iriried applied
L sciences

Article

VB-Net: Voxel-Based Broad Learning Network for 3D
Object Classification

Zishu Liu 1, Wei Song 12,0, Yifei Tian 3, Sumi Ji ¢, Yunsick Sung 41Q, Long Wen 5 Tao Zhang 6
Liangliang Song 7 and Amanda Gozho !

1 School of Information Science and Technology, North China University of Technology, Beijing 100144, China;

2018312120105@mail.ncut.edu.cn (Z.L.); amzyjones811@gmail.com (A.G.)
2 Brunel London School, North China University of Technology, Beijing 100144, China
Department of Computer and Information Science, University of Macau, Macau 999078, China;
yb87403@um.edu.mo
Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea;
ji.si@mme.dongguk.edu (S.].); sung@dongguk.edu (Y.S.)
Beijing Municipal Engineering Research Institute, Beijing 100037, China; long.wen@roadwaysmart.com
Beijing Key Laboratory of Road Engineering Materials and Testing & Inspection Technology,
Beijing 100144, China; tao.zhang@roadwaysmart.com
Roadway Smart (Beijing) Technology Co., Ltd., Beijing 100144, China; liangliang.song@roadwaysmart.com
* Correspondence: sw@ncut.edu.cn; Tel.: +86-10-8880-1912

check for
Received: 8 August 2020; Accepted: 22 September 2020; Published: 26 September 2020 updates

Abstract: Point clouds have been widely used in three-dimensional (3D) object classification tasks,
i.e., people recognition in unmanned ground vehicles. However, the irregular data format of point
clouds and the large number of parameters in deep learning networks affect the performance of
object classification. This paper develops a 3D object classification system using a broad learning
system (BLS) with a feature extractor called VB-Net. First, raw point clouds are voxelized into voxels.
Through this step, irregular point clouds are converted into regular voxels which are easily processed
by the feature extractor. Then, a pre-trained VoxNet is employed as a feature extractor to extract
features from voxels. Finally, those features are used for object classification by the applied BLS.
The proposed system is tested on the ModelNet40 dataset and ModelNet10 dataset. The average
recognition accuracy was 83.99% and 90.08%, respectively. Compared to deep learning networks,
the time consumption of the proposed system is significantly decreased.

Keywords: broad learning system; point cloud; 3D object classification

1. Introduction

In recent years, point clouds have been researched in various fields, such as autonomous
robot systems [1], three-dimensional (3D) face recognition [2], intelligence surveillance [3], and 3D
modeling [4]. Unlike images captured by cameras, the point clouds are not likely to be influenced by
lighting and color, and they maintain a high resolution. However, when using most existing neural
network structures, point clouds are hard to process directly because of their irregularity.

To solve this problem, researchers developed various methods to extract features from raw point
clouds for existing deep learning structures, such as spin image (SI) [5], clustered viewpoint feature
histogram [6], and view feature histogram [7]. As deep learning is gaining success in many fields,
researchers also proposed or employed several deep learning structures for different tasks [8-10],
e.g., 3D model retrieval. However, most deep learning structures contain a large number of parameters,
which increases the time consumption of the whole system. It is also inconvenient to add new categories
into a trained deep learning network or change the structure of a deep learning network, because the

Appl. Sci. 2020, 10, 6735; d0i:10.3390/app10196735 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5909-9661
https://orcid.org/0000-0003-3732-5346
http://www.mdpi.com/2076-3417/10/19/6735?type=check_update&version=1
http://dx.doi.org/10.3390/app10196735
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 6735 20f13

whole network then has to be retrained. These problems make it difficult to apply deep learning
methods in fields requiring real-time and massive data processing.

Recently, the broad learning system (BLS) was developed and applied for image classification [11].
Compared to deep learning structures, the time consumption of BLS is decreased significantly, and there
is no need to retrain the whole network upon changing the network structure. However, in BLS,
it is difficult to directly process irregular point cloud data. Thus, a preprocessing of point cloud
data is required to employ BLS in 3D object classification tasks. This paper proposes a 3D object
classification system using BLS with a pretrained feature extractor for point cloud data. The pretrained
feature extractor intends to change irregular point cloud data into regular features for BLS to process.
Another goal of the feature extractor is to find more suitable descriptions for original objects, so as
to improve classification accuracy. The proposed system was tested on the ModelNet40 dataset and
achieved a recognition accuracy of 83.99%, while the time consumption for training and testing was
about 30 s in total, which is far shorter than that of deep learning networks. Experimental results
imply that the proposed method is applicable in the field of real-time processing of massive data,
i.e., environment perception.

