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Abstract: This paper proposes a hybrid estimation algorithm for independently estimating the
response function for the center and the response function for the spread in fuzzy regression model.
The proposed algorithm combines the least absolute deviations estimation with discriminant analysis.
In addition, the F-transform is used to convert spreads of the dependent variable into several groups.
Two examples show that our method is superior to the existing methods based on the fuzzy regression
model that assumes the same function for spread and center.

Keywords: hybrid algorithm; fuzzy regression model; least absolute deviations estimation;
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1. Introduction

Regression analysis is one of the most useful and popular sub-parts of supervised learning,
and success stories have been reported in many areas. Regression analysis assumes that the relevant
experimental data are accurate, and numerous statistical treatments have been proposed to model
accurately defined data [1]. However, there are cases in which this assumption is unrealistic,
because data used in regression analysis consist of observations that might be imprecise such as
“about 50 years old” or “almost fully cured”.

In regression analysis, we sometimes encounter imprecise data with non-sharp boundary,
linguistic data, and incomplete information. The fuzzy set theory introduced by Zadeh [2] has
been used as a means to solve this problem. The fuzzy regression model is needed to estimate the
statistical relationship among variables when independent variables, dependent variables or regression
coefficients are expressed as a fuzzy set. Since the fuzzy regression model introduced by Tanaka [3],
numerous modified or extended fuzzy regression models have been proposed, and many successful
applications have been presented [2–15]. One goal of the fuzzy regression analysis is to discover
statistical relationships between given fuzzy values. The general approach, as discussed by many
authors, is to attempt to induce their relationship from center and spread of fuzzy values using the
same function. In the fuzzy regression model, the response functions for center and spread may not be
the same. Choi and Yoon [6] described a fuzzy regression model whose response function for center
and spread is an exponential function and a linear function, respectively.

In the fuzzy regression model, the response functions for center and spread may not be the
same. Choi and Yoon [6] described a fuzzy regression model whose response function for center
and spread is an exponential function and a linear function, respectively. If the response function
for center and spread does not match, it may be more effective to assume the response function
for center and spread in an independent form, and to estimate the assumed response function.
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In addition, in fuzzy regression models, the center or spread of observation of the response function
is often obtained in repeated numbers. If the results of the survey or the quality of the product
is expressed as fuzzy numbers, the spread of the response function may repeat a finite value as
examples presented in D’Urso [8] and Yoon et al. [14,15]. In this case, it may be more efficient to use
regression models for categorical data instead of continuous data. In the ordinary regression analysis,
the categorical regression analysis, logistic regression analysis or discriminant analysis is used to
analyze the categorical response variable. If the spreads of the fuzzy data are repeated by the same
number and the center of the fuzzy data varies, it may be more efficient to estimate the fuzzy regression
model by independently estimating the spread and center instead of applying the equivalent function.
This is our motivation. The proposed hybrid estimation algorithm is a modified and extended new
version of the algorithm introduced in Jung et al. [16].

We propose an algorithm that constructs a fuzzy regression model when the response function
for the spread and the center of the dependent variable do not match. To estimate a regression model
for the center of the dependent variable with continuous data, the least absolute deviations (LAD)
estimation method is used that is not sensitive to an outlier. In addition, a discriminant analysis is
used to estimate the response function for the spread of the dependent variable expressed as repeated
numbers by finite number. The F-transform introduced by Perfilieva [17] has been studied and found
useful in many applications [18–22]. The F-transform converts original data into weighted mean values
where the weights are given by the basic functions which are membership functions to identify fuzzy
sets. In this paper, we use the F-transform to categorize the spreads of dependent variable. In order
to predict the dependent variable of the fuzzy regression model, we propose a hybrid algorithm that
combines LAD estimation with discriminant analysis and F-transform. In fuzzy regression analysis,
we expect the proposed hybrid algorithm to improve the prediction error if the response function for
the spread and the center of the dependent variable do not match.

This paper is organized as follows: Section 2 presents preliminary concepts required to develop
the main results. Section 3, proposes a hybrid estimation algorithm combining the LAD estimation
method and the discriminant analysis. Section 4 gives two numerical examples to explain our results
and compare with the existing methods. Section 5 concludes the paper.

2. Preliminaries

Fuzzy set theory was introduced to provide a suitable concept for dealing with inaccurate data [2].
Following [3,4], we introduce some definitions required to develop the main results such as the fuzzy
sets and the fuzzy numbers.

