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Abstract: The first step in the appropriate packaging design of food, agricultural and industrial
products is to conduct an accurate simulation of the vehicle transport environment, in which a
power spectral density (PSD) profile is applied. Although several researchers have mentioned the
limitations of PSD-based simulation, it is still widely used because accelerated test conditions can
be easily generated from the PSD acquired from a particular transport section. In this study, three
representative trucks and transport test routes of domestic freight transport were selected to develop a
simulation protocol for a truck transport environment in Korea. These studies are needed to compare
domestic transport vibration levels with those presented by the International Standards (ASTM:
West Conshohocken, USA, ISTA: Chicago, USA) and to simulate damage to packaged products by
domestic transport environments. The composite PSD profile for the truck transport environment
was established by dividing it into high-and low-level composite PSD profiles representing the top
30% and lower 70%, respectively, of the measured vibration events based on the root-mean-square
acceleration (rms G) of the measured vibration events. Also, the effects of these variables on the
truck vibration level were analyzed by extracting data corresponding to the truck’s pre-planned
travel speed and road conditions in the vibration records measured on the test route. Moreover,
kurtosis, skewness, and normal quantile-quantity (Q-Q) analyses were conducted to understand
the statistical characteristics of Korea’s truck transport environment. Statistical analysis showed
that the measured vibration events had a heavy-tailed distribution and skewed to the right, causing
dissymmetry. The overall rms G of the developed high-level and low-level composite PSD profiles in
the range from 1 to 250 Hz were 0.47 and 0.32 for leaf-spring trucks and 0.30 and 0.14 for air-ride
trucks, respectively.
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1. Introduction

All products are transported between the production site and the consumer and are subject
to vibration during transport, which shortens the product life and reduce the commodity value.
Vibration during transport has large and small impacts from simple abrasion of the package to the
collapse of the palletized unit-load owing to pallet destruction [1]. Therefore, products in distribution
should include protective packaging for adequate protection from vibration during transport [2].
Both under-packaging and over-packaging are costly because the former increases the occurrence of
damage incidents, and the latter increases the volume and weight of packages. Therefore, to reduce
these costs, optimal packaging design should be developed to achieve product protection while
minimizing the weight and size of the cushioning material [3].
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The first step in the development of product packaging is to simulate the physical stresses of
vibration that occur during transport. However, both severe and moderate simulations are costly.
The former guarantee the product’s integrity but leads to increased logistics expenses owing to
excessive use of cushioning materials, and the latter cause economic losses to the enterprise due to
product damage caused by insufficient protection of the product. Therefore, this simulation should be
able to reproduce the vibrations produced by the vehicle accurately.

Because the vehicle speed and road pavement roughness vary throughout the journey, the vehicle
vibration is non-stationary, in which statistical values such as the mean and root–mean–square
acceleration (standard deviation; rms G or Grms) of the events are not maintained over time.
The non-stationarity of vehicle vibration causes the non-Gaussian distribution of vehicle vibration
events [4,5]. However, vibration signals measured in a vehicle are characterized such that their average
values remain relatively constant even if the vibration values for a particular frequency in the signal
continue to change. This characteristic enables the vibration test equipment to reproduce the vibration
behavior of the vehicle in a laboratory [6]. Therefore, in the vibration analysis of the vehicle, the random
vibration of the vehicle is a Gaussian distribution, and it is assumed that all measured events exist
within three standard deviations (±3σ; Figure 1).
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Power spectral density (PSD) is measured vibration signals using the Fast Fourier Transform
(FFT) algorithm, which represents the average intensity of the vibration. Some researchers [4,7,8] have
reported that the Gaussian distribution used in FFT at vibration test excludes values outside the normal
distribution such as high-amplitude events in the vibration signal, which can have a significant effect
on product damage. Therefore, reproducing actual vehicle vibrations through PSD-based simulation is
limited [5].

Because high-amplitude events owing to shocks during transport are included in the vibration
signal, transport vibrations are not considered random vibration. Therefore, in research separating
shock and vibration in the simulation of vehicle transport vibration, Lu et al. [9] reported that when
shock events more significant than 0.1 G were removed from the vibration data measured during
truck transport, vibration level was close to a normal distribution. Such shock events are caused
chiefly by road unevenness conditions such as roughness, metal joints, and sewer hole covers. Several
researchers [7,10–12] developed PSD profiles for each by decomposing the signal into low-amplitude
and high-amplitude events based on a rank of rms G. This method is based on the hypothesis that
the low-level PSD profile represents the vehicle response to random variations in the road profile and
that the high-level profile represents the response to transient events such as speed bumps, cracks,
and potholes [7]. Chonhenchob et al. [10] and Singh et al. [11] developed two PDS profiles based
on 70% of vehicle vibration signals with the lowest acceleration levels and 30% with the highest.
However, this method is too subjective for dividing the upper and lower ratios in the PSD calculation.
For example, Wallin [12] used an 80:20 percentage ratio, and Kipp [7] used three-way split spectra of
70:25:5 for the signal. Even if the PSD is calculated by taking only the upper group of high-amplitude
events, the distribution is still Gaussian, but the high-amplitude events included in the transport
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vibration signal are integrated at random points within the signal. Thus, this approach allows for
better simulation of the overall distribution of vibration acceleration [13].

