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Abstract: This work proposes a power control strategy based on the linear quadratic regulator
with optimal reference tracking (LQR-ORT) for a three-phase inverter-based generator (IBG) using
an LCL filter. The use of an LQR-ORT controller increases robustness margins and reduces the
quadratic value of the power error and control inputs during transient response. A model in a
synchronous reference frame that integrates power sharing and voltage–current (V–I) dynamics is also
proposed. This model allows for analyzing closed-loop eigenvalue location and robustness margins.
The proposed controller was compared against a classical droop approach using proportional-resonant
controllers for the inner loops. Mathematical analysis and hardware-in-the-loop (HIL) experiments
under variations in the LCL filter components demonstrate fulfillment of robustness and performance
bounds of the LQR-ORT controller. Experimental results demonstrate accuracy of the proposed
model and the effectiveness of the LQR-ORT controller in improving transient response, robustness,
and power decoupling.

Keywords: grid-following control; hardware-in-the-loop experiment; LQR controller; microgrids;
optimal control; power control; three-phase inverters

1. Introduction

Due to the inherent low inertia present in voltage-source inverters (VSI), microgrid control is
becoming an important object of study nowadays in order to improve penetration of renewable energy.
Microgrid control is generally defined by levels. In [1], the authors present a hierarchical scheme
that divides VSI controllers in different levels. First, voltage–current (V–I) control level is used to
regulate the VSI current and voltage waveforms according to a specific reference without having
significant harmonic distortion [2]. The power control level, or primary control level, regulates VSI
power sharing to the microgrid. This power sharing could occur in grid-connected or islanded mode.
For the grid-connected mode, the power grid imposes the voltage amplitude and frequency in the
point of common coupling (PCC). In this mode, the VSI behaves as grid-follower. In islanded mode,
the voltage and frequency in the PCC is determined by each of the generators in the microgrid.
Typically, droop control is used in this control level because it allows to distribute power generation
among VSI proportionally without communication. Higher control levels are in charge of maintaining
microgrid’s power quality and regulating power sharing from a microgrid to the power grid or even
another microgrid.
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Droop control is used with proportional-resonant (PR) or proportional-integral (PI) controllers to
regulate power sharing as shown in Figure 1 [3,4]. To share power from the inverter to the main grid,
the droop Equations (1) and (2) are used:

ω = ω0 −m(P − P0) (1)

E = E0 − n(Q − Q0) (2)

where ω0, E0, P0, and Q0 are the operating frequency, amplitude, and reference values for the
active/reactive power, respectively. Coefficients m and n are known as the droop gains. As analyzed
in [2,5], the stability of the grid-connected IBG is mainly determined by the primary control level
parameters. These parameters are the cut-off frequency of the power calculation low-pass filter and the
coefficients m and n.

Figure 1. Typical droop control structure.

Due to the fact that droop controllers do not require a communication link between generators,
this control method has become popular for VSI primary control. However, droop controllers are based
on the assumption that active and reactive power are directly related to VSI output voltage amplitude
and frequency. In addition, droop controllers rely on a low-pass filter that is used to separate the
dynamics from the V–I and primary control levels. Thus, some common issues have been widely
reported for droop controllers such as performance fulfilment [6–8], dependency on line impedance
values [1,3,9], and frequency and voltage deviations from the nominal values [3].

Many approaches for improving droop control performance have been developed [2,10–17].
Most of them are based on adding supplementary loops to improve transient response, power quality,
harmonic power sharing, or robustness. The gain selection of the supplementary loops is commonly
based on heuristic methods and do not rely on an open-loop IBG model to use modern control design
methods. Closing several loops of feedback control and designing with heuristic methods does not
guarantee robustness of the closed-loop system [18].