The paper is organized as follows: Section 2 surveys related works in 3D object classification
area; Section 3 introduces the proposed system; Section 4 describes the experiments and discusses the
results; Section 5 gives the conclusion and the suggestions for future research.

2. Related Works

Researchers employ many methods in 3D object recognition, i.e., machine learning-based methods,
graph-based methods, and feature-based methods. Feature-based methods are usually employed
when using point cloud data for classification tasks.

Generally, there were two kinds of methods mainly used for feature-based object recognition:
the global feature-based method and the local feature-based method. When adopting global
feature-based methods, a segmentation step is required before classification. Drost et al. [12] developed
a global descriptor which consisted of point pair features. By grouping similar point pairs, a voting
scheme could work on the local space for the classification job. Their methods performed well
under a noise situation. Chen et al. developed the global Fourier histogram (GFH) descriptor [13]
that used cylindrical angular coordinates. They defined the cylindrical support region in [13] for
calculating the GFH by counting the points in each region. With the help of a global reference
frame [14] and Fourier transform, GFH also became rotation-invariant. Although global features
performed well in many classification tasks, they failed to distinguish objects with similar shapes [13,15].
Thus, researchers introduced some local features to address this and other problems with global
features. Guo et al. proposed Tri-Spin-Image (TriSI) [16] and overcame the weak point of the traditional
SI descriptor. Employing principal component analysis and a local reference frame, TriSI was robust
to noise and mesh resolution. Yang et al. introduced a descriptor named local feature statistics
histogram (LFSH) [17], which exploited histograms by counting local features around the chosen
points using one-dimensional (1D) arrays. LFSH worked faster than other local feature descriptors,
e.g., SI, yet employing 1D histograms led to some information loss.

Numerous deep learning networks were employed for point cloud object classification works
in recent years. Although some cloud architectures consume raw point cloud data directly [18,19],
many deep learning networks still require various preprocessing of point clouds. The Multiview 3D
network proposed by Chen et al. [20] converted 3D point clouds into 3D bounding boxes for multiview
feature fusion. By combining these multiview features, their network enabled fast classification of
objects. Klokov et al. proposed Kd-network [21] which did not require rasterization of point clouds
before inputting into the network. Exploiting the indexing structure called Kd-tree, Kd-network saved
the memory usage and reduced time consumption in the training and testing process. Esteves et al.
introduced spherical convolutional neural network [22], which converted 3D models into spherical

Appl. Sci. 2020, 10, 6735 30f13

representations and took these spherical representations as the inputs of the network. The spherical
representations reduced the input size and made the model become rotation-invariant at the same time.

As researchers developed voxel representation for point clouds, they employed convolutional
neural networks (CNNs) in 3D object classification tasks. Zhou et al. developed VoxelNet [23] that
converted a point cloud into even voxels to encode features. The application of VoxelNet made
it possible to employ a region proposal network for object classification in a point cloud. Lietal.
proposed field-probing neural networks (FPNN) [24] that employed field-probing filters to extract
features from voxels. The field-probing filters were adaptively distributed in 3D space, and their
shape was changed to perceive 3D space more effectively. Compared to traditional 3D CNNs,
FPNN performed well in 3D object classification tasks with low time consumption. Wang et al.
introduced NormalNet [25], which combined normal vectors of object surfaces and voxels of the
3D object for classification, because normal vectors of object surfaces had stronger capability in
classification than voxels. To minimize parameters and extract features for 3D vision tasks, they also
employed reflection—convolution—concatenation for convolutional layers. However, a limitation of deep
learning networks was the computational cost increased as the network became deeper. Introducing
time-consuming 3D convolution made it worse. Thus, many researchers applied graphics processing
units (GPUs) in deep learning architecture for acceleration.

In recent years, Chen et al. introduced a new neural network structure called the broad learning
system [11]. Unlike deep learning networks, BLS did incremental training without retraining the whole
network, which meant that changing the structure of BLS was easier than deep learning networks.
Introducing the pseudo inverse matrix of the weight matrix, the updating process of BLS was also
faster than that of deep learning networks. Thus, BLS significantly reduced the time consumption in
both training and testing processes, and it was more flexible than most deep learning networks. This is
the reason why this paper applied BLS for object classification.

3. VB-Net

This section provides a detailed description of the proposed VB-Net, including the BLS training
algorithm, the pretraining of our feature extractor, and the calculation of the final output.