In several geographic regions including North America [11,14–16], Australia [17], Japan [9,17],
China [18], India [19], Brazil [20], Spain [21], Thailand [22] and Hungary [23–25], vibration, and shock
measured in representative vehicles in each country’s vehicle transport environment have been
published. Also, many researchers have compared their measurement results with existing global
standardized test protocols such as ASTM [26], ISO [27], and ISTA [28].

The causes of vehicle transport vibration can be divided into three main categories: (1) the road
roughness, (2) road surface aberrations such as cracks, speed bumps, and potholes, and (3) the vehicle
drivetrain system including the wheels, drivetrain, and engine. Because the vibration level in vehicle
transport depends on the interaction of the track-truck system, the vibration level is at least a function
of road surface classification, terrain configuration, vehicle speed, vehicle suspension type and its
conditions, load configuration, and tire pressure [7–9,11,14,18,21,22].

Lead by Singh and Marcondes [15], several researchers [11,13,19] have divided the vibration
frequency of trucks into three significant ranges: (1) 3–4 Hz, representing the truck suspension response;
(2) 15–20 Hz, representing the tire response; and (3) 40–55 Hz, representing the structure response.
According to the results in the published literature, the vibration levels in air-ride trucks are significantly
lower than those in leaf-spring trucks [11,15,16,18,21,29]. Pierce et al. [16] stated that the vibration
levels of leaf-spring trailers are at least 50% higher than those of air-ride trailers. However, Singh and
Marcondes [15] reported that a truck with damaged air-ride suspension result in significantly higher
vibration levels than those with leaf-spring suspensions. They reported predominant suspension
frequencies of air-ride and leaf-spring trailers of 2 Hz and 3–4 Hz, respectively; Garcia-Romeu-Martinez
et al. [21] reported similar results. Soleimani and Ahmadi [30] reported that vibration peaks in
leaf-spring and the air-ride suspension trucks occur at frequencies of 3 Hz and 4 Hz, respectively.
The vibration level is shown to increase with an increase in vehicle travel speed, with a smaller
the payload resulting in higher vibration levels [8,15,18,21,31]. However, singh and marcondes [15]
stated that the vibration levels increase significantly in air-ride trailers because the air-ride suspension
becomes stiffer as the trailer load increases. The vertical vibration level was shown to be larger than the
lateral and longitudinal vibration levels [11,14,31], and the vibration levels according to the location of
the truck platform is more significant at the rear than at the front [15,29].

To apply PSD profiles obtained under various conditions to the simulation, a composite PSD profile
with simplified breakpoints representing these conditions be determined. Generally, a smoothing
process is valid for simplification of a single PSD profile [12,23]. However, two methods have been used
to create a composite PSD profile representing several PSD profiles obtained under various conditions.
The first is the average method of all recorded events under various conditions (the average composite
spectra) [15,23], and the other connects the highest PSD level breakpoints by considering all various
recorded PD spectra [11,23,32]. In particular, the latter method produces conservative results that
include all results measured under different conditions.

Research on the vehicle transport environment in Korea is at a rudimentary stage. In particular,
no research on the vibration level for representative trucks and road types applied to Korea’s domestic
freight transport is available. These studies are needed to compare domestic transport vibration
levels with those presented by international standards (ASTM: West Conshohocken, USA, ISTA:
Chicago, USA) and to simulate damage to packaged products by domestic transport environments.
Therefore, we attempted to measure the dynamic vibration level of the distribution environment in
Korea, construct the PSD profile for conducting the transport simulation in the lab and compare the
results with the dynamic level of the distribution environment in other countries. The specific research
objectives include:

1. Analysis of the transport vibration levels for trucks and routes representative of Korea’s freight
transport and development of a simulation protocol for this truck transport environment.
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2. Qualitative analysis of the characteristics of Korea’s truck transport environment by comparing the
truck transport vibration levels measured in the pre-planned test route with exiting standardized
test protocols.

3. Proposal of optimum cushioning packaging design level of packaging products to prevent damage
caused by vibration and shock during transport.