A fuzzy set A is a set of ordered pairs

A = {(x, µA(x)) : x ∈ A},

where µA : X → [0, 1] is a membership function of A.
The support of A defined on R is a crisp set defined as

suppA = {x|x ∈ R, µA(x) > 0}.

A fuzzy number, A, is a normal and convex subset of the real line, R, with bounded support. As a
special case, a fuzzy number A, denoted by A = (mA, slA , srA)LR, is said to be a LR-fuzzy number if its
membership function is denoted by

µA(x) =



L
(

mA − x
slA

)
for 0 ≤ mA − x ≤ slA ,

R
(

x−mA
srA

)
for 0 ≤ x−mA ≤ srA ,

0 for otherwise,
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where mA is the center, slA and srA are the left spread and the right spread. L and R are functions
verifying the properties of the class of fuzzy sets such that L(0) = R(0) = 1 and L(x) = R(x) = 0,
x ∈ R\[0, 1). In particular, if L(x) = R(x) = 1− x in A = (mA, slA , srA)LR, then A is called a triangular
fuzzy number and is denoted by A = (mA, slA , srA)T .

For any α in [0, 1], the α-level set of a fuzzy set A is a crisp set Aα = {x ∈ R : µA(x) ≥ α} that
contains all the elements in X that have membership value in A greater than or equal to α.

F (Fuzzy)-transform was introduced by Perfilieva [17] in 2001. Here, some basic concepts from [18]
are introduced.

Definition 1. Let c1 < · · · < ck be fixed nodes within [a, b], such that c1 = a, ck = b and k ≥2. We say
that fuzzy sets A1, · · · , Ak, identified with their membership functions A1(x), · · · , Ak(x) defined on [a, b],
constitute a fuzzy partition of [a, b] if they fulfill the following conditions for j = 1, · · · , k:

(1) Aj : [a, b]→ [0, 1], Aj(cj) = 1;
(2) Aj(x) = 0 if x 6∈ (cj−1, cj+1) where for the uniformity of denotation, we put c0 = a, ck+1 = b;
(3) Aj(x) is continuous;
(4) Aj(x) strictly increases on [cj−1, cj] (j = 2, · · · , k) and Aj(x) strictly decreases on [cj, cj+1]

(j = 1, · · · , k− 1)
(5) For all x ∈ [a, b],

k

∑
j=1

Aj(x) = 1.

The membership functions A1(x), · · · , Ak(x) are called symmetric basic functions. An example
of fuzzy sets A1, · · · , Ak with symmetric triangular membership functions on the interval [a, b] is
given below:

Aj(x) =


1−

∣∣∣∣ x− cj

hj

∣∣∣∣ x ∈ [cj−1, cj+1],

0 otherwise,

where hj is defined by hj = cj − cj−1 on [cj−1, cj] (j = 2, · · · , k). Also, hj = cj+1 − cj on [cj, cj+1]

(j = 1, · · · , k− 1). Here, Aj(x) strictly increases on [cj−1, cj] (j = 2, · · · , k) and Aj(x) strictly decreases
on [cj, cj+1] (j = 1, · · · , k− 1), which satisfy above conditions.

Definition 2. Let a discrete function f : X → R be given at a finite set of points
X = {xt : t = 1 · · · , n} ⊆ [a, b]. The F-transform of a discrete function f with respect to A1, · · · , Ak
define the numerical vector Fk[ f ] = [F1, F2, · · · , Fk], where each Fj is given by

Fj =
∑n

t=1 f (xt)Aj(xt)

∑n
t=1 Aj(xt)

, j = 1, · · · , k. (1)

The Fj are weighted mean values of f , where the weights are determined by the membership
values. The Fj are called components of the discrete F-transform.

Definition 3. Let Fk[ f ] = [F1, F2, · · · , Fk] be the F-transform of f with respect to A1, · · · , Ak.
Then the function

fF,k(xt) =
∑k

j=1 Fj Aj(xt)

∑k
j=1 Aj(xt)

, j = 1, · · · , k,

is called the inverse F-transform of f .
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3. Fuzzy Regression Based on the F-Transform and Discriminant Analysis

General fuzzy linear regression model proposed by Tanaka [3] and applied in many fields is
formulated as follows:

Y(Xi) = F(A, Xi) + Ei, i = 1 · · · , n

where Xi = (Xij)(1×(p+1)) is the fuzzy input, A = (Aj)(1×(p+1)) is the fuzzy coefficients, F(A, Xi) is
the known response function, Y(Xi) is the fuzzy output and Ei is the fuzzy error .