3.1. System Overview

The structure of the proposed VB-Net is shown in Figure 1. In this system, raw point clouds are
voxelized into d X d X d voxels, then input into the pretrained feature extractor to extract features.
Those features are mapped to the features in the feature layer (Z; 5, .. ,) of the BLS system using
mapping matrices W;,i = 1,2,...,n, and the features in enhancement layer (Hj 5, ...) are calculated
using the feature layer. The nodes in the output layer (01 », ... x) are calculated using Z; » .. , and
Hj 5 ... m. This paper defines the transformation matrices between the feature layer and enhancement
layer as W}, j =1,2,...,m, and the transformation matrix connects output layer with the feature
layer and enhancement layer as W*. This paper also defines the feature layer Z as Z = {Z;, Z,,
..., Zy}, enhancement layer H as H = {Hj, Hy, ..., Hy}, and output layer O as O = {01, 02, ..., 0k}.
Variables 1, m, and k represent the number of nodes in the feature layer, enhancement layer, and output
layer, respectively.

3.2. VoxNet Feature Extractor

The first step of the proposed system is converting raw point clouds into d X d X d voxels.
Assuming there are N points in a point cloud, the point cloud dataset is defined as P = {py, p2, ..., pi,
.., PN}, where p; is the i-th point in the point cloud, I € [1, N]. Each p; contains three coordinates x, y, z,
denoted by p; = (xi, ¥, zi), pi€P, and the definition of the voxel space V ={v;,, =01, a,be[14d], 1] a,
b e N*}. Points in P are scaled into the range between 0 and 1 before voxelization. Three equations,
l=x;xd,a=d-y;/d, are employed to calculate to which voxel point p; belongs, and then increase
the value of v}, }, by one.

Appl. Sci. 2020, 10, 6735 40f13

Feature
extractor

Point cloud Voxel

Flatten

©
@ .

Pooling P
@ @)

__ Prerain

| 5 h
é(‘oanD Conv3D Features H
1(32,5,2) (32,3,1)

Figure 1. The network structure of VB-Net.

We employ a feature extractor that is similar to VoxNet [26] as shown in Figure 1, because the BLS
cannot process voxel data directly. Conv3d (f, ¢, s) represents 3D convolution with f filters, kernel size
e, and stride s. Pooling (p) means a max pooling layer with pool size p. The activation function for
Conv3d is ReLU. The outputs of the flatten layer are the features applied by object classification tasks.

The feature extractor also needs a pretraining process to extract more suitable features from input
voxel data. In order to obtain better training results, we only keep the last fully connected layer in
the original VoxNet [26], as shown in Figure 2. Variable c is equal to the number of categories in the
dataset. Consequently, the feature extractor is trained as a deep learning network.

=)

Pooling
Input voxel s el)
Covd3d Covd3d Fully
(32,5,2) (32,3,1) connected
(c)

Figure 2. Feature extractor architecture for pretraining.

3.3. Training of BLS

The features gained by extractor F in Section 3.1 are mapped to the feature layer Z using Equation (1)
where W; and f; consist of random numbers. To generate nodes in the enhancement layer, Equation (2)
is employed where W’ is a predefined matrix filled with random numbers following the standard
normal distribution; ﬁj is a randomly generalized bias vector in this paper.

zZ; = G(PWi + ‘31) (1)

hj = @(ZW; +p7) (2)

Nodes in output layer o, 0; € O, I € [1, k] are calculated using the following equation in [11] where
matrix W* is the training target of the training process:

O = [Z|HW* ®)

Appl. Sci. 2020, 10, 6735 50f13

This paper defines a new matrix M as M = [Z | H]; then, the output matrix O is calculated using
MW?*. Therefore, our goal is to narrow the gap between the results of MW* and values in output matrix
O. The ridge regression approximation algorithm is applied for adjusting the values in matrix W*.
The I, norm method is adopted for improving the generalization performance of the BLS as shown in
Equation (4).

Wy = argmin| MW" - Oll3 + AIW’I3 “

The optimal solution Wy is calculated using Wy, = M* O, where M* is the pseudo inverse matrix
of matrix M. Considering that it is hard to compute M* directly, an approximation method is adopted
here as shown in Equation (5), where matrix I is an identity matrix, variable A € R.

W* = M*0 = (AI + MMT) " MTO ®)

As the output matrix O was already computed in Equation (3), only the matrix M* needs
calculation. As mentioned in [11], the solution Mar is close to the original pseudo inverse matrix as
variable A tends to 0. Thus, Equation (6) is employed to calculate matrix M*.

M; = lim (A + MMT) ' MT ®)

The training process of the proposed BLS with the feature extractor is done. If classification
accuracy does not meet the required number on the test set, we can increase or decrease the number of
nodes in the enhancement layer and/or feature layer to improve the classification accuracy of our model.

