, a discriminative framework for BEA via electroencephalography (EEG) is proposed
based on multi-output Gaussian Processes (MOGPs) with a specialized spectral kernel. First, a signal
segmentation stage is executed, and the channels from the EEG are used as the model outputs. Then,
a novel covariance function within the MOGP known as the multispectral mixture kernel (MOSM)
allows us to find and quantify the relationships between different channels. Several MOGPs are trained
from different conditions grouped in bi-class problems, and the discrimination is performed based on
the likelihood score of the test signals against all the models. Finally, the mean likelihood is computed
to predict the correspondence of new inputs with each class’s existing models. Results show that this
framework allows us to model the EEG signals adequately using generative models and allows analyzing
the relationships between channels of the EEG for a particular condition. At the same time, the set of
trained MOGPs is well suited to discriminate new input data.

Keywords: brain electrical activity; spectral mixture kernel; gaussian processes; electroencephalography

1. Introduction

From the neuroscience perspective, each physiological or cognitive process will produce
a particular pattern of electrical interactions linking neurons from different brain regions. Therefore,
the electrical response related to the interactions between neuron assemblies allows studying the brain
function. Under such a perspective, the neuroscientists have found brain electrical activity (BEA)
patterns associated with motor functions, cognitive processes, and neuropathologies [1]. However,
the wide range of possible mental conditions hampers the BEA analysis and poses very challenging
tasks [2]. In particular, capturing BEA by placing a set of electrodes over the scalp, known as
electroencephalography (EEG), gathers and amplifies currents reflected in the brain cortex from all the
possible brain sources, yielding a mixture of latent activity sources at each channel. For discovering
such a latent activity, the literature considers different types of EEG analyses ranging from time and
spectral domain processing [3,4], through connectivity measures between channels [5], to the complex
network analysis [6].

Due to the non-stationarity behavior of EEG data, the classical temporal analyses cannot decode
differences among several mental states or conditions. Besides, several studies demonstrate that
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the variations in the EEG oscillatory patterns play a fundamental role in the maintenance of brain
functions and the identification of different neural conditions [7]. Hence, spectral decomposition
approaches look for relevant information at the brain rhythms (namely alpha, beta, theta, delta,
and gamma). For instance, performing working memory or creative tasks evokes discriminative
oscillatory patterns [8,9]. In addition, neuropathologies, such as Alzheimer’s disease, cause abnormal
cortical neural synchronization at resting-state rhythms [10]. The general spectral analysis procedure
consists of a channel-wise frequency band splitting, followed by an identification of relevant time
intervals, usually supervised by a specialist. The subsequent stages compute descriptors from the
time-frequency representation. The power spectral density (PSD) and spectral entropy are among
the most considered descriptors due to their straightforward interpretation [11,12]. Although EEG
frequency analysis has proven to extract useful information for brain function understanding,
the channel-wise approach still lacks the interpretability of several cognitive processes because each
channel only holds a reflected version of BEA from a neural assembly [13]. Besides, the low spatial
resolution of EEG restricts the extracted information about the behavior of some brain regions involved
in high-level cognitive or physiological processes [4].

In recent years, connectivity analysis techniques account for channel interdependencies to enhance
EEG spatial resolution through functional relationships captured in the BEA. Metrics from several
domains attempt to quantify different properties of the BEA. Specifically, the coherence (COH),
phase value index (PVI), and phase-locking value (PLV) capture pair-wise channel dependencies in
the frequency domain. Moreover, the latter two gained attention due to their non-linear capability for
unraveling latent connectivity patterns, which have proven valuable for applications, such as motor
imagery and emotion recognition [14,15]. Nevertheless, the selection of the connectivity measure
is not entirely straightforward. Their dependence on an estimated cross-spectrum and subject data
variability yield to low generalization capability in a wide range of scenarios [16,17].