The α-level set of the general fuzzy regression model is given as follows:

Y(Xi)α = F(Aα, Xiα) + Eiα (∗).

The center of the above model(*) is represented as follows:

myi = f (a0, a1, · · · , ap, xi0, xi1 · · · xip) + ei.

And the models for the left and right spread of the model (*) are as follows:

(slYi
)α = fl((slA)α, (slXi

)α) + (slEi
)α and (srYi

)α = fr((srA)α, (srXi
)α) + (srEi

)α.

In particular, if the response function is linear, the fuzzy regression model is formulated as follows:

Yi = A0 + A1Xi1 + · · ·+ ApXip + Ei, i = 1 · · · , n

where Yi = (mYi , slYi
, srYi

)T , Ai = (mAi , slAi
, srAi

)T and Xik = (mXik , slXik
, srXik

)T are fuzzy numbers.
We estimate the α-level set of the proposed fuzzy regression model using by the least squares

method which minimizes the sum of squared residuals

n

∑
i=1

[(slYi
)α∗ − fl((slA)α∗ , (slXi

)α∗)]
2.

In fuzzy regression analysis, many researchers have used the above least squares method.
However, there are two parts to consider in a general fuzzy regression model. The first is that
the response function for the left spread fl(·) and the response function for the right spread fr(·) are
not the same. Choi and Yoon [6] proposed a general fuzzy regression model whose response function
to the center is exponential and the response function to the spread is linear. The second is that the size
of spread or center set of the dependent variable may be very small than the number of samples.

In fuzzy analysis, if the response functions of the spread and center are not match, it may be more
efficient to construct the fuzzy regression model by independently estimating the spread and center
instead of applying the equivalent function. In addition, if the spreads of dependent and independent
variables are expressed in several repetitive numbers as shown in Table 1 presented by D’Urso [8],
it may be more efficient to use statistical methods for categorical data than statistical methods for
continuous variables. In Table 1 presented by D’Urso [8], the number of samples is 30 but the spread
of the response variable is expressed in only 4 values.

In general, the spreads of the fuzzy data in a fuzzy sample vary greatly. However, the spreads
of fuzzy data obtained from quality of products, or the preference or surveys, consists of repeating
numbers. If the spread is repeated by the same number and the center changes, it may be more efficient
to estimate the fuzzy regression model by estimating the spread and center separately.
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Table 1. Fuzzy observed value and predicted value.

No Xi1 Xi2 Yi Ŷi

1 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (8, 0.75, 1.00)T (5.75, 0.38, 0.83)T
2 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (6, 0.25, 0.50)T (5.25, 0.29, 0.5)T
3 (6, 0.25, 0.50)T (7, 0.50, 1.25)T (6, 0.25, 0.50)T (6.08, 0.29, 0.50)T
4 (8, 0.75, 1.00)T (9, 0.00, 1.00)T (9, 0.00, 1.00)T (7.92, 0.00, 1.20)T
5 (8, 0.75, 1.00)T (8, 0.75, 1.00)T (8, 0.75, 1.00)T (7.42, 0.50, 1.20)T
6 (6, 0.25, 0.50)T (7, 0.50, 1.25)T (5, 0.00, 1.00)T (6.08, 0.25, 0.83)T
7 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (7, 0.50, 1.25)T (7.00, 0.50, 1.18)T
8 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (5, 0.00, 1.00)T (6.50, 0.25, 1.20)T
9 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (7, 0.50, 1.25)T (7.00, 0.49, 1.18)T