4. Experiments and Analysis

The proposed VB-Net was tested on the ModelNet40 dataset [27], which contained 12,311 objects
from 40 categories, and its orientation-aligned subset ModelNet10 [27]. Samples of point cloud objects
in the dataset and its voxel representations are presented in Figure 3. Experiments on ModelNet40 were
run on a computer using the Windows 10 operating system, with an Intel® Xeon® (Intel, Santa Clara,
CA, USA) Silver 4110 central processing unit (CPU) @ 2.10 GHz, with 16 GB random-access memory
(RAM). Experiments on ModelNet10 were run using the Windows 10 operation system, with an Intel®
Core™ (Intel, Santa Clara, CA, USA) i7-4720HQ CPU @ 2.59GHz, with 8 GB RAM.

Raw point cloud 20>X20X20 voxel 26X26X26voxel 32X32X32voxel 38X38X38 voxel

i

Monitor

Sofa

Figure 3. Samples in the ModelNet40 dataset.

Appl. Sci. 2020, 10, 6735 60f13

Point cloud data were converted into voxels under resolutions of 20 X 20 X 20 and 32 X 32 x 32
in our experiments. The feature extractor trained 120 epochs on the ModelNet40 training set as the
pretraining process.

4.1. Performance of VB-Net

The performance of the BLS is affected by the number of enhancement nodes and the number of
feature nodes [11]. Therefore, we designed two sets of experiments to test our system. First, we set
900 feature nodes in our system, increasing the enhancement nodes. We added 26 X 26 X 26 and
38 x 38 x 38 voxel resolutions to observe the performance of VB-Net under different resolutions.
Experimental results on the ModelNet40 dataset are shown in Table 1.

Table 1. Accuracy under different resolutions and enhancement nodes in VB-Net.

Average Accuracy Average Accuracy Average Accuracy Average Accuracy

E“h;\‘;;ilee‘:e“t (20 x 20 x 20 (26 X 26 X 26 (32 x 32 x 32 (38 X 38 x 38

Voxel) Voxel) Voxel) Voxel)
100 72.20% 72.28% 73.86% 73.37%
200 72.44% 72.48% 74.43% 73.50%
300 72.77% 72.97% 74.87% 73.86%
400 72.89% 72.85% 74.91% 74.10%
500 73.17% 73.09% 75.24% 74.27%
1000 81.11% 80.14% 80.75% 79.82%
1500 81.24% 81.11% 81.07% 80.22%
2000 82.57% 80.59% 81.44% 80.63%
2500 82.61% 80.51% 81.64% 80.75%
3000 82.49% 79.57% 82.41% 80.38%
3500 81.52% 79.29% 82.41% 80.18%
4000 81.64% 79.05% 80.91% 79.82%
4500 80.42% 77.87% 80.02% 78.64%
5000 79.90% 76.17% 79.94% 78.68%

As shown in Table 1, the average accuracy initially increased with the number of enhancement
nodes. The accuracy reached its maximum with 2500 enhancement nodes in VB-Net under 20 x 20 x 20
resolution (82.61%) and 38 x 38 x 38 resolution (80.75%). Under 26 X 26 X 26 resolution or 32 X 32 x 32
resolution, the accuracy reached its max value with 1500 nodes in the enhancement layer (80.75%) or
3000 enhancement nodes in the system (82.41%). A further increase in the number of enhancement
nodes no longer improved accuracy; on the contrary, the classification accuracy then decreased with
the number of enhancement nodes.

Another set of experiments involved increasing feature nodes in VB-Net. According to Table 1,
VB-Net showed good performance with 3000 enhancement nodes in the enhancement layer at both
resolutions. Hence, we set the number of enhancement nodes to 3000 and kept increasing the feature
nodes in VB-Net. The results of these experiments on the ModelNet40 dataset are shown in Table 2.

The highest accuracy reached 82.41% when 800 feature nodes were used in the proposed network
under 20 x 20 x 20 resolution or 80.59% with 400 feature nodes under 26 X 26 X 26 resolution.
When 100 feature nodes were used in VB-Net, the highest accuracy reached 83.99% under 32 x 32 x 32
resolution. For 38 x 38 x 38 resolution, the highest accuracy was 80.99% with 500 feature nodes in
the system. Unlike the first set of experiments, classification accuracy under 32 x 32 x 32 resolution
decreased directly. From the data in Tables 1 and 2, it is evident that the performance of VB-Net
improved as more feature nodes or enhancement nodes were utilized in the calculation of final results.
When the number of nodes exceeded the peak amount at which performance was best, the performance
of VB-Net became worse due to the interference of too much data. The appropriate number varied
with voxel resolutions and strategies.