The above issues demand reliable brain connectivity approaches to automatically identify the
relevant spectral information from the inherent EEG uncertainty. In this regard, a probabilistic modeling
framework, such as Gaussian Processes (GPs), along with an appropriate covariance function possesses
the capability for characterizing the latent processes from BEA data [18,19]. Moreover, the extension to
vector-valued processes or multi-output GPs (MOGPs) adjusts the probabilistic model to map inputs
into a multidimensional output space as an EEG channel array [20,21]. Former GP applications to
EEG analysis in stress detection and cognitive stimulus recognition demonstrated the potential of
GPs for BEA data modeling [22,23]. Furthermore, a recently proposed covariance function, known
as the multi-output spectral mixture (MOSM) analyzes dependencies with spectral information for
multidimensional output processes [24]. The proposal novelty relies on the PSD design, ensuring
the frequency constraints for real-valued signals. Additionally, the inverse Fourier transform of the
MOSM covariance results in a temporal kernel with positive definiteness conditions that are harder to
accomplish during kernel design.

In this work, we propose the extension of MOGPs with an MOSM kernel for BEA discrimination,
termed MOSM-GP. To this end, we learn an MOSM-GP for each EEG trial in a training set to
model and quantify channel relationship patterns associated with particular EEG conditions. Then,
we implement a likelihood measure to label new trial data into a specific class. The proposed
framework of discriminative MOSM-GP, termed DMOSM-GP, is tested in two publicly available
EEG datasets acquired under emotional [25] and motor imagery [26] conditions. The attained results
show that the likelihood measure of testing data on the trained MOSM-GPs corresponds to a reliable
discriminative index.

The manuscript organization is as follows: Section 2.2 describes the theoretical background of
MOSM-GPs and introduces the proposed framework. Section 3 presents the attained results on both
EEG modeling and classification performance. Finally, Section 4 concludes the works with the most
relevant findings.
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2. Material and Methods

2.1. EEG Databases

This work considers two publicly available EEG datasets for testing the proposed DMOSM-GP
methodology. The two datasets are widely used in the development of neuroscience techniques as
they hold challenging cognitive conditions. Contained EEG data allows testing the quantification of
channel dependencies at the frequency level by the DMOSM-GP for binary classification experiments.

DEAP dataset “A Database for Emotional Analysis using Physiological data” (DEAP) contains EEG
data from 32 subjects acquired under 40 emotion elicitation experiments, with one-minute
recordings at 128 Hz and 32 channels distributed over the scalp [25]. Each participant rated
the emotional stimulus at the end of a video, following two dimensions: arousal and valence.
Other scores, such as dominance and liking, were also reported, although arousal and valence are
the most prominent dimensions for affective computing works. These dimensions characterize
a more extensive range of emotions than just the classical categorical description in six basic
emotions. For our experiments, we consider the classification valence dimension as either low
(ranging from one to five) or high (from five to nine) valence.

MI dataset The “Brain Computer Interface (BCI) competition 2008-Graz data set A” contains motor
imagery experiments from nine subjects performing four specific tasks involving movements of
hands and feet [26] under the motor imagery (MI) paradigm. The set of 22 EEG channels was
band-pass filtered between 0.5 Hz and 100 Hz, and further down-sampled at 128 Hz. Each subject
performed two experiment sessions, consisting of six runs and 48 six second-long trials per run
and task. From the BCI dataset, we select the left- and right-hand movement imagination tasks
for evaluating the proposed discriminative framework in a subject-wise scheme.

2.2. Cross-Spectral Estimation from Kernel Mixtures

The communication between neuron cells is the basis of every neuronal processing task.
The electrical impulses result in every possible cognitive or physiological condition, such as behavior,
sensation, thoughts, and emotions [27]. Due to equally measuring normal and abnormal BEA, EEG is
considered a well-suited neuroimaging technique for diagnosis, treatment, and clinical procedures
across several neurological pathologies [1]. Equation (1) presents the mathematical representation of
the BEA from an EEG of C channels holding T time instants [28].