For grid-following IBG control, it is common to implement output current controllers. Some of
the most relevant publications in this area may be found in [19–28]. The open-loop state-space models
for these controllers allow the use of modern control methods such as LQR, Kalman filters, or robust
controllers based on H∞ theory. However, these models do not include power sharing dynamics and
rely on a higher control level to regulate active and reactive power.
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In this work, a state-space model that integrates V–I and power sharing dynamics for grid
connected inverters is presented. This model is developed in a synchronous d-q frame to improve
active and reactive power decoupling. The grid voltage is modeled as a constant vector that is included
as an external known disturbance. In addition, the active and reactive power dynamics are included in
the output equation of the state-space system. This type of model allows for using modern control
analysis techniques such as singular value diagrams, Nyquist diagrams, root loci, and robustness
margins estimations.

An optimal power sharing controller that minimizes a power tracking performance index is
also presented. This tracking index measures the active and reactive power deviations and also
measures the energy in the control inputs. The novelty of this work is based on how the nonlinear
dynamics of the active and reactive power were linearized in the output of a state-space model in the
dq frame. This allowed development a controller that minimizes the tracking error in the output of
this state-space model. The methodology used in this work can be extended to other control methods
such as H∞ or model predictive control (MPC). Furthermore, this approach has many advantages
over other approaches found in literature: First, this approach is intended to minimize the energy
in the states and inputs, which means better transient response, reduced tracking error, and fewer
power losses during transient responses. Second, the use of an LQR controller has many robustness
properties regarding gain and phase margins as shown in [18]. Third, the controller is effective in
reducing active and reactive power coupling. Finally, this approach does not use resonant filters
that may affect sensitivity and robustness under parameter variations. The linear quadratic regulator
with optimal reference tracking (LQR-ORT) controller was designed to meet certain robustness and
performance margins under uncertainties in the LCL filter components. Hardware-in-the-loop (HIL)
simulations and experimental results validate the results of this approach compared to a classical
PR-Droop controller found in the literature. This work is an extension of [29] in the sense that it
includes HIL simulations under component variations, experimental results in a physical setup, and
deeper analysis and conclusions.

Section 2 shows the mathematical model in the dq frame that was used to compute the LQR-ORT
controller. The LQR-ORT mathematical development is presented in Section 3. Section 4 presents the
simulation and experimental results divided in three subsections: robustness and stability analysis,
simulation results using HIL tools, and experimental results in a real testbench. Finally, the conclusion
and future work are presented in Section 5.

2. Mathematical Model

The mathematical model is based on the circuit shown in Figure 2. The output of a three-phase
inverter E is connected through an inductor–capacitor–inductor (LCL) output filter to a stiff voltage
source Vg that represents the main grid. Input inductor current, capacitor voltage, and output current
are denoted by Il, Vc, and Io, respectively.

Figure 2. Three-phase inverter connected to the main grid.



Appl. Sci. 2020, 10, 6730 4 of 17

The state-space model of this circuit for each phase in the ABC frame is given by
.

Vc.
Il.
Io

 =


0 1/C −1/C

−1/Li 0 0
1/Lo 0 0
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+


0
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0
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0
0
−1/Lo
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The main grid voltage Vg is assumed as a balanced three-phase signal with an amplitude of
120VRMS and an angular frequency ωc = 2π60Hz. The state-space model (3) is transformed to a
synchronous frame using the well-known dq transformation as follows [30]:

wdq= Tdqwabc (4)

where Wabc =
[
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The state-space model of the inverter in the dq frame is shown in (6). When Tdq is synchronized

with the main grid, Vg becomes static with a constant value Vgdq =
[

Ṽgd 0
]T

, where Ṽd represents
the peak amplitude of the main grid voltage.
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The output of the state-space model is used to represent the active and reactive power received by
the main grid as follows:

y =

[
P
Q

]
=

[
VgdIod+VgqIoq

VgqIod−VgdIoq

]
=

3
2

 Ṽgd 0
0 −Ṽgd

[ Iod

Ioq

]
. (7)

Formulating the inverter model in the dq frame allows for expressing active and reactive power in
the output equation using linear terms under nominal conditions in the main grid. This implies that
not only can an optimal controller be computed to regulate power sharing but also modern robustness
and stability assessment methods can be used to analyze power dynamics.