The time consumption in training and test processes for two different training strategies mentioned
above under 20 x 20 X 20 voxel resolution was also computed. Although the time consumption increased

Appl. Sci. 2020, 10, 6735 7 of 13

with the number of nodes in the network, time consumption with increasing feature nodes increased
more quickly than with increasing enhancement nodes, as shown in Figure 4a,b. However, the former
strategy held fewer nodes in the network, which was different from the case where time consumption
increased with the number of nodes in the network. We tested the situation with 5900 nodes in network
(900 feature nodes and 5000 enhancement nodes), where the time consumption was 38.86 s in total,
which was far shorter than the method with increasing feature nodes. When we increased the number
of feature nodes in BLS, we increased time consumption upon feature mapping, with simultaneous
enhancement node generalization and calculation of output, while increasing only the number of
enhancement nodes increased the time consumption of the last two steps. This phenomenon is
explained in Figure 4.

Table 2. Accuracy under different resolutions and feature nodes in VB-Net.

Average Accuracy Average Accuracy Average Accuracy Average Accuracy

Feature Nodes (20 X 20 x 20 (26 X 26 X 26 (32 x32x%x32 (38 X 38 x 38

Voxel) Voxel) Voxel) Voxel)
100 81.80% 79.45% 83.99% 80.10%
200 81.88% 80.71% 83.99% 80.42%
300 81.88% 80.14% 83.83% 80.67%
400 81.40% 80.59% 82.53% 80.51%
500 81.11% 80.06% 82.33% 80.99%
600 81.92% 79.78% 82.17% 80.18%
700 81.19% 79.17% 82.49% 80.71%
800 82.41% 80.02% 82.13% 80.71%
900 81.68% 79.70% 82.41% 81.19%
1000 81.44% 79.61% 81.52% 79.33%
1500 81.40% 78.80% 81.03% 79.74%
2000 81.72% 78.28% 80.99% 78.89%

@

=
IS}

S
Zeo -
a
o
250 4
=3
=
5%
= 2
gy | 2660 27.09 27.73
g o
S0 -
= 19.17
10 1 13.26
o 6.14
100 300 500 700 900 1100 1300 1500 1700 1900

Nodes in each layer

—e—Increasing enhancement nodes —s—Increasing feature nodes

(a) Training process

s
[N}
)

09218 0.9686 0.9686

[
L

0.7811 0.7968

e
o0

0.6562
0.5936

7040619 o467 0-4999
. s468 0.5624
| 04374 oazza O 04 o
; 03749 04062 '

02 03124 0343

I3
=)

Time consumption (s)
o
'

100 300 500 700 900 1100 1300 1500 1700 1900
Nodes in each layer

—+—Increasing enhancement nodes —s—Increasing feature nodes

(b) Test process

Figure 4. Relationship between time cost and incremental nodes in VB-Net.

Appl. Sci. 2020, 10, 6735 80f 13

To prove the proposed system had better performance in object classification tasks, we compared
our classification results with some existing deep learning networks using the same dataset, as shown
in Table 3. Although VoxNet [26] performed better than our method on the ModelNet10 dataset,
our method ran faster than VoxNet [26]. We tested the time consumption of VB-Net and VoxNet [26] on
ModelNet10, where the training epochs for VoxNet and the feature extractor were 30. The experiment
showed that our method took only 39.13 s while VoxNet took 3573.78 s.

Table 3. Comparison with existing deep learning networks.

Average Accurac Average Accurac

Methods Input (Mo%lelNeVlO) Y (Mo%ielNeth) Y
Our method (20 x 20 x 20 voxel) Voxel 82.41% 89.64%
Our method (32 x 32 x 32 voxel) Voxel 83.99% 90.08%
3DShapeNets [27] Voxel 77% 83.5%

VoxNet [26] Voxel 83% 92%
DeepPano [28] Image 77.63% 85.45%
Geometry Image [29] Image 83.9% 88.4%
Soltani et al. [30] Image 82.10% -

ECC [31] Graph 83.2% 90.0%
PointNet [32] Point - 77.6%

4.2. Performance of Feature Extractor

To evaluate the effect of our feature extractor, we employed an ablation experiment on the
ModelNet10 dataset, as shown in Table 4, with 32 x 32 x 32 voxel resolution. We set 450 feature nodes
and 1100 enhancement nodes in BLS and VB-Net. The feature extractor was trained 30 times. FE refers
to the VoxNet feature extractor and OFE refers to the original VoxNet [26]. The “time” column in
Table 4 records the total time consumption (training time pluses test time) of one module.

Table 4. Ablation experiment of VB-Net. FE, feature extractor; OFE, original feature extractor (VoxNet).