χ = {t ∈ RT , X ∈ RC×T}, (1)

with t as the time sample positions of the recordings, and X = {xi}C
i=1 holding the brain electrical

responses measured by the EEG array at channel i. To quantify the spectral content between channels,
the introduced cross-spectrum estimation relies on specific covariance functions. The Cramer’s
theorem states that a family of integrable functions {κij(τ)}C

i,j=1 are the covariance functions of
a weakly-stationary stochastic process if and only if they admit the following representation:

κij(τ) =
∫
Rn

eιω>τSij(ω)dω, (2)

being ι the imaginary unit, each Sij(ω) an integrate complex-valued function Sij : R → C that is
also positive definite, and i, j the indices of two EEG channels. This relationship between covariance
functions κij in the time domain with argument τ ∈ R and their corresponding spectral density Sij
with arguments ω in the Fourier domain allows designing a desired spectral density and obtaining
a covariance function [24].

Now, a family S = {Sij}C
i,j=1 ∈ RC×C of positive-definite complex-valued functions can be used as

cross-spectral densities for multi-output data [24]. These functions are designed by including specific
parameters that allow physical interpretation of the obtained covariance kernel regarding the input
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data. Moreover, complex-valued and positive-definite matrices can be decomposed in the form S(ω) =

RH(ω)R(ω) where R(ω) ∈ RQ×C, Q represents the rank of decomposition, and (·)H denotes the
Hermitian operator. Since Fourier transforms and multiplications of squared exponential (SE) functions
are also SE, the autocovariance function Ri(ω) of i-th channel is modeled as the complex-valued SE in
Equation (3).

Ri(ω) = wi exp

(
−1

4
(ω− µi)

2

σ2
i

)
exp (−ι(θiω + φi)) , (3)

with wi, φi, µi, θi ∈ R and σi ∈ R+. With such a choice of functions, the cross-spectral density between
channels i and j is given by Equation (4) with covariance σij ∈ R+, mean µij ∈ R, magnitude wij ∈ R,
delay θij ∈ R, and phase φij ∈ R.

Sij(ω) = wij exp

(
−1

2
(ω− µij)

2

σij
+ ι(θijω + φij)

)
. (4)

Finally, in order to guarantee that the model is restricted to real-valued stochastic processes,
the spectral density is reassigned to become symmetric with respect to ω by Sij(ω) → 1

2 (Sij(ω) +

Sij(−ω)). Then, the inverse Fourier transform of the resulting cross-spectral density becomes the
corresponding temporal domain real-valued kernel; the kernel and the symmetric version of the
spectral density are presented in Equations (5) and (6), respectively.

κij(τ) = αij exp
(
−1

2
(τ + θij)

2σij

)
cos
(
(τ + θij)µij + φij

)
, (5)

Sij(ω) =
wij

2
exp

(
−1

2
(ω− µij)

2

σij
+ ι(θijω + φij)

)
(6)

+
wij

2
exp

(
−1

2
(ω + µij)

2

σij
+ ι(−θijω + φij)

)
,

where the term αij = wij
√

2π|σij|1/2 absorbs the constant resulting from the inverse Fourier transform.
Equation (5) allows computing the real-valued autocovariances (i = j) and cross-covariances (i 6= j)
with negatively and positively correlated channels through the magnitude parameter αij ∈ R;
delayed channels through the θij 6= 0 delay parameter, and channels out-of-phase through the φij 6= 0
phase parameter. Moreover, increasing the rank of decomposition Q corresponds to considering more
components in the multiple-output spectral mixture (MOSM) kernel as shown in Equations (7) and (8).