10 (6, 0.25, 0.50)T (7, 0.50, 1.25)T (6, 0.25, 0.50)T (6.08, 0.29, 0.50)T
11 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (8, 0.75, 1.00)T (7.00, 0.19, 1.20)T
12 (7, 0.50, 1.25)T (6, 0.25, 0.50)T (6, 0.25, 0.50)T (6.00, 0.29, 0.50)T
13 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (9, 0.00, 1.00)T (7.00, 0.43, 1.20)T
14 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (8, 0.75, 1.00)T (7.00, 0.19, 1.20)T
15 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (7, 0.50, 1.25)T (6.50, 0.39, 1.18)T
16 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (7, 0.50, 1.25)T (6.50, 0.29, 1.18)T
17 (6, 0.25, 0.50)T (7, 0.50, 1.25)T (6, 0.25, 0.50)T (6.08, 0.29, 0.50)T
18 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (7, 0.50, 1.25)T (7.00, 0.13, 1.18)T
19 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (8, 0.75, 1.00)T (6.50, 0.52, 1.20)T
20 (7, 0.50, 1.25)T (9, 0.00, 1.00)T (7, 0.50, 1.25)T (7.50, 0.13, 1.18)T
21 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (7, 0.50, 1.25)T (7.00, 0.49, 1.18)T
22 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (6, 0.25, 0.50)T (7.00, 0.06, 1.11)T
23 (7, 0.50, 1.25)T (9, 0.00, 1.00)T (7, 0.50, 1.25)T (7.50, 0.13, 1.18)T
24 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (8, 0.75, 1.00)T (6.50, 0.38, 1.20)T
25 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (6, 0.25, 0.50)T (6.50, 0.29, 1.11)T
26 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (6, 0.25, 0.50)T (6.50, 0.29, 1.11)T
27 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (7, 0.50, 1.25)T (6.50, 0.34, 1.18)T
28 (7, 0.50, 1.25)T (8, 0.75, 1.00)T (7, 0.50, 1.25)T (7.00, 0.49, 1.18)T
29 (7, 0.50, 1.25)T (7, 0.50, 1.25)T (7, 0.50, 1.25)T (6.50, 0.34, 1.18)T
30 (6, 0.25, 0.50)T (7, 0.50, 1.25)T (6, 0.25, 0.50)T (6.08, 0.29, 0.50)T

Especially for fuzzy regression models, it may be more efficient to estimate the spread using
categorical data analysis methods when the number of spreads of the dependent variable is small due
to iterations.

Discriminant analysis [23,24] is one of the techniques that are used to predict the probability of
belonging to a given category based on one or multiple independent variables when the dependent
variable is categorical and the independent variable is interval in nature. The categorical variable
means that the dependent variable is divided into several categories. In the fuzzy regression model,
if the number of spreads of a given dependent variable is small due to iterations, it converts the
dependent variable to a categorical variable.

To do this, we use the F-transform. In this paper, we propose the hybrid estimation algorithm to
predict the dependent variable of the fuzzy regression with spreads which are represented by only a
few numbers due to repetition.

The Proposed Hybrid Estimation Algorithm

Step 1. Estimate the center mYi of dependent variable Yi.

Using the set of center of the dependent variable {(mXi1 , · · · , mXip , mYi ) : i = 1, · · · , n}, obtain the
predicted value mŶi

of center of the dependent variable by minimizing the following object function

n

∑
i=1
|mYi −mA0 −mA1 mXi1 − · · · −mAp mXip |
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Step 2. Estimate the left spread of the dependent variable using F-transform and Fisher’s linear
discriminant analysis.

1. Define the universe of discourse Sl : SlY = {slYi
: i = 1, 2, ...n} is the set of spreads of dependent

variable. Let slYi(1)
and slYi(n)

be the minimum and the maximum value of SlY . Then the universe

of discourse Sl is defined by Sl = [max{0, slYi(1)
− c1}, slYi(n)

+ c2 ], where c1 and c2 are two proper
positive real numbers. The values c1 and c2 are predefined by researcher or can be considered to
be the tuning parameters.

2. Define the basic function on Sl and obtain F-transform: The F-transform Fk[SlY ] = [Fl
1, Fl

2, · · · , Fl
k]

is obtained by

Fl
j =

∑n
i=1 slYi

Aj(slYi
)

∑n
i=1 Aj(slYi

)
, j = 1, · · · , k, (2)

where the function Aj(x) is the basic function on the universe Sl .
3. Classify the given data by using the Fisher’s linear discriminant analysis: Each of the data

is grouped q times which is the number of overlapped basic functions of corresponding data.
In Figure 1, the number of overlapped basic functions q = 2 in (a,b) and q = 3 in (c). If slYi

is included
in the support of Aj then slYi

is assigned to group gj. Since the basic functions are overlapped, slYi
can be assigned to more than one group. Using the assigned group and independent variables,
we construct the Fisher’s linear discriminant function and predict the assigned group based on
the discriminant score. The predicted group is represented by ĝj, j = 1, 2, · · · , q.