Model FE BLS OFE Average Accuracy Time (s)
A v 86.78% 129.36
B v 85.35% 3111.12
C v Y, 89.86% 39.13
D v v 89.75% 38.40
E v 86.12% 3573.78

Comparing models A, C, and D, the feature extractor had great influence on total time consumption.
BLS with a feature extractor ran much faster than the original BLS, and the classification accuracy also
improved by about 3%. According to average accuracy and total time consumption, BLS performed
better than the deep learning network. Although model E reached higher classification accuracy than
model B, model C still achieved higher accuracy than model D. This proves that our feature extractor
is more efficient than VoxNet [26] when combined with BLS.

We adopted another ablation experiment to examine whether our feature extractor could be more
efficient. Experiments were done on the ModelNet10 dataset under 20 x 20 x 20 voxel resolution using
feature extractors trained 120 times. Settings of VB-Net were 420 feature nodes and 900 enhancement
nodes. Results are presented in Table 5.

Model F gained higher accuracy than our method (model I) because more features were input
into BLS in model F, but our method ran faster than F. When comparing models F, G, and H, the max
pooling layer had an influence on the performance of the feature extractor. Without the max pooling
layer, the classification accuracy of VB-Net dropped about 2%. Performance on models G and F proved
that the first 3D convolutional layer not only reduced the input features of BLS, but also improved the
accuracy. The second convolutional layer helped VB-Net run more efficiently by reducing the input
features of BLS.

Appl. Sci. 2020, 10, 6735 90f13

Table 5. Ablation experiment of feature extractor.

Model Conv3D Conv3D Max Accuracy Training Time Test Time
(32,5,2) (32,3,1) Pooling (s) (s)
F v v 89.86% 291 0.1149
G v v 89.42% 44.78 0.4047
H v v 87.77% 13.72 0.1928
I v v v 89.64% 1.91 0.0829

4.3. Noise Resistance Test

To examine noise resistance in our model, we added Gaussian noise to original point clouds,
and then generated the voxel. Figure 5 gives examples under Gaussian noise with 20 x 20 x 20
and 32 X 32 x 32 voxel resolution with original voxels in the ModelNet40 and ModelNet10 datasets.
We employed our method, VoxNet [26], and model D mentioned in Section 4.2 in the experiments.
Experimental results are shown in Table 6. The VoxNet [26], feature extractors in model D, and VB-Net
were trained 120 times on the training set (accuracies of VoxNet [26] on the ModelNet40 and ModelNet10
datasets under 32 x 32 x 32 voxel resolution were cited from [26] directly).

Point cloud Point cloud ~ 20X20X20 voxel 20X 20X 20 voxel 32X 32X 32 voxel 32 X 32X 32 voxel
(Origin) (Gauss noise) (Origin) (Gauss noise) (Origin) (Gauss noise)

Bed

Chair

Monitor

Figure 5. Samples with Gaussian noise and their original shape.

VoxNet [26] was the most affected by Gaussian noise, and its accuracy dropped by half on
ModelNet10, with even worse performance on ModelNet40. The accuracies of methods with
BLS decreased much more slightly compared to VoxNet [26], while some even increased a little.
When comparing the original BLS and the BLS employing VoxNet [26] as the feature extractor,
our method also had better performance. We carried out more experiments with different scales of
Gaussian noise to test the robustness of our system, as shown in Figure 6.

Appl. Sci. 2020, 10, 6735

Table 6. Classification accuracies of original data and Gaussian noise data.

10 of 13

ModelNet10 ModelNet40
Method Accuracy Accuracy Accuracy Accuracy
(No Noise) (No Noise) (No Noise) (No Noise)
BLS 83.92% 86.01% 87.55% 86.56% 72.33% 76.86% 77.99% 79.13%
Our method 90.63% 90.08% 90.08% 89.64% 82.78% 83.99% 81.24% 82.41%
Model D 89.53% 89.75% 89.31% 88.76% 82.05% 81.07% 81.56% 80.87%
VoxNet [26] 42.73% 92% 47.79% 87.88% 17.26% 83% 20.98% 76.29%

Appl. Sci. 2020, 10, 6735 110f13

100

L ¢ e — — © © e e PR
80
70
=
< 6 -
=
@ 50
5
g a0
<
30
20
10
0 : : ‘ . . ‘ . ‘ .
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Scale of Gaussian noise

=—4=—\/ox-BLS =—m=BLS VoxNet [26] o Model D

Figure 6. Accuracy under different scales of Gaussian noise.