2. Experiment Design

2.1. Vehicles and Test Routes

To analyze the vibration level for Korea’s truck transport environment, we selected three types of
trucks, as shown in Figure 2, which are commonly used to transport palletized unit-loads in Korea:
a leaf-spring (suspension) 5-ton (payload capacity) truck, an air-ride 5-ton truck, and a leaf-spring
11-ton truck [2]. In this study, the trucks were unloaded. All of the selected trucks were built in Korea;
their detailed specifications are shown in Table 1.
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Figure 2. Various trucks used in the vibration measurement study (a) Leaf-spring 5-ton truck (b) Air-ride
5-ton truck (c) Leaf-spring 11-ton truck.

Table 1. Specifications of trucks used in the vibration level measurement.

Characteristics Leaf-Spring 5-Ton Truck Air-Ride 5-Ton Truck Leaf-Spring 11-Ton Truck

Brand DAEWOO NOVUS 2007, Korea DAEWOO PRIMA 2016, Korea DAEWOO NOVUS 2005, Korea
No. of axles 3 3 3

Load capacity 5 ton 5 ton 11 ton
Suspension leaf-spring air-ride leaf-spring

Load platform L ×W = 7500 × 2350 mm L ×W = 8500 × 2400 mm L ×W = 10,000 × 2400 mm

The test route configured for measuring the vibration levels of the target trucks is shown in Table 2.
The route consisted of a mixture of 110.6 km of highway and 191.3 km of national roads considering the
characteristics of Korea’s freight transport. The highway pavement was also divided into two types:
60.9 km of concrete-surfaced highway and 49.7 km of asphalt-surfaced highway. Moreover, the travel
speed of the truck during the test was 90–100 km/h on highways and 60–90 km/h on national roads.
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Table 2. Pre-planned test route and driving conditions.

Characteristics Daegu→ Sangju→ Seongju→ Jinju→ Masan

Classification of roads national road highway national road highway
Pavement mostly asphalt mostly concrete mostly asphalt mostly asphalt

Distance (km) 77.6 60.9 113.7 49.7
Travel speed (km/h) 60–90 90–100 60–90 90–100

2.2. Measurements and Recording Parameters

A data recorder (SAVER 3 × 90, Lansmont Corporation, Monterey, CA, USA) with built-in triaxial
acceleration sensors was used to record the vibration signals in a traveling truck. The instrument was
held securely by double-faced adhesive tape and blue tape at the center position at the rear end of the
load platform of the truck, where the vibration level is relatively large [11,15,29,33] (Figure 3).
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Figure 3. Installation of data recorder at the center position at the rear end of the load platform.

Before starting the measurement, the data recorder was configured with the following settings:
an event trigger threshold of 0.5 G, a sampling rate of 1000 Hz, a record time of 2 s, and a signal
pre-trigger of 50% for signal-triggered data, and a sampling rate of 1000 Hz and record time of 2 s for
timing-triggered data.

2.3. Data collection and Analysis

The vibration data were filtered to remove all undesirable events from the analysis, such as
non-vibration related movement caused by stopping or slow traveling speeds. That is, events below
0.05 rms G were filtered out [34,35].

The recorded time-domain vibration data are presented as frequency-domain PSD with the
FFT based on Saver Xware software (Lansmont Corp.). In this study, PSD levels from 1 to 250 Hz
are shown. A PSD profile is a plot of the energy (vibration strength) versus the frequency and is
commonly used to measure and compare vibration levels. The square root of the integral of the PSD
over the total frequency range is the overall rms G, which represents the vibration levels for the entire
spectrum [36,37].

The PSD for any band of frequencies can be calculated as follows [14,15,22,29,32]:

PSD =
1

BW

N∑
i=1

(
rms G2

i

)
/N (1)

where rms G is the sampled root-mean-square acceleration measured within a bandwidth of frequencies,
and N is the total sample number of vibration signals for a given segment of vibration history.
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The corresponding PDs were then plotted against the center frequency of the bandwidth to develop
the PDS for the data set. In this study, 1 Hz was selected for the bandwidth. To use vibration testing
in a lab-based simulation test and to identify the distribution characteristics of the vibration events
measured in Korea’s truck transport environment, the kurtosis (K), and skewness (S) of probability
distribution functions (PDF) using a confidence interval of 95% were analyzed. The kurtosis and
skewness show the peakedness and asymmetry of data distribution compared with the Gaussian
normal distribution, respectively. That is, when the standard normal distribution has a kurtosis of 0,
a positive kurtosis indicates a heavy-tailed rather than normal distribution. A skewness of 0 shows
indicates symmetric distribution, in which the deviation from 0 indicates asymmetric distribution [38]:

S =
1
N

N∑
i=1

{xi − µ

σ

}3
(2)