4. Predict the left spread of dependent variable using the inverse F-transform: Using the F-transform
obtained by the previous step 2-2 and the inverse F-transform, the spread slYi

is predicted.

Let Fk[SlY ] = [Fl
1, Fl

2, · · · , Fl
k] be the F-transform of the left spread with respect to A1(x), · · · , Ak(x).

Then the predicted left spread is given by

ŝlYi
=

∑k
j=1 F∗j Aj(slYi

)

∑k
j=1 Aj(slYi

)
, i = 1, · · · , n, (3)

where F∗j represents the F-transform corresponding to the predicted group ĝj.

Step 3. Predict the right spread srYi
by the step 2.

By this hybrid algorithm, we predict the values of dependent variable. Our overall method is
summarized in Algorithm 1.

Figure 1. Examples of basic functions. (a) Triangular function, (b) sinusoidal function, (c) trapezoidal
function.



Appl. Sci. 2020, 10, 6726 7 of 13

Algorithm 1: predicting value of dependent variable with F-transform

1 Estimate the center of the dependent variable using the LAD method
2 foreach the set of the left spreads and the set of the right spreads do

Define the universe of discourse from the set of spreads
Define the basic functions on the defined universe of discourse
foreach j=1 to k do

Convert the basic functions into F-transform using Equation (2)
end

3 Assign groups for each spread
4 Predict the assigned groups using the Fisher’s linear discriminant analysis
5 Predict the spread of the dependent variable using Equation (3)

end
6 Predict the value of the dependent variable

4. Numerical Examples and Comparison Studies

In this section, we illustrate two examples to compare the performance of the proposed method
and the existing methods which assume the same model for center and spread. Chachi and Taheri
estimated the fuzzy regression model by minimizing the sum of the square of the left and right
endpoints of the α-level of residuals [4]. Diamond constructed the fuzzy regression model by
minimizing the sum of the square of residuals of the end points of support and the center [7].
Two measures are used to compare the performance of the estimated fuzzy regression model. One is
the D(Y, Ŷ) based on the difference between the estimated value and observed value, and the other is
I(Y, Ŷ) comparing the overlapped area.

The performance measure D(Y, Ŷ) comparing the difference between the predicted value and
observed value and is given as follows [5].

D(Y, Ŷ) =
n

∑
i=1

md(Yi, Ŷi),

where

md(Yi, Ŷi) =

∫ ∞
−∞

∣∣∣µYi (x)− µŶi
(x)
∣∣∣dx∫ ∞

−∞

∣∣µYi (x)
∣∣dx

+ hd(Yi(0), Ŷi(0))

and hd(Yi(0), Ŷi(0)) = inf{inf{|a− b| : a ∈ Yi(0)} : b ∈ Ŷi(0)}. The more efficient model has md value
closer to zero.

The performance measure I(Y, Ŷ) comparing the overlapped area between the predicted value
and observed value is given as follows [4].

I(Y, Ŷ) =
n

∑
i=1

c(Yi, Ŷi),

where

c(Yi, Ŷi) =

∫ ∞
−∞ Min{µYi (x), µŶi

(x)}dx∫ ∞
−∞ µYi (x)dx +

∫ ∞
−∞ µŶi

(x)dx−
∫ ∞
−∞ Min{µYi (x), µŶi

(x)}dx

and Min means the minimum value. The more efficient method has the smaller value of D(Y, Ŷ) and
the larger value of I(Y, Ŷ).
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To show the efficiency of the proposed estimation method, we use examples used by D’Urso [8]
and Yoon et al. [14]. To compare the performance of the proposed algorithm with the existing methods,
the Chachi and Taheri method [4] and the Diamond method [7], which are based on least squares
estimation, are used.

Example 1. D’Urso [8] and Chachi and Taheri [4] consider a multiple fuzzy regression model. Table 1 shows
the performance data for 30 quality Roman restaurants.