κij(τ) =
Q

∑
q=1

α
(q)
ij exp

−1
2

(τ + θ
(q)
ij )2

σ
(q)
ij

 cos
(
(τ + θ

(q)
ij )µ

(q)
ij + φ

(q)
ij

)
, (7)

Sij(ω) =
Q

∑
q=1

w(q)
ij

2
exp

−1
2

(ω− µ
(q)
ij )2

σ
(q)
ij

+ ι(θ
(q)
ij ω + φ

(q)
ij )

 (8)

+
Q

∑
q=1

w(q)
ij

2
exp

−1
2

(ω + µ
(q)
ij )2

σ
(q)
ij

+ ι(−θ
(q)
ij ω + φ

(q)
ij )

 ,

denoting the superindex (q) the q−th spectral component. Then, MOSM effectively computes
autocovariance and cross-covariances through the spectral-mixture of positive-definite kernels from
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the Fourier transform of spectral functions Sij(ω). In practice, the adjustment of the cross-spectrum
parameters should be performed on the evidence of the EEG data.

2.3. Multi-Output Spectral Mixture Gaussian Process

Given an EEG trial, the Gaussian Process (GP) probabilistic framework computes the mixture
parameters by maximizing the data likelihood as the cost function. A Gaussian Process (GP) is
a real-valued stochastic process ( f (t)) over a input set t, such that for any finite subset of inputs
t ∈ {1, . . . , T}, the random variables f (t) are jointly Gaussian [20]. Additionally, the GP is uniquely
determined by its mean function m(t) := Et( f (t)), typically assumed m(t) = 0 and its covariance
function κ(t, t) := cov( f (t), f (t′)) ∈ RT×T known as the kernel.

Then, the multivariate extension of GPs is derived by assembling C different scalar-valued
stochastic processes, one for each EEG channel. Any finite collection of values across all such processes
are jointly Gaussian, termed multiple-output Gaussian Process (MOGP). This extension results in
a vector-valued process f ∼ GP(m, K), where m(t) ∈ RTC is a concatenated vector from the mean
vectors associated to the outputs and K ∈ RTC×TC a block partitioned matrix of the form [20]:

K(X, X) =


K(X1, X1) · · · K(X1, XC)

K(X2, X1) · · · K(X2, XC)

· · · · · · · · ·
K(XC, X1) · · · K(XC, XC)

 , (9)

where each block K(Xi, Xj) is a T × T matrix denoting the covariance between output channels i, j.
Furthermore, a multivariate kernel K(t, t′) is stationary if K(t, t′) = K(t− t′). In this case, the kernel
becomes κij(t, t′) = κij(τ) if substituting τ = t− t′. Therefore, we use the MOSM kernel in Equation (7)
as the covariance function to be implemented within the MOGP. By defining such a process as the
MOSM kernel, the model adjustment to the data is performed by maximizing the data log-probability.
Since the observations in the multiouput case are jointly Gaussian, they are concatenated into the
vector y = [x>1 , x>2 · · · , x>C ]

> ∈ RCT the channel observed value. Then, the negative log-likelihood
(NLL) can be expressed as in Equation (10).

− log p(y|t, Θ) =
CT
2

log 2π +
1
2

log |K|+ 1
2

y>K−1y, (10)

with Θ = {w(q)
i , µ

(q)
i , σ

(q)
i , θ

(q)
i , φ

(q)
i , σ2

i }
C,Q
i=1,q=1 holding the complete set of parameters. As a result,

minimization of NLL with respect to Θ designs an spectral kernel quantifying the EEG channel
relationships at automatically tuned frequency bands.

2.4. Discriminative Scheme Using MOSM-GP

Let a set of N labeled BEA trials {χn, ln}N
n=1, each of them belonging either class A or B, that is,

ln ∈ {A, B}. In the case of DEAP dataset, classes correspond to low and high valence, while, for the MI
dataset, left- and right-hand movement imagination are considered. As stated in Section 2.3, a single
MOSM-GP models each BEA trial as the stochastic process f (l)n , resulting in NA and NB MOSM-GPs
for classes A and B, respectively. Furthermore, on the evidence of a new BEA trial X∗, the marginal
likelihood for each learned MOSM-GP is computed as:

p( f (l)n (X∗)|Xn, f (l)n , X∗) = N ( f (l)n (X∗), K(X∗, X∗)). (11)

By evaluating the marginal likelihoods on all training MOSM-GPs, the new BEA trial label is
estimated as follows:

l∗ = arg max
l∈{A,B}

E
{

p( f (l)n (X∗)|X, f (l)n , X∗) : ln = l
}

, (12)
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where E{· : ln = l} denotes the expectation operator over training trials belonging to class l. Figure 1
illustrates the proposed discriminative MOSM-GP framework, termed DMOSM-GP.