It is also important to remark that the system (6) must be discretized in order to implement it
physically. Thus, the state vector must be augmented using a delay or integrator transfer function to
account for the delay caused by the PWM switching [31]. The discrete-time integrator also allows for
reducing the steady-state error in the closed-loop system. The resulting systems is given by

X[k + 1] =
[

Adq B1dq

02×6 I2×2

]
X[k] +

[
06×2

TsI2×2

]
Edq[k] +

[
B2dq

02×2

]
Vgdq[k] (8)
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where X =
[

xdq Ei

]T
, Ts is the sampling period, and the upper bar
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Ṽgd 0

0 -Ṽgd
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3. Discrete LQR-ORT Controller Design

The complete scheme of the LQR-ORT controller is presented in Figure 3. The LQR controller Kd

is obtained using a modified cost function that weights the tracking error and control input. The use of
a modified cost function requires the computation of an auxiliary optimal reference tracking (ORT)
matrix Kνν to solve the optimization problem. Finally, since the classic LQR problem does not consider
the influence of external disturbances, the superposition principle is used to account for the power
contribution of Vdq. Superposition can be applied because the grid-following inverter was expressed
in (6) as a linear state-space model that not only considers V–I dynamics but also include active and
reactive power computations.

Figure 3. Control scheme for the LQR-ORT with known external input.

3.1. Computation of Suboptimal LQR Controller

Unlike classic LQR approaches, the LQR controller in this work must achieve a non-zero final
state [18]. To achieve this, the power tracking error is defined by

edq[k] = CX[k] − r[k] (11)
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where r[k] is the reference for the LQR controller and X[k] is the augmented state vector defined in (8).
The discrete LQR-ORT cost function is given by [18]:

J[k0]= e[T]TSp[T]e[T] +
T∑

k=k0

{
e[k]TQpe[k]+ET

dq[k]RpEdq[k]
}

(12)

where Sp and Qp are both symmetric and positive semi-definite weighting matrices and Rp is
a symmetric positive definite weighting matrix. Note that unlike the classic LQR cost function,
(12) includes only input and error signals and does not include the state vector X[k]. To solve this
minimization problem, the modified discrete algebraic Riccati equation (DARE) must be solved [18]:

Sp = A
T

T Sp
(
AT − B1TKd

)
+CTQpC. (13)

The suboptimal controller matrix Kd is given by

Kd =
(
B

T
1TSpB1T+Rp

)−1
B

T
1TSAT. (14)

3.2. Optimal Reference Tracking Matrix

The reference signal r[k] introduces an additional equation to the optimization problem similar
to (13). This equation is solved offline to obtain a control law that minimizes (12) [18]:

ν[k + 1] =
(
AT − B1TKd

)T
ν[k]+CTQpr[k] (15)

where ν is an auxiliary matrix similar to Sp. Assuming a step reference signal r[k], and solving (15)
with infinite horizon such that ν[k] = ν[k + 1]:

ν =
[
I−

(
AT − B1TKd

)T
]−1

CTQp. (16)

For the LQR-ORT, the control law is given by [18]

Edq[k] =
(
B

T
1TSpB1T+Rp

)−1
B

T
1T

(
−SATX[k]+νr[k]

)
, (17)

or, in a compact form:
Edq = −KdX[k]+Kvνr[k]. (18)

where Kv =
(
B

T
1TSpB1T+Rp

)−1
B

T
1T. The product Kνν is the optimal reference tracking matrix (ORT).

As shown in Figure 3, this matrix transforms a vector in the units of r[k] to a vector in the units of
Edq[k] such that (12) is minimized.