K =
1
N

N∑
i=1

{xi − µ

σ

}4
(3)

where N is the number of data points (vibration events) within the analysis time, µ is the mean, and σ

is the standard deviation (σ =

√∑
(xi − µ)

2/N).
In the statistical analysis of measurement data, the use of acceleration G measured directly

by an accelerometer is difficult to handle in statistical programs because the amount of data is too
large. Therefore, in this study, a method for significantly reducing the amount of data was applied by
calculating rms G at a specific time interval from the time-domain acceleration G [13,18,21]. The moving
rms G of each vibration record was computed by using Equation (4) with a particular window length:

rms G =

√√√
1
N

N∑
i=1

a2
i (4)

where N is the window length [N = 2000, where the sampling rate f s = 1000 Hz, and the time length of
the window (N/f s) is 2 s], and ai is the acceleration G measured directly by the accelerometer.

3. Results and Discussion

3.1. Transport Vibration Levels in the Pre-Planned Test Route

Figure 4 shows each PSD profiles for the tri-axial vibration records measured in three target trucks
on the test route. As expected, the vibration levels were significantly higher in the vertical axis than in
the lateral and longitudinal axes for all target tracks, and the change in the value of the longitudinal
vibration level was smaller than that of the other two directions. In particular, the differences in
directional vibration levels were more pronounced in the low-frequency range of 110 Hz. The vehicle’s
overall rms G value at that frequency range was the largest in the vertical direction, followed by the
lateral direction and the longitudinal direction (Table 3).
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Table 3. Overall rms G values for triaxial PSD profiles and vertical peak PD level.

Kinds of Truck
1–250 Hz Under 10 Hz Peak PD Level (1)

x (G) y (G) z (G) x (G) y (G) z (G) Frequency (Hz) PD Level (G2/Hz)

Leaf-spring 5-ton truck 0.1078 0.0583 0.2119 0.0377 0.0188 0.1632 3.0 0.0116
Air-ride 5-ton truck 0.0472 0.0477 0.1075 0.0234 0.0110 0.0901 1.5 0.0052
Leaf-spring 11-ton truck 0.0740 0.0885 0.2385 0.0393 0.0152 0.1305 3.0 0.0062

Note: (1) in the vertical direction (x: lateral, y: longitudinal, z: vertical).

For the overall frequency range of this study, 1–250 Hz, the values of the vertical overall rms G were
approximately 2.6 and 3.0 times higher than those of the lateral and longitudinal directions, respectively,
and the highest level of vibration in the vertical direction was the same as that of other countries.

The vibration level transmitted to products during truck transport is very large in the vertical
direction; thus, the design of the cushioning packaging of the product depends on the vertical vibration
level [24–26,34]. Figure 5 shows only the PSD profiles for the vertical direction. The overall rms G
values of the leaf-spring truck in the low-frequency range of 1–10 Hz were about 1.5 times greater than
those of the air-ride truck.
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However, the value of the first PSD peak, which occurred as suspension’s response to external
forces at the low-frequency region, was about two times smaller in the air-ride truck than in the
leaf-spring truck, and its frequency was approximately 1.5 Hz and 3 Hz, respectively. The low frequency
of the first PSD peak in the air-ride truck is considered as an effect of damping of the air-ride suspension
(damped natural frequency ωd = ωn

√
1− ζ2, where ωn is the natural frequency, and ζ is the damping

ratio). The results of this study for the two suspension trucks agree well with the research results
by Singh and Marcondes [15] and Garcia-Romeu-Martinez et al. [21]. Therefore, package designers
should preferentially avoid designing ‘product + cushioning material’ system with natural frequencies
between these ranges to avoid resonance during transport [21].

Figure 5 also shows the analysis results of PSD from time-domain rms G data for the following three
cases: (1) high-level PSD representing the top 30% of the recorded data, (2) low-level PSD representing
the lower 70% of the data recorded, and (3) PSD representing all data recorded. The overall rms G
value for each of the three classifications is shown in Table 4.
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Table 4. Overall rms G values of vertical PSD profiles for the three data selection methods in the
frequency range of 1–250 Hz.

Kinds of Truck Top 30% Lower 70% All Data

Leaf-spring 5-ton truck 0.2878 0.1693 0.2119
Air-ride 5-ton truck 0.1808 0.0839 0.1075

Leaf-spring 11-ton truck 0.3410 0.1832 0.2385

The overall rms G value for the top 30% of the recorded data was approximately 0.31 G for the
leaf-spring truck and 0.18 G for the air-ride truck, and that for the lower 70% of the data recorded, which
was muted by averaging high-amplitude events included in the measured transport vibration signals,
was approximately 0.18 G and 0.08 G, respectively (Table 4). The overall rms G value for the lower 70%
of the data recorded was approximately 42% less in the leaf-spring truck and 56% less in the air-ride
truck than that for the top 30% of the data recorded. Therefore, because high-amplitude events that
occur during truck transport have a significant impact on product damage [3,38], the high-amplitude
events included in the measured transport vibration signal should not be excluded in the development
of the PSD profile for lab-based simulation.