Output Tag
{A,B}

Class "A" Models Class "B" Models

Average "A" Likelihood Average "B" Likelihood

New data input

Figure 1. Proposed framework for discriminative multispectral mixture kernel (MOSM).

2.5. Implementation Details

Before the model training stage, a channel selection is carried out to reduce the training
computational cost. For the MI dataset, channels are selected based on the evidence that body
movement triggers neural activity in the opposite brain hemisphere within the sensorimotor area.
Regarding the DEAP dataset, channels related to brain regions more likely to participate in affective
states are considered. Figure 2 depicts the subset of selected channels for both EEG datasets.
Regarding the DMOSM-GP free parameter, the rank of decomposition is chosen from a grid search
within the range Q ∈ {1, . . . , 10} to minimize the mean absolute error (MAE) of the model prediction
against the original EEG data. The GPflow framework is employed for the model definition [29],
and the kernel function is optimized via the minimization of NLL cost function using the autograd
library. Finally, for the statistical significance assessment of the classification performance, an 10-fold
cross-validation scheme was applied.

(a) DEAP dataset (b) MI dataset

Figure 2. Positioning scheme of electrodes for acquisition in both datasets. Green boxes highlight the
selected channels for testing the proposed methodology.
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3. Results

3.1. Parameter Tuning and Spectral Modeling

To tune the rank of decomposition Q, we evaluate the MOSM-GP performance for modeling the
selected output channels from the data posterior distribution at specific temporal locations. Moreover,
the mean absolute error (MAE) quantifies the difference between the target and predicted outputs as
a function of the rank. Figure 3 presents the mean MAE across the GP outputs against the number of
spectral components defined for the MOSM kernel. As a first insight, the MAE values evidence that the
MOSM-GP effectively reconstruct EEG recordings. Nonetheless, the error increases over six spectral
components, due to a large number of kernel parameters to be tuned, which in turn increases the
computational complexity without providing relevant information to the probabilistic model. On the
contrary, a single component lacks the complexity to account for the brain activity changes. Therefore,
a rank of decomposition between three and five benefits the most the MAE performance, implying
a balance between model complexity and generalization capability. Consequently, for the remaining
of the work, we selected three spectral mixtures as the optimal Q for testing the MOSM-GP scheme.
For the purpose of visualization, Figure 4 exemplifies the MOSM-GP output for channels FP1 and AF3
using Q = 3. As seen, the posterior MOSM distribution suitably models EEG data at all time locations
with bounded deviations.

An analysis of the spectral information quantified by the MOSM-GP is carried out using Equation (6)
that decomposes the spectral content shared by two channels into Q terms. Figure 5 plots the
component-wise spectral distribution between channels FC2 and FC6 in a trial from left- (Figure 5a)
and right-hand movement (Figure 5b). Attained spectra prove that each component automatically
fits a particular frequency band. Moreover, the component magnitude α

(q)
ij highlights the dominant

component from each trial as the most discriminative frequency band. As expected, such frequencies
lay around 15 Hz to 35 Hz for MI experiments, being associated with an activation of alpha and beta
rhythms.
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Figure 3. Mean absolute error (MAE) values for the data reconstruction of electroencephalography
(EEG) channels after training a MOSM-Gaussian Process (GP) compared to the original recordings.