3.3. Main Grid Power Contribution Calculation Using Superposition Principle

As Vgdq is not considered in (12) to compute the LQR-ORT controller, its effects on the injected

power must be subtracted from the raw reference signal
[

Pref Qref

]T
to obtain the net power reference

r[k] as shown in Figure 3. Thus, the superposition principle must be applied to the closed-loop system:

X[k + 1] =
(
AT − BTKd

)
X[k] + B1TKννr[k] + B2TVgdq. (19)
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To analyze the power contribution of Vgdq, the closed-loop system (19) must be simulated with

r[k] =
[

0 0
]T

. The power contribution of Vgdq is computed using the expression

YV =

[
PV

QV

]
=

[
Vgd 0

0 −Vgd

]
=
I od
=
I oq

 (20)

where
=
I od and

=
I oq are the output current values when (19) reaches steady state with nominal values

of Vgdq. Since YV and Kνν are computed offline based on ideal components, there may be slight
deviations in the experimental steady-state output values. To avoid these deviations, the integral of
the power error is added to r[k] as in Figure 3. This integral is calculated using a low-gain Ks to not
affect stability margins nor transient response. The net reference R[z] is then defined as follows:

R(z) =
[

Pref

Qref

]
−

[
PV

QV

]
+

KsTs

z− 1

[
P− Pref

Q−Qref

]
(21)

where R(z) = Z
{
r[k]

}
, with Z{·} being the z-transform operator. Terms P and Q represent the unfiltered

measured power injected to the main grid.

4. Simulation and Experimental Results

For this section, the parameters shown in Table 1 were used. To perform the dq transformation and
grid synchronization, a PLL-SOGI with parameters KSOGI, KpPLL, and KiPLL was implemented [32].
The state-space model (22) was obtained by substituting the parameters from Table 1 in (6). Then, the
system was discretized and augmented with integrators using (8).



Vcd

Vcq

Ild

Ilq

Iod

Ioq

Eintd

Eintq



[k + 1] =



0.432 0.016 9.085 0.342 −9.113 −0.343 0.283 0.006

−0.016 0.432 −0.342 9.085 0.343 −9.113 −0.006 0.283

−0.044 −0.001 0.711 0.026 0.283 0.011 0.049 0.008

0.001 −0.044 −0.026 0.711 −0.011 0.283 −0.008 0.049

0.044 0.001 0.283 0.011 0.7157 0.027 0.005 0.001

−0.001 0.044 −0.011 0.283 −0.027 0.7157 −0.001 0.005

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





Vcd

Vcq

Ild

Ilq

Iod

Ioq

Eintd

Eintq



+ 0.0001



0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1




Ed

Eq

+



0.2837 0.007

−0.007 0.2837

−0.005 −0.001

0.001 −0.005

−0.051 −0.008

0.008 −0.051

0 0

0 0




Vgd

Vgq

 (22)

The values of the weighting matrices Qp and Rp were selected so that the closed-loop system
reaches steady state in less than 0. 5s with an overshoot less than 10%. The following state feedback
controller was obtained using (13) and (14):

Kd =

[
−1154 −58 6451 1193 22, 624 2063 5158 70

58 −1154 −1193 6451 −2063 22, 624 −70 5158

]
(23)

The desired refence was selected to be a constant vector
[

Pre f Qre f
]T

. Using (16), the optimal
tracking matrix Kννwas obtained:

Kνν =

[
117.9714 11.5883
11.5883 −117.9714

]
. (24)

Outer integrator gain Ks was selected to reduce steady-state error such that closed-loop dynamics
and stability margins were not affected.
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Table 1. Parameter Specification for the Linear Quadratic Regulator with Optimal Reference Tracking
(LQR-ORT) Controller.

Parameter Symbol Value

Grid Voltage V 120 Vrms
DC bus Voltage Vdc 350 V
Grid Frequency f 60 Hz

Output Inductance Lo 1.8 mH
Input Inductance Li 1.8 mH
Filter Capacitance C 8.8 µF

Switching Frequency fs 10 kHz
Sampling Period Ts 100 µs

Error Weighting Matrix Qp 5000× I2×2
Input Weighting Matrix Rp 0.2× I2×2

Inner Integrator Gain Ki 1
Outer Integrator Gain Ks 5

SOGI gain KSOGI 0.7
PLL Proportional Gain KpPLL 0.28307

PLL Integral Gain KiPLL 7.5102

4.1. Robustness and Stability Analysis

The continuous LQR controller has guaranteed robustness properties such as infinity gain margin
and a minimum phase margin of 60◦ [18]. However, these margins become reduced when the
LQR controller is discretized. Studies performed in [33] and [34] show that minimum robustness
margins for the discrete LQR are reduced depending on many factors such as eigenvalue location,
controllability, and observability. To perform robustness and stability analysis on the LQR-ORT
controller, the open-loop system L(z) = K(z)G(z) shown in (25) was used.