Obviously, the accuracy of VoxNet [26] decreased as the scale of noise increased, while the
accuracies of methods with BLS were stable at about 90%. We also noticed that, in some experiments,
the accuracy of data with noise was higher than that without noise. This situation happened in all
methods with BLS. We think this phenomenon was mainly due to the settings in BLS. According to
Section 4.1, the performance of BLS was influenced by the number of nodes in the feature layer and
enhancement layer. The reason for the improvement in accuracy was that we did not find the best
combination of enhancement nodes and feature nodes in the experiments. Considering that there is no
theory regarding the relationship among accuracy, nodes in BLS, and voxel resolutions, and considering
that the number of possible combinations is large, we think that meeting this phenomenon is acceptable.

5. Conclusions

This paper developed a 3D object classification system using VB-Net for point cloud data.
The proposed system employed voxels to present point clouds, whereas a pretrained VoxNet was
employed as a feature extractor, and the BLS was used for classification tasks. The proposed system was
tested on the ModelNet40 dataset and ModelNet10 dataset. The average accuracies were as follows:
83.99% under voxel resolution of 32 x 32 x 32 and 90.08% under voxel resolution of 20 x 20 x 20 on
ModelNet40; 82.41% under voxel resolution of 32 x 32 X 32 and 89.64% under voxel resolution of
20 x 20 x 20 on ModelNet10. An appropriate increment in voxel resolution improved the performance
of the proposed system. Equally, an appropriate addition of enhancement nodes and/or feature nodes
improved the classification accuracy of VB-Net. The proposed VB-Net also showed resistance in point
cloud data with Gaussian noise. In future work, we will try to find compositions of enhancement
nodes and feature nodes in VB-Net to achieve higher classification accuracy.

Author Contributions: Methodology, Z.L.; project administration, W.S.; supervision, Y.T. and LW.;
funding acquisition, Y.S., L.S., and T.Z.; investigation, S.J. and A.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was fund by the MSIT (Ministry of Science, ICT), Korea, under the High-Potential
Individuals Global Training Program (2020-0-01576) supervised by the IITP (Institute for Information and
Communications Technology Planning and Evaluation), the National Nature Science Foundation of China
(No. 61503005), the Great Wall Scholar Program (CIT&TCD20190304, CIT&TCD20190305), the National Key R&D
Program of China under Grant (2017YFC0821102, 2917YFC0822504), and the “Yuyou” and Education Reform
Projects of North China University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 6735 120f13

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chu, PM,; Cho, S.; Park, J.; Fong, S.; Cho, K. Enhanced ground segmentation method for Lidar point clouds
in human-centric autonomous robot systems. Hum. Cent. Comput. Inf. Sci. 2019, 9, 17. [CrossRef]

Zhou, S.; Xiao, S. 3D face recognition: A survey. Hum. Cent. Comput. Inf. Sci. 2018, 8, 35. [CrossRef]
Goémez-Silva, M.].; Garcia, F; Martin, D.; De La Escalera, A.; Armingol,].M. Intelligent surveillance of indoor
environments based on computer vision and 3D point cloud fusion. Expert Syst. Appl. 2015, 42, 8156-8171.
[CrossRef]

Mian, A.S.; Bennamoun, M.; Owens, R.A. Automatic correspondence for 3d modeling: An extensive review.
Int. J. Shape Model. 2005, 11, 253-291. [CrossRef]

Johnson, A.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans.
Pattern Anal. Mach. Intell. 1999, 21, 433-449. [CrossRef]

Aldoma, A.; Vincze, M.; Blodow, N.; Gossow, D.; Gedikli, S.; Rusu, R.B.; Bradski, G. CAD-model recognition
and 6DOF pose estimation using 3D cues. In Proceedings of the 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6-13 November 2011; pp. 585-592.
Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D recognition and pose using the Viewpoint Feature
Histogram. In Proceedings of the 2010 IEEE/RS] International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, 18-22 October 2010; pp. 2155-2162.

Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud. arXiv
2019, arXiv:1812.04244.

Zeng, H; Liu, Y,; Li, S.; Che, J.; Wang, X. Convolutional Neural Network Based Multi-feature Fusion for
Non-rigid 3D Model Retrieval. |. Inf. Process. Syst. 2018, 14, 176-190.

Song, Y.; Kim, I. DeepAct: A Deep Neural Network Model for Activity Detection in Untrimmed Videos.
J. Inf. Process. Syst. 2018, 14, 150-161.

Chen, C.L.P; Liu, Z. Broad Learning System: An Effective and Efficient Incremental Learning System Without
the Need for Deep Architecture. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 10-24. [CrossRef]

Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model globally, match locally: Efficient and robust 3D object
recognition. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Francisco, CA, USA, 13-18 June 2010; pp. 998-1005.