Later, Equation (8) is used to compute the cross-spectrum visualizing the computed covariances
by the MOSM kernel for every channel pair. Since there is valuable information on the analysis of
the cross-covariances between channel pairs, a complete trial visualization of the quantified spectral
information is presented in Figure 6a,b for left- and right-hand movement trials, respectively. Each one
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of the horizontal axis sections, corresponds to a particular channel i and its MOSM PSD against all the
channels. The vertical axis represents the frequency bin at which the connectivity is assessed. Then,
lighter green colors are related with strong spectral densities shared between i, j channels, while darker
blue colors are related with lower interdependencies. Despite most of the strong spectral density being
constrained to the [15, 40] Hz band, there is clear evidence that not all the channels are synchronized at
this frequency when performing MI activity. Particularly for Figure 6a, there are channels sections that
seems to be uncorrelated in the complete spectrum for this particular task. For example, channels Cz,
C2, and CP6 seem to have low frequency dependencies shared with the rest of the EEG array. On the
other hand, channel CP2 presents strong connections with most of the channels. Furthermore, for the
opposite MI task, there exist variations on the captured frequency relationships among the EEG array.
C2 and C4 result as the most highly correlated the other channels when performing the MI task.
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(a) Channel FP1
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(b) Channel AF3

Figure 4. Channels FP1 and AF3 from EEG recordings adjusted by an MOSM with three spectral
mixtures and its corresponding model posterior along time.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

N
or

m
al

is
ed

PS
D

1st component α(1) = 25.27

2nd component α(2) = 0.12

3rd component α(3) = 0.92

(a) Left hand MI
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(b) Right hand MI

Figure 5. Normalized power spectral density Sij(ω) for a given pair of channels (FC2-FC6) from MI
database for two opposite conditions. Top row for left-hand movement condition and low row for
right-hand movement condition. Figure 5a,b are the spectral content per spectral component.
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(a) Left hand condition MI
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(b) Right hand condition MI

Figure 6. Quantified power spectral interdependencies for two particular conditions of the motor
imagery dataset. The power spectral density (PSD) has been normalized between 0–1.

3.2. Discriminative MOSM-GP

For the DMOSM-GP framework, each EEG trial is trimmed into two-seconds lasting time series
to find the desired spectral relationships. Table 1 presents the absolute value of the average likelihood
as the class dependency measure, depicted in Equation (12). The first column corresponds to the test
condition level regarding the emotional content (valence for this experiment), columns two and three
are the values obtained for the model testing, and fourth is the valid tag of the corresponding test
signal. Finally, the fifth column is the predicted tag from the magnitude of the mean test likelihood.
Similarly, in Table 2, the results for the DMOSM-GP strategy over the BCI database are presented.
The first column corresponds to the movement associated with the experiment. Columns two and three
are the average likelihoods obtained by testing the new input against each class’s models. The fourth
column is associated with the resulting tag. Each row in Tables 1 and 2 corresponds to a particular
trial, for emotional or motor imagery experiments.

From this test on complete datasets, it can be evidenced that the prediction regarding the likelihood
of the trained model with the test signals is promising. The accuracy of the test data is around 73.3%
for the DEAP database and about 87.33 for the BCI database. Specifically, for comparison purposes
against works using the DEAP dataset, a selection of 9 subjects is performed. This selection is based on
the evidence of an uncertainty test performed in [17], where the authors concluded that the subject
itself did not adequately tag some experiments of the DEAP database. The scheme of implicit tagging
used in this particular database allows the subjects to rate their affective result, so some of the acquired
signals seem not correctly related to the emotional tests. The results reported in Table 3 show the
accuracy resulting from the cross-validated DMOSM-GP scheme. The subject IDs reported are the
same in the database, and some high accuracy (state-of-art comparable) ones were achieved around
78%, which is the case of subject 18.

On the other hand, for the BCI database, the complete set of 9 subjects is employed, and Table 4
reports the accuracy of classification within 5 folds of DMOSM-GP. Some higher accuracy was obtained
for the MI database in the subject-dependent experiments around 87% for subject ID 2. In general
terms, the results associated with the BCI database are higher than the DEAP database, and it can
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be related directly with the condition that is tested. In the case of emotional experiments, there is
a high degree of subjectivity in the elicitation of the states. In contrast, in the case of motor imagery,
the conditions are somehow more consistently replicated.