The overall shape of the PSD profile in the leaf-spring truck was higher in the low-frequency
range of 1–10 Hz, lower in the medium-frequency range of 15–40 Hz, and again relatively higher in the
high-frequency range of 40–250 Hz. However, in the case of the air-ride truck, the overall shape of the
PSD profile was lower with increasing frequency. The shape of the PSD profile for the leaf-spring truck
was similar to that reported by Zhou and Wang [13].

In the low-frequency range of 1–10 Hz, the shape and peak intensity and frequencies of the
high-level PSD profile of leaf-spring truck, representing the top 30% of the data recorded, were roughly
similar to those of ASTM D4169:16 (medium level) [26] and ISTA 3A (over-the-road trailer spectrum) [28].
However, they showed significant differences in the higher-frequency regions. The shape and peak
intensity and frequencies of the high-level PSD profile of the air-ride truck were roughly similar to
those of the ISTA 3H (air-ride suspension truck) [39], although significant differences were noted at
the higher-frequency regions. The reason for the relatively substantial difference in these regions
between the results of this study and the existing standardized test protocols is attributed mainly to
the differences in test subjects and conditions [40]. In addition, the results of this study were measured
in unload conditions for general trucks, and there are many sudden speed changes of trucks during
transport and the characteristics of national roads and highways in Korea having many curved routes.

3.2. Transport Vibration Level as a Function of Pavement Type and Travel Speed

The effects of travel speed and pavement type on the truck transport vibration level were analyzed
by extracting the time zone data corresponding to the truck’s pre-planned travel speed and the
pavement type from the vibration records measured on the test route configured for this study.

Figure 6 and Table 5 show the vibration level according to the travel speed, with the vibration
level increasing as the travel speed increased. Particularly in the low-frequency range of 1–10 Hz,
the difference in the vibration level based on the travel speed clear (Table 6). These results are similar
to those reported by other researchers [18,21]. The increases in the vibration level of trucks with
increases in travel speed indicate that the effects of road conditions on the truck’s vibration level are
more sensitive as the travel speed increases [18]. The increase rate of the vibration level according to
travel speed in the air-ride truck was higher than that in the leaf-spring truck. This phenomenon is
attributed to the more significant increase rate of the dynamic load acting on the air-ride truck as the
travel speed increases, making the air-ride suspension stiffer. These results are similar to the research
results of Singh and Marconds [15], such that the air-ride suspension becomes thicker as the trailer
load increases for air-ride trailers, resulting in higher vibration levels.
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Figure 6. PSD plots for the vertical vibration levels according to the travel speed of the truck
(a) leaf-spring 5-ton truck (b) air-ride 5-ton truck.

Table 5. Overall rms G values of vertical PSD profiles according to pavement type and travel speed in
the frequency range of 1~250 Hz.

Kinds of Truck
Pavement Type Travel Speed

Concrete-Surfaced Asphalt-Surfaced 30 ± 10 km/h 60 ± 10 km/h 90 ± 10 km/h

Leaf-spring 5-ton truck 0.2341 0.1924 0.1105 0.1651 0.2329
Air-ride 5-ton truck 0.1171 0.0873 0.0472 0.0836 0.1199

Table 6. The overall rms G values of vertical PSD profiles according to the pavement type and travel
speed in the low-frequency range of 1–10 Hz.

Kinds of Truck
Pavement Type Travel Speed

Concrete-Surfaced Asphalt-Surfaced 30 ± 10 km/h 60 ± 10 km/h 90 ± 10 km/h

Leaf-spring 5-ton truck 0.1533 0.1421 0.0733 0.1174 0.1845
Air-ride 5-ton truck 0.0814 0.0640 0.0342 0.0600 0.0978

Figure 7 shows the vibration levels of trucks according to the highway pavement type; the results
of the analysis are shown in Tables 5 and 6. The vibration level of the air-ride truck within the
overall frequency range of 1–250 Hz was approximately 50.0% on the concrete-surfaced highway
and approximately 45.4% on the asphalt-surfaced highway compared with that of the leaf-spring
truck. Moreover, the vibration level on the asphalt-surfaced highway was approximately 82.2%
in the leaf-spring truck and approximately 74.5% in the air-ride truck compared with that on the
concrete-surfaced highway. The difference in the vibration level by pavement type or suspension in
the low-frequency range of 1–10 Hz showed the same tendency as that in the overall frequency range,
although the difference was more significant. These results reflect the same travel speed in unloaded
conditions; the results be different if the travel speed and payload are used as variables.
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3.3. Statistical Characteristics of the Measured Truck Transport Vibration Events