L = Kd
(
zI−Adq

)−1
B1dq (25)

Stability margins were calculated using the disk margin method [35]. The disk margin method is
used for estimating structured robustness under multiplicative uncertainties for MIMO systems. The
disk-based margins are calculated considering all loop interactions and frequencies. Thus, the open-loop
system L showed a gain margin of 12.03 dB and a phase margin of 52.23◦, which is appropriate for
inverter control applications.

From (19), it can be inferred that the stability of the power contribution of Vdq depends on the

eigenvalue locations of the closed-loop state matrix
(
AT − BTKd

)
. Thus, the stability of the complete

closed-loop system is assessed by analyzing the return difference (I + L)−1, which determines the
closed-loop eigenvalues.

λ
{
(I + L)−1

}
= λ

{
AT − BTKd

}
(26)

The operator λ{·} refers to the eigenvalue computation.
To assess robustness against parameter variations, the components in the LCL filter were defined

as stochastic elements with a uniform variation of ±65% around parameters shown in Table 1. Thus,
a Monte Carlo stability test was performed with 50 random instances of L based on parameter
variations using the same controller Kd [36]. This way, all interactions between parameter variations
were evaluated instead of varying one parameter at the time. The continuous-time closed-loop
eigenvalues of the nominal system and the system under component variations using the LQR-ORT
controller are shown in Figure 4. The color bar indicates the maximum variation among each set of
component values. Thus, the closed-loop eigenvalues tend to become unstable after a component
deviation of −60%.
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Figure 4. LQR-ORT discrete-time closed-loop eigenvalues of the nominal system and the system under
variations using the same controller Kd.

4.2. HIL Experimental Robustness Assessment

To assess performance robustness, a real-time hardware-in-the-loop (HIL) experiment
was performed. The LQR-ORT performance was compared against the classical proportional-resonant
(PR) droop controller developed in [13]. The LQR-ORT controller and the PR-Droop controller were
implemented in a dSPACE SCALEXIO real-time simulation platform.

The general scheme of the HIL experiment is shown in Figure 5. The circuit shown in Figure 2
was implemented in an OPAL-RT OP5700 real-time simulator using IGBT transistor models with
a PWM switching frequency of 10 kHz. Each of the 50 component variations were programmed
in the OP5700 in order to assess performance robustness under different component scenarios in a
hardware-in-the-loop experiment (HIL).

Figure 5. Real-time hardware-in-the-loop (HIL) experiment representation.

The dSPACE and the OP5700 were physically connected as shown in Figure 6. Step response
robustness under component variations was assessed and summarized in Table 2. Each component
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scenario ID is sorted from the most positive to the most negative deviation. Negative deviations occur
when a component is under nominal values. Component variations between ±40% (ID 2 to ID 26) were
stable for both controllers and their results are not included.

Table 2. HIL Experimental Robustness Assessment.

ID C
(µF)

Li
(mH)

Lo
(mH)

Max
Deviation

LQR-ORT
Stable

PR-Droop
Stable

Nom 8.8 1.8 1.8 0% Yes Yes

1 12.6 2.87 2.57 42.8% Yes Yes

...
...

...
...

...
...

...