Table 1. DMOSM-GP Test for brain electrical activity (BEA) analysis of emotional conditions of
two classes. The mean absolute value of the likelihood from the test signals against the trained
models is included—“A Database for Emotional Analysis using Physiological data” (DEAP) database.
The boldface indicates the class with the highest log-likelihood.

Level Low Models High Models True Predicted

9.0 138.6293 143.0221 A A
9.0 10.8743 14.7149 A A
9.0 103.9478 100.7107 A B
9.0 299.0507 304.0222 A A

8.81 299.7143 305.0394 A A
8.56 363.5983 369.2760 A A
9.0 348.1999 353.7941 A A
9.0 38.8484 42.9119 A A
1.0 193.7571 191.0369 B B
1.0 145.3716 142.2964 B B
1.0 400.7168 406.6640 B A
1.0 36.0769 32.4378 B B
1.1 48.8835 53.0558 B A
1.0 132.5064 136.9884 B A

1.08 83.4116 80.2945 B B

One-Fold Average Accuracy 73.35± 5.64%

Table 2. DMOSM-GP Test for BEA analysis of emotional conditions of two classes. The mean absolute
value of the likelihood from the test signals against the trained models is included—MI dataset.
The boldface indicates the class with the highest log-likelihood.

Side Left Models Right Models Predicted

L 163.8711 159.3530 L
L 181.6294 176.9928 L
L 29.7624 35.1477 R
L 183.1083 179.0200 L
L 128.3101 123.8268 L
L 24.0204 20.2636 L
L 142.6790 138.4443 L
L 11.2064 7.0390 L
R 59.3072 63.8494 R
R 111.6419 95.6175 L
R 191.7138 196.6392 R
R 193.1533 196.7049 R
R 35.7346 39.8927 R
R 194.2656 198.3379 R
R 54.5305 59.0000 R

One-Fold Average Accuracy 87.33± 3.68
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Table 3. Discriminative test for subjects from the DEAP database using the DMOSM-GP scheme,
the test are developed within the valence emotional dimension.

Subject ID Accuracy Subject ID Accuracy

17 0.65± 4.32 2 0.70± 6.19
18 0.78± 8.12 16 0.50± 5.28
22 0.60± 3.49 19 0.65± 5.66
29 0.65± 4.28 31 0.50± 6.77

30 0.70± 5.28 Average 0.64 ± 0.09

Table 4. Discriminative test for subjects from the MI database using the DMOSM-GP scheme.

Subject ID Accuracy Subject ID Accuracy

1 0.82± 3.45 6 0.85± 3.18
2 0.87± 4.16 7 0.80± 3.73
3 0.85± 2.56 8 0.82± 4.21
4 0.77± 4.56 9 0.79± 2.66

5 0.82± 4.03 Average 0.82 ± 0.03

3.3. Results Comparison

The results obtained from the DMOSM-GP strategy are compared with some state-of-the-art
results in terms of classification accuracy. However, since the proposed methodology uses generative
models for discriminative purposes, it has to be stated that the comparison should be made on
a few additional items than the classification accuracy. As can be seen in Tables 5 and 6, the average
classification results obtained by the DMOSM-GP strategy are competitive among the state-of-art
works. It has to be noticed that this work does not implement a preprocessing or feature extraction
stage but uses the acquired data to train the MOSM-GPs and perform the discriminative task.

Table 5. Mean emotion classification results [%] for selected DEAP subjects, only mean value for
comparison consistency against reported works in Reference [17].