The blue bars in Figures 8 and 9 show the PDF and the cumulative distribution function (CDF),
respectively, for the rms G of vertical transport vibration events. The green line in the figures
represents the standard normal distribution, and the red line represents the log-logistics distribution
Equations (5) and (6), which is the best-fit result for the measurement data based on the R-square
and RMSE.
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Figure 9. CDF of the vertical rms G for all data recorded (a) leaf-spring 5-ton truck (b) air-ride 5-ton
truck (c) leaf-spring 11-ton truck.

The kurtosis and skewness for this PDF were analyzed (Table 7). The kurtosis values for all
recorded data were more significant than 3 for all trucks of this study, which indicates a heavy-tailed
distribution; therefore, the vibration events measured in Korea’s truck transport environment do not
follow a normal distribution [41]. However, the kurtosis for the lower 70% of data recorded was much
closer to 3 and thus closer to normal distribution because the high-amplitude events included in the
measured vibration signal, which exist outside normal distribution, were excluded. Figure 9 shows
the CDF for each condition. These values coincide with the log-logistics calculated values in 90% of
the experimental data under all experimental conditions, but show some differences from the normal
distribution values.

Table 7. Statistic analysis results for vertical rms G of the data recorded.

Kinds of Truck
Skewness Kurtosis Log-Logistics Distribution Function

Top 30% Lower 0% All data Top 30% Lower 70% All data α β R-Square RMSE

Leaf-spring 5-ton truck 2.21 −0.99 1.77 9.69 4.92 9.17 4.9948 0.1736 0.999 0.0083
Air-ride 5-ton truck 1.78 −0.12 2.21 6.98 2.96 10.31 2.6593 0.0560 0.999 0.0121

Leaf-spring 11-ton truck 1.30 −0.34 0.96 3.97 1.75 4.47 5.7276 0.3083 0.998 0.0197

The heavy-tailed distribution characteristics of the vibration events measured in this study are also
well illustrated by the normal quantile–quantile (Q-Q) analysis shown in Figure 10. The normal Q-Q
plot provides a diagnostic check on whether the data originate from a normal distribution and involve
a plot of empirical quantiles against the corresponding quantile of normal distribution. A straight-line
relationship suggests that the data are normally distributed. Q-Q plots are displayed in a curved shape,
indicating that the distribution is skewed or has heavier tails than those in a normal distribution.



Appl. Sci. 2020, 10, 6754 13 of 19

Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci 

Q-Q plot provides a diagnostic check on whether the data originate from a normal distribution and 321 
involve a plot of empirical quantiles against the corresponding quantile of normal distribution. A 322 
straight-line relationship suggests that the data are normally distributed. Q-Q plots are displayed in 323 
a curved shape, indicating that the distribution is skewed or has heavier tails than those in a normal 324 
distribution. 325 

  

(a) (b) 

 
(c) 

Figure 10. Normal Q-Q plots of the vertical rms G for all data recorded (a) leaf-spring 5-ton truck (b) 326 
air-ride 5-ton truck (c) leaf-spring 11-ton truck. 327 

Moreover, the skewness values for all data recorded were 1–2.2 for all trucks. This indicates that 328 
the transport vibration events measured in the study were skewed to the right to cause, and many 329 
vibrations events with values higher than the mean. However, the kurtosis for the lower 70% of the 330 
data recorded was close to zero and thus close to symmetric distribution. 331 

The CDF represents the percentage of events below a certain level of the data such as the rms G. 332 
The values for the parameters α (scale) and β (shape) that characterize this log-logistics distribution 333 
are shown in Table 7 [41]. 334 

The PDF of the log-logistics random variable is 335 
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Moreover, the skewness values for all data recorded were 1–2.2 for all trucks. This indicates that
the transport vibration events measured in the study were skewed to the right to cause, and many
vibrations events with values higher than the mean. However, the kurtosis for the lower 70% of the
data recorded was close to zero and thus close to symmetric distribution.

The CDF represents the percentage of events below a certain level of the data such as the rms G.
The values for the parameters α (scale) and β (shape) that characterize this log-logistics distribution
are shown in Table 7 [41].

The PDF of the log-logistics random variable is

f (x;α, β) =
(β/α)(x/α)β−1{

1 + (x/α)β
}2 (5)
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and the CDF of the log-logistics random variable is

F(x;α, β) =
1

1 + (x/α)−β
(6)

where α > 0 is the scale parameter, and β > 0 is the shape parameter of the distribution.