27 10.85 2.92 1.06 −41.0% Yes Yes
28 5.97 1.03 2.79 −42.7% Yes No
29 5.47 0.95 2.58 −47.3% No No

30 14.03 1.73 0.92 −48.9% Yes Yes

31 4.32 1.91 2.16 −50.9% Yes Yes

32 4.25 1.79 2.90 −51.7% Yes Yes
33 11.09 2.39 0.86 −52.4% Yes No
34 13.96 0.85 1.97 −52.7% Yes No
35 5.93 0.85 1.96 −53.0% No No
36 4.40 2.53 0.85 −53.0% Yes Yes

37 14.33 2.39 0.82 −54.2% No No
38 3.94 1.96 1.27 −55.3% Yes No
39 11.12 1.89 0.78 −56.6% Yes Yes

40 3.82 1.96 1.33 −56.7% Yes No
41 9.82 1.44 0.76 −58.0% Yes Yes

42 12.21 0.74 1.80 −58.6% Yes No
43 4.32 1.33 0.73 −59.7% No No
44 10.75 0.72 2.30 −59.8% Yes No
45 3.52 1.62 1.42 −60.0% Yes No
46 3.51 1.63 1.40 −60.1% No No
47 3.48 1.91 1.00 −60.4% Yes No
48 11.97 0.67 2.59 −62.6% Yes No
49 3.50 0.67 1.40 −62.7% No No
50 3.25 1.36 0.86 −63.1% No No

After a component variation of −42% (ID 28), the PR-Droop controller is more susceptible to
becoming unstable than the LQR-ORT. Furthermore, the PR-Droop controller becomes completely
unstable after a variation of 58.6% (ID 42), whereas the LQR-ORT becomes completely unstable after a
variation of 62.7% (ID 49).

Figure 7 shows the response of both controllers to a pulsed reference of 300 W and 200 Var under
nominal component values and scenarios 41 and 42. Each pulse had a width of 1.8 s and a time shift
of 0.7 s to analyze decoupling between active and reactive power. To analyze transient response,
power was measured using a first-order low-pass filter with a bandwidth of 50 rad/s as shown in
Figure 6. The power measurement with the filter are outside the control loop and do not affect
closed-loop dynamics. For nominal component values, the LQR-ORT controller shows a smooth
transient response with low noise and low decoupling between active and reactive power. On the
other hand, the PR-Droop controller shows oscillating responses with high switching noise and high
coupling between active and reactive power.
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Figure 6. Photo of the HIL experimental setup.

Figure 7. HIL experiment comparison between LQR-ORT and the PR-Droop controller for the
nominal case and scenarios 41 and 42. (a) PR-Droop controller with nominal scenario. (b) PR-droop
controller with scenario 41. (c) PR-Droop controller with scenario 42. (d) LQR-ORT controller with
nominal scenario. (e) LQR-ORT controller with scenario 41. (f) LQR-ORT controller with scenario 42.

For scenario 41, The LQR-ORT transient response remains robust with some coupling between
active and reactive power, whereas the PR-Droop response becomes more oscillating and the
coupling increases. Finally, for scenario 42, the LQR-ORT shows a slight increase in switching
noise and the PR-Droop becomes unstable. These results demonstrate that the LQR-ORT performance
is more robust for component variation than the classic PR-Droop controller.
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4.3. Experimental Results

Experimental results were obtained using the setup shown in Figure 8. This setup uses four
Danfoss 2.2 kVA inverters with LCL filters and four sensor boxes with voltage and current LEM sensors.
These four inverters may be dynamically connected to the AC bus. The AC bus may be also dynamically
connected or disconnected from the main grid using solid-state relays handled with a PLC. To implement
control algorithms, a dSPACE 1006 simulator was used to read signals from the sensor boxes and send
the 10 kHz PWM pulses via optical fiber.

Figure 8. Photo of the experimental setup [37].

Experimental results for the LQR-ORT and the PR-Droop controller are shown in Figure 9. First,
the inverter started without injecting energy to the main grid. A step reference of 300 W and 200
Var was set at t1 = 0.35 s and t2 = 1.05 s, respectively. The LQR-ORT shows lower settling time, less
noise, and a smoother transient response under a step reference compared to the PR-Droop controller.
In addition, the LQR-ORT controller shows a negligible steady-state error compared to the PR-Droop
controller. In addition, at t1 and t2, the LQR-ORT controller shows better decoupling compared to the
PR-Droop controller.