Reference Approach Accuracy

Koelstra et al. [25] PSD-SVM 57.50
Soleymani et al. [3] PSD-SVM 62.00
Gupta et al. [30] PSD-HJORT-SVM 60.00
Padilla-Buritica et al. [17] MSP-SVM 55.76
Daimi and Saha [31] Wavelet-SVM 65.00
Torres-Valencia et al. [28] RFCV-KNN 65.73
Pan et.al. [11] PSD-LORSAL 63.29
Pan et.al. [11] DE-LORSAL 77.17
This work DMOSM-GP 64.35

Table 6. Mean emotion classification results [%] for MI dataset, only mean value for comparison
consistency against reported works.

Reference Approach Accuracy

Qureshi et al [32] ICA-ELM 94.29
Li et al. [33] CSP-SVM 78.78
Liang et al. [34] PDC-MEMD 70.22
Elastuy and Eldawlatly [35] DBN 73.44
Gómez et al. [36] CSP-SVM 81.41
This work DMOSM-GP 82.11
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4. Discussion and Concluding Remarks

Brain information processing is a complex task that is not yet entirely mapped and understood.
Despite the previous knowledge about brain regions interactions in motor or emotional means,
works that allow improving the interpretability of results in different BEA scenarios would lead
to the development of more precise frameworks for analysis, diagnosis, and treatment of mental
pathologies, among other tasks. In this work, we proposed a framework for discriminate BEA using
raw data with the support of a spectral kernel that identifies relationships between channels on behalf
of a probabilistic methodology of multi-output Gaussian process. One of the essential remarks of this
framework is the capability of learning EEG connectivity patterns by estimating raw data spectral
components without a feature extraction stage. Further, this proposal of generative models working
directly with EEG data has the advantage of adjusting the model relying on the optimization of kernel
hyperparameters just from the channels information in a data-driven framework.

The results presented in Section 3 evidenced that introducing the MOSM kernel to MOGPs
becomes a reliable tool for BEA modeling, due to the spectral designing properties. It is well known
that EEG channels share complex frequency relationships that can be exploited using the design of
a covariance function in that particular domain. Regarding this property, the posterior distribution
over the data measured by the MAE in Figure 3 shows an adequate adjustment of the model on the
original data. It also allows us to conclude that the inclusion of more spectral components into the
covariance function benefits the model adjusting to the data.

Moreover, the identification of the spectral relationships between channels, performed by the
MOSM kernel, allows gaining a better understanding of the latent functional connectivity between
brain regions. As Figure 6 evidenced, the MOSM-GP identifies representative frequency bands for the
cognitive process. The positive linear relationships are grouped among channels from the same
hemisphere, with strong specific dependencies between channels, like P3 − P7, and Fc6 − A f 4.
The negative relationships are explained by lower PSD amplitudes at Cz, C2, and CP6 for the left-hand
MI task, and C6, CP1, CP6 for the right-hand MI task. All these interactions quantified by the MOSM
kernel in terms of higher or lower values of the PSD can be directly related with the activations
of neural cells in different regions of the brain related with emotions (amygdala, hippocampus,
and frontal cortex) or related with motor activities (primary motor cortex and posterior parietal cortex).
Nevertheless, further studies must be completed from the evidence of these relationships to an accurate
source reconstruction before determining the specific brain region of the acquired neural activity.

Finally, the discriminative results regarding the emotional and motor imagery conditions conclude
that probabilistic models can be efficiently employed as a classification tool for EEG data. In this case,
the probability distribution of tested data against the trained models directly becomes a classification
algorithm by following a direct comparison of the mean likelihood value between the models
from two classes. Despite lacking a feature extraction stage, the proposed DMOSM-GP produces
discriminative information from the data. Moreover, the total accuracy of the subject-dependent and
condition-dependent tests is comparable with state-of-art works, as Tables 5 and 6 illustrate.

One of the drawbacks of this framework is the computational complexity of training a considerable
number of MOSM-GP models. In addition, increasing the number of MOSM kernel mixtures and the
size of BEA data will derive into an exponential growth of the training time. Further improvements of
this methodology will be directed towards using lighter versions of probabilistic models, such as the
sparse GPs aiming at solving more difficult supervised learning tasks from EEG data as multilabel
classification or regression.
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