3.4. Composite PSD Profiles for the Measured Vibration Level in Truck Transport

In this study, the composite PSD profile for Korea’s truck transport environment was divided
into four categories based on the transport vibration characteristics revealed through this study and
the research results published by other researchers [7,10–12]: (1) high-level composite PSD profile
representing the top 30% of the data recorded for leaf-spring trucks, (2) low-level composite PSD profile
representing the lower 70% of the data recorded for leaf-spring trucks, (3) high-level composite PSD
profile representing the top 30% of the data recorded for air-ride trucks, and (4) low-level composite
PSD profile representing the lower 70% of the data recorded for air-ride trucks.

The method applied here to develop the composite PSD profile was previously presented by
researchers [32] of this study. This method divides each PSD profile into pre-planned groups. Each PSD
profiles in each group are represented on a graph, and the breakpoints with relatively high-energy are
connected to obtain a single comprehensive PSD profile. In the simplification process, the slope between
breakpoints was suppressed by less than +25 dB/OCT or greater than −25 dB/OCT [42,43], ensuring
the reproducibility of the developed composite PSD profile during the in-lab simulation. To meet this
requirement, sharp peaks or deep valleys at about one-half their height (−3 dB) were selected [42].
Figures 11 and 12 show the resultant high-level and low-level composite PSD profiles, respectively,
for the top 30% and lower 70% of the data recorded in Korea’s truck transport environmental.
The characteristics of these composite PSD profiles are shown in Tables 8 and 9. The overall rms G of
the developed high- and low-level composite PSD profiles were 0.47 and 0.32 for leaf-spring trucks,
and 0.30 and 0.14 for air-ride trucks, respectively.
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Figure 12. Recommended low-level composite PSD profile representing the lower 70% of the data
recorded in truck transport (a) leaf-spring truck (b) air-ride truck.

Table 8. Recommended high-level composite PSD profiles for the top 30% of the data recorded.

Breakpoint No.
Leaf-Spring Truckfor the Top 30% of The Data Recorded

Frequency (Hz) PSD (G2/Hz) dB Oct dB/oct Area Grms

1 1 0.005 - - - - -
2 2 0.03 7.78 1.00 7.78 0.02 0.12
3 3 0.03 0 0.58 0 0.05 0.21
4 7 0.003 −10.00 1.22 −8.18 0.09 0.29
5 13 0.003 0 0.89 0.00 0.10 0.32
6 25 0.0002 −11.76 0.94 −12.47 0.11 0.34
7 30 0.0002 0 0.26 0 0.12 0.34
8 40 0.0007 5.44 0.42 13.11 0.12 0.35
9 120 0.0007 0 1.58 0 0.18 0.42

10 250 0.0002 −5.44 1.06 −5.14 0.22 0.47

Breakpoint No.
Air-Ride Truckfor the Top 30% of the Data Recorded

Frequency (Hz) PSD (G2/Hz) dB Oct dB/oct Area Grms

1 1 0.01 - - - - -
2 2 0.03 4.77 1.00 4.77 0.02 0.14
3 4 0.002 −11.76 1.00 −11.76 0.04 0.19
4 12 0.002 0 1.58 0 0.05 0.23
5 20 0.0002 −10.00 0.74 −13.57 0.06 0.24.
6 100 0.0002 0 2.32 0 0.07 0.27
7 250 0.00006 −5.23 1.32 −3.96 0.09 0.30

In Korea, vibration test machines are used a lot to simulate the vibration of truck-carrying products,
and packaging engineers from each company are investing many time and money in proper cushion
packaging of products to reduce costs. Until now, to simulate vibrations in transport environments,
only the international standard (ASTM: West Conshohocken, USA, ISO: Geneva, Switzerland) transport
environment has been used to analyze product damage and vibration behavior. Testing transport
vibration simulation in Korea by applying foreign standards makes it difficult to achieve optimal
cushion-packaging design of products. Previously, there was no research related to PSD development
by transport routes of truck in Korea, but if PSD profiles measured in this paper are applied, proper
cushion-packaging of products will be possible through vibration simulation tests on domestic
distribution products.

Compared to the results of measurement of transport environment presented by existing
researchers, parameters affecting vibration levels of domestic and foreign transport trucks (such
as truck speed and road type) were similar results in low frequency bands below 15 Hz, but differed in
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higher frequencies. Generally, the frequency band associated with damage of packaged products in
transit is the low frequency band. The difference in the high frequency band suggested by existing
researchers is believed to be due to the road characteristics of Korea with many curves.

Table 9. Characteristics of recommended low-level composite PSD profiles for the lower 70% of the
data recorded.