1. Estimate the center of the dependent variable using the least absolute deviation method.
The estimated center is given by the following equation:

m̂Yi = 0.070486 + 0.418084x1 + 0.500537x2

2. From Table 1, we obtain SlY = {0, 0.25, 0.5, 0.75} which is the set of left spreads of dependent
variable. Define the universe discourse Sl as [max{0, SlY min

− c1}, SlY max
+ c2] = [0, 0.8],

where SlY min
= 0 and SlY max

= 0.75 with proper constant c1 and c2.
3. Estimate the left spread of dependent variable using the F-transform and Fisher’s linear

discriminant analysis. The given data shows that the spreads of 30 samples are expressed
in only four numbers. The basic functions of Sl can be given as follows:

Lk =


(0, 0, 0.2)T k = 1,

(0.2(k− 1), 0.2, 0.2)T 2 ≤ k ≤ 4,

(0.8, 0.2, 0)T k = 5.

Using the defined fuzzy partition and Equation (2), the F-transform is obtained as follows:

Fk[SlY ] = [Fl
1, Fl

2, Fl
3, Fl

4, Fl
5] = [0, 0.25, 0.42742, 0.55357, 0.75].

Since the number of the overlapped basic function is two, each of the data is grouped two times.
The first one is represented by g1 and the Fisher linear discriminant functions which classify the given
data using independent variables lX1 and lX2 are as follows:

g12 = 68.95679 + 8.57909lX1 + 11.23412lX2

g13 = −54.63401 + 7.71719lX1 + 9.92721lX2

g14 = −68.25801 + 8.59155lX1 + 11.12702lX2

g15 = −64.67950 + 8.022077lX1 + 11.13042lX2

where lX1 = SlX1
−mX1 and lX2 = SlX2

−mX2 are not spreads but endpoints of the triangular fuzzy set.
Using the Fisher’s discriminant scores obtained by the above the Fisher linear discriminant

functions, g1 is predicted as ĝ1. By similar method, the second one is represented by g2 and g2 is
predicted as ĝ2. The results are presented in Table 2. In Table 2, the symbol m.g1 (or m.g2) represents
the membership degree to the group g1 (or g2) of sly. From Table 2 and Equation (3), the left spreads

are predicted. For instance, ŝlY1
=

Fl
3·m.g1+Fl

2·m.g2
m.g1+m.g2

= 0.42742·0.75+0.25·0.25
0.75+0.25 = 0.38306. By same method,

the right spreads are also predicted and the predicted spreads are presented in Table 3. Table 4 shows
the final values estimated by the proposed hybrid algorithm. The symbols ly and ry denote the left
endpoint and the right endpoint of the dependent variable, respectively.
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Table 2. The predicted groups based on the overlapped basic functions.

obs sly gl ĝ1 m.g1 g2 ĝ2 m.g2

1 0.75 5 3 0.75 4 2 0.25
2 0.25 3 3 0.25 2 2 0.75
3 0.25 3 3 0.25 2 2 0.75
4 0 2 2 0 1 1 1
5 0.75 5 4 0.75 4 3 0.25
6 0 2 3 0 1 2 1
7 0.5 4 4 0.5 3 3 0.5
8 0 2 3 0 1 2 1
9 0.5 4 4 0.5 3 3 0.5

10 0.25 3 3 0.25 2 2 0.75
11 0.75 5 2 0.75 4 1 0.25
12 0.25 3 3 0.25 2 2 0.75
13 0 2 4 0 1 3 1
14 0.75 5 2 0.75 4 1 0.25
15 0.5 4 3 0.5 3 2 0.5
16 0.5 4 3 0.5 3 2 0.5
17 0.25 3 3 0.25 2 2 0.75
18 0.5 4 2 0.5 3 1 0.5
19 0.75 5 4 0.75 4 3 0.25
20 0.5 4 2 0.5 3 1 0.5
21 0.5 4 4 0.5 3 3 0.5
22 0.25 3 2 0.25 2 1 0.75
23 0.5 4 2 0.5 3 1 0.5
24 0.75 5 3 0.75 4 2 0.25
25 0.25 3 3 0.25 2 2 0.75
26 0.25 3 3 0.25 2 2 0.75
27 0.5 4 3 0.5 3 2 0.5
28 0.5 4 4 0.5 3 3 0.5
29 0.5 4 3 0.5 3 2 0.5
30 0.25 3 3 0.25 2 2 0.75

The final estimate Ŷ is obtained from Table 4, and the performance measures D(Y, Ŷ) and I(Y, Ŷ)
are given in Table 5. Table 5 shows that the proposed hybrid estimation algorithm has the smallest sum
of areas for residual. The area of overlap between the estimated and observed values is smaller than
that of the difference method, but the difference is not large. Therefore, we can say that the proposed
hybrid algorithm outperforms the existing methods.