The decoupling of the LQR-ORT controller is produced by the dq transformation and the intrinsic
robustness properties of the LQR controllers. In addition, the PR-Droop controller has less decoupling
because droop (ω−V) curves are not completely independent [5]. The normalized cost was calculated
using (12) divided by the highest achieved cost during the simulation. The normalized cost of the
PR-Droop controller is about 2.92 times higher compared to the LQR-ORT controller. This implies that
the LQR-ORT controller spends less energy tracking reference signals.

To evaluate the performance of the LQR-ORT controller under unbalanced and nonlinear loads,
the scheme shown in Figure 10 was implemented. This scheme used a solid-state demultiplexer
symbolized as “switch 2” that selected between linear balanced, linear unbalanced, and nonlinear loads.
The linear load was selected to be an RL series circuit with R = 171.42 Ω and L = 0.4571 H. The linear
unbalanced load was selected as an RL series circuit with Ru = {171.42, 200, 600} Ω and L = 0.4571 H.
Finally, for the unbalanced load, a three-phase noncontrolled rectifier with an RLC parallel circuit with
RNL = 1200 Ω, CNL = 100 µF, and LNL = 2 mH was used.
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Figure 9. Experimental results comparing the LQR-ORT controller performance with the PR-Droop controller
using the same reference signals. (a) LQR-ORT response. (b) PR-Droop response (c) LQ-Cost values.
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Figure 10. Experimental scheme for the evaluation of the performance of the LQR-ORT controller
under unbalanced and nonlinear loads.

The results of this experiment are shown in Figure 11. First, the inverter injected 400 W and 400 VAr
to the main grid with the linear balanced load connected to the output of the inverter (Figure 11a,b).
At this time, the output current of the inverter had a Total Harmonic Distortion (THD) of 10.8%
and the balanced linear load had a THD of 6.71%. At t = 0.7 s, the unbalanced load was connected.
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This generated a small disturbance in the active power, which was restored in less than 0.2 s. In
addition, the THD of the output current and the load decreased to 10.7% and 6.55%, respectively
(Figure 11c). The low disturbance in the injected power and the decrease in the THD indicate that the
LQR-ORT controller is robust under unbalanced loads. Finally, at t = 2.5 s, the nonlinear load was
connected. This generated a slightly larger disturbance in the active power, which was restored in
less than 0.2 s as well. In addition, the THD of the output current increased to 10.98% and the load
current THD increased to 126.02%. (Figure 11d). It can be noticed that the THD of the output current
did not have considerable increase under nonlinear load conditions. Despite the changes in the load
conditions under nonlinear or unbalanced loads, the injected power of the LQR-ORT remains accurate
without distortion.

Figure 11. Experimental results evaluating the performance of the LQR-ORT controller under
unbalanced and nonlinear loads. The inverter starts connected to a balanced linear load. At t = 0.7 s,
event (1) occurs by connecting the unbalanced load. At t = 2.5 s, event (2) occurs by connecting the
nonlinear load. (a) Active power. (b) Reactive power. (c) Output current showing the transition
between balanced and unbalanced load (LEFT), and the transition between unbalanced and nonlinear
load (RIGHT). (d) Load current showing the transition between balanced and unbalanced load (LEFT),
and the transition between unbalanced and nonlinear load (RIGHT).
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5. Conclusions

The LQR-ORT controller presented in this work yields a better transient response and higher
decoupling compared to the classical PR-Droop control approach as can be seen in the experiment
results. The model presented in this work integrates V–I and power sharing dynamics in a single
state-space model. Using this new model allows performing modern analysis methods of stability
and robustness. Stability and robustness analyses show that the LQR-ORT controller has robust
performance and stability under uncertainties in components and multiplicative uncertainties. The
robustness against component variations is important for heavy duty applications, where environmental
conditions may affect component specification through time. It is also important to remark that, unlike
the classic PR-Droop controller, the LQR-ORT controller does not require low-pass filters to perform
power calculation. Thus, the power dynamics are not separated from voltage–current dynamics
allowing to obtain smoother and faster transient responses.
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