Breakpoint No.
Leaf-Spring Truckfor the Lower 70% of the Data Recorded

Frequency (Hz) PSD (G2/Hz) dB Oct dB/oct Area Grms

1 1 0.001 - - - - -
2 2 0.007 8.45 1.00 8.45 0 0.06
3 4 0.007 0 1.00 0 0.02 0.13
4 6 0.0015 −6.69 0.58 −11.44 0.02 0.16
5 15 0.0015 0 1.32 0 0.04 0.19
6 22 0.0001 −11.76 0.55 −21.29 0.04 0.20
7 30 0.0001 0 0.45 0 0.04 0.20
8 40 0.0007 8.45 0.42 20.36 0.05 0.21
9 50 0.0007 0 0.32 0 0.05 0.23

10 80 0.0001 −8.45 0.68 −12.46 0.06 0.25
11 100 0.0001 0 0.32 0 0.06 0.25
12 130 0.0003 4.77 0.38 12.61 0.07 0.26
13 210 0.0003 0 0.69 0 0.09 0.30
14 250 0.0002 −1.76 0.25 −7.00 0.10 0.32

Breakpoint No.
Air-Ride Truckfor the Lower 70% of the Data Recorded

Frequency (Hz) PSD (G2/Hz) dB Oct dB/oct Area Grms

1 1 0.0015 - - - - -
2 2 0.0032 3.29 1.00 3.29 0 0.05
3 4 0.0003 −10.28 1.00 −10.28 0 0.07
4 12 0.0003 0 1.58 0 0.01 0.08
5 20 0.00006 −6.99 0.74 −9.48 0.01 0.09
6 30 0.00006 0 0.58 0 0.01 0.09
7 35 0.0002 5.23 0.22 23.51 0.01 0.10
8 45 0.0002 0 0.36 0 0.01 0.11
9 70 0.00005 −6.02 0.64 −9.45 0.01 0.12

10 150 0.00005 0 1.10 0 0.02 0.13
11 250 0.00002 −3.98 0.74 −5.40 0.02 0.14

4. Conclusions

To analyze the vibration levels occurring in the truck transport environment in Korea and to
develop composite PSD profiles for their lab-based simulation, three representative trucks and a test
route were selected. The vibration signals obtained through the truck transportation test were analyzed
in three classes, and the composite PSD profile was developed by dividing it into high and low levels.
Comparing domestic transport vibration levels with those presented by international standards (ASTM:
West Conshohocken, USA, ISTA: Chicago, USA) shows similar trends in the low frequency band,
but as frequency increases, differences in PSD levels have occurred. This is a characteristic of highways
in Korea, which is judged as a lack of straight roads. It is also possible to simulate the domestic
transportation environment by applying PSD vibration level in Korea. The results of this study are
summarized in the following points.

1. The vertical overall rms G values in the frequency range of 1~250 Hz were approximately 2.6 and
3.0 times higher than those of the lateral and longitudinal directions, respectively.

2. The value of the first PD level peak of the air-ride truck, which occurs as the suspension’s response
to external forces in the low-frequency region, was about two times smaller than that of the
leaf-spring truck. Moreover, its frequencies were approximately 3 Hz and 1.5 Hz in the leaf-spring
and air-ride trucks, respectively.
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3. The vertical overall rms G value for the top 30% of the data recorded in the frequency range of
1~250 Hz was approximately 0.31 G for the leaf-spring truck and 0.18 G for the air-ride truck;
that for the lower 70% of the data recorded was approximately 0.18 G and 0.08 G, respectively.

4. In the low-frequency range of 1~10 Hz, the shape of the high-level PSD profile of leaf-spring
truck, representing the top 30% of the data recorded was roughly similar to that of ASTM
D4169:16 (medium level), ISTA 3A (over-the-road trailer spectrum) and other studies but differed
significantly in the higher-frequency region. Also, the shape of its PSD profile of the air-ride
truck was roughly similar to that of the ISTA 3H (air-ride suspension truck) but also differed
significantly in the higher-frequency region.

5. As the travel speed increased, the truck vibration level increased, although the increase rate of
the air-ride truck was more significant than that of the leaf-spring truck. The truck vibration
level on the concrete-surfaced highway was approximately 18~25% higher than that on the
asphalt-surfaced highway, with a more significant difference shown in the air-ride truck.

6. As the kurtosis value for all data recorded was more significant than 3, the vibration events
measured in Korea’s truck transport environment showed heavy-tailed distribution rather than a
normal distribution. Also, the skewness values were 1~2.2; thus, the transport vibration events
measured in the study were skewed to the right to cause dissymmetry.

7. The overall rms G of the developed high- and low-level composite PSD profiles were 0.47 and
0.32 for leaf-spring trucks and 0.30 and 0.14 for air-ride trucks, respectively.
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