Chen, T.; Dai, B.; Liu, D.; Song, J. Performance of global descriptors for velodyne-based urban object
recognition. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI,
USA, 8-11 June 2014; pp. 667-673.

Behley, J.; Steinhage, V.; Cremers, A.B. Performance of histogram descriptors for the classification of 3D laser
range data in urban environments. In Proceedings of the 2012 IEEE International Conference on Robotics
and Automation, Saint Paul, MN, USA, 14-18 May 2012; pp. 4391-4398.

Wohlkinger, W.; Vincze, M. Ensemble of shape functions for 3D object classification. In Proceedings of
the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Phuket, Thailand,
7-11 December 2011; pp. 2987-2992.

Guo, Y,; Sohel, E; Bennamoun, M.; Lu, M.; Wan, J. TriSI: A Distinctive Local Surface Descriptor for 3D
Modeling and Object Recognition. In Proceedings of the 13th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications, Barcelona, Spain, 21-24 February 2013;
pp- 86-93.

Yang, J.; Cao, Z.; Zhang, Q. A fast and robust local descriptor for 3D point cloud registration. Inf. Sci. 2016,
346-347,163-179. [CrossRef]

Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21-26 July 2017; pp. 77-85.

Qi, CR;Yi, L,; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
Space. arXiv 2017, arXiv:1706.02413.

Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D Object Detection Network for Autonomous Driving.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21-26 July 2017; pp. 6526—6534.

http://dx.doi.org/10.1186/s13673-019-0178-5
http://dx.doi.org/10.1186/s13673-018-0157-2
http://dx.doi.org/10.1016/j.eswa.2015.06.026
http://dx.doi.org/10.1142/S0218654305000797
http://dx.doi.org/10.1109/34.765655
http://dx.doi.org/10.1109/TNNLS.2017.2716952
http://dx.doi.org/10.1016/j.ins.2016.01.095

Appl. Sci. 2020, 10, 6735 130f 13

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Klokov, R.; Lempitsky, V. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud
Models. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22-29 October 2017.

Esteves, C.; Allen-Blanchette, C.; Makadia, A.; Daniilidis, K. 3D object classification and retrieval with
Spherical CNNs. arXiv 2017, arXiv:1711.06721.

Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18-23 June 2018; pp. 4490—4499.

Li, Y,; Pirk, S.; Su, H.; Qi, C.R.; Guibas, L.J. FPNN: Field Probing Neural Networks for 3D Data. arXiv 2016,
arXiv:1605.06240.

Wang, C.; Cheng, M.; Sohel, E; Bennamoun, M.; Li, J. NormalNet: A voxel-based CNN for 3D object
classification and retrieval. Neurocomputing 2019, 323, 139-147. [CrossRef]

Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition.
In Proceedings of the 2015 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September-2 October 2015; pp. 922-928.

Wu, Z.; Song, S.; Khosla, A.; Yu, F; Zhang, L.; Tang, X.; Xiao,]J.; Fisher, Y. 3D ShapeNets: A deep
representation for volumetric shapes. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June 2015; pp. 1912-1920.

Shi, B.; Bai, S.; Zhou, Z.; Bai, X. DeepPano: Deep Panoramic Representation for 3-D Shape Recognition.
IEEE Signal Process. Lett. 2015, 22, 2339-2343. [CrossRef]

Sinha, A.; Bai,]J.; Ramani, K. Deep Learning 3D Shape Surfaces Using Geometry Images. In European
Conference on Computer Vision; Springer International Publishing: Cham, Switzerland, 2016; Volume 9910,
pp- 223-240.

Soltani, A.A.; Huang, H.; Wu,].; Kulkarni, T.D.; Tenenbaum, J.B. Synthesizing 3D Shapes via Modeling
Multi-view Depth Maps and Silhouettes with Deep Generative Networks. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017;
pp. 2511-2519.

Simonovsky, M.; Komodakis, N. Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on
Graphs. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21-26 July 2017; pp. 29-38.

Garcia-Garcia, A.; Gomez-Donoso, F.; Garcia-Rodriguez, J.; Orts-Escolano, S.; Cazorla, M.; Azorin-Lopez, J.
PointNet: A 3D Convolutional Neural Network for real-time object class recognition. In Proceedings of the
2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24-29 July 2016;
pp. 1578-1584.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2018.09.075
http://dx.doi.org/10.1109/LSP.2015.2480802
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	VB-Net
	System Overview
	VoxNet Feature Extractor
	Training of BLS

	Experiments and Analysis
	Performance of VB-Net
	Performance of Feature Extractor
	Noise Resistance Test

	Conclusions
	References