Example 2. Yoon et al. [15] surveyed the impact of family (Xi1), colleague (Xi2), school (Xi3), and national
satisfaction (Xi4) on life satisfaction (Yi). Table 3 shows data on the satisfaction study, and the data (m, s)T in
Table 6 is represented by a symmetric triangular fuzzy number with central m with width s. The number of data
on the life satisfaction in Table 6 is 106 but the size of the set of the spread Ss = {0, 0.5, 1, 1.5, 2.5, 3.5, 4, 4.5, 5}
is only nine. This means that the same value is expressed repeatedly. In this case, it may be more efficient to
classify the spread of a dependent variable using discriminant analysis.
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Table 3. The predicted spreads based on the inverse F-transform.

obs sly ŝly sry ŝry

1 0.75 0.38306 1 0.83333
2 0.25 0.29435 0.5 0.5
3 0.25 0.29435 0.5 0.5
4 0 0 1 1.20434
5 0.75 0.52203 1 1.20434
6 0 0.25 1 0.83333
7 0.5 0.4905 1.25 1.18151
8 0 0.25 1 1.20434
9 0.5 0.4905 1.25 1.18151

10 0.25 0.29435 0.5 0.5
11 0.75 0.1875 1 1.20434
12 0.25 0.29435 0.5 0.5
13 0 0.42742 1 1.20434
14 0.75 0.1875 1 1.20434
15 0.5 0.33871 1.25 1.18151
16 0.5 0.33871 1.25 1.18151
17 0.25 0.29435 0.5 0.5
18 0.5 0.125 1.25 1.18151
19 0.75 0.52203 1 1.20434
20 0.5 0.125 1.25 1.18151
21 0.5 0.4905 1.25 1.18151
22 0.25 0.0625 0.5 1.11301
23 0.5 0.125 1.25 1.18151
24 0.75 0.38306 1 1.20434
25 0.25 0.29435 0.5 1.11301
26 0.25 0.29435 0.5 1.11301
27 0.5 0.33871 1.25 1.18151
28 0.5 0.4905 1.25 1.18151
29 0.5 0.33871 1.25 1.18151
30 0.25 0.29435 0.5 0.5

Table 6 shows data on the satisfaction study, and the data (m, s)T in Table 6 is represented by
a symmetric triangular fuzzy number with central m with width s. The number of data on the life
satisfaction in Table 6 is 106 but the size of the set of the spread Ss = {0, 0.5, 1, 1.5, 2.5, 3.5, 4, 4.5, 5} is
only nine. This means that the same value is expressed repeatedly. In this case, it may be more efficient
to classify the spread of a dependent variable using discriminant analysis. The fuzzy partition of Ss for
discriminant analysis can be defined as follows:

Sk =


(0, 0, 1.25)T k = 1,

((k− 1)1.25, 1.25, 1.25)T 2 ≤ k ≤ 5,

(6.25, 1.25, 0)T k = 6.

Since the number of the overlapped basic function is two, each of the data is grouped two times.
The first one is represented by g1 and the Fisher linear discriminant functions which classify the given
data using independent variables lX1 and lX2 are as follows:

g12 = −166.828 + 1.12827lX1 + 1.69757lX1 + 0.63796lX1 + 0.40676lX1

g13 = −160.58558 + 1.08448lX1 + 1.69049lX1 + 0.662188lX1 + 0.40055lX1

g14 = −163.4525 + 1.10958lX1 + 1.67704lX1 + 0.59332lX1 + 0.44547lX1

g15 = −165.96681 + 1.09384lX1 + 1.69994lX1 + 0.62236lX1 + 0.45089lX1
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where lXi = SlXi
−mXi (i = 1, 2, 3, 4) are not spreads but endpoints of the triangular fuzzy set. And the

result of LAD estimation for the centers {(mXi1 , · · · , mXi4 , mYi ) : i = 1, · · · , 106} of dependent and
independent variables is as follows:

mŶi
= 0.0039 + 0.2005mXi1 + 0.2501mXi2 + 0.3500mXi3 + 0.1992mXi4

Table 4. The final prediction results of the dependent variable.

obs ly my ry l̂y m̂y r̂y

1 7.25 8 9 5.36384 5.7469 6.58023
2 5.75 6 6.5 4.95205 5.2464 5.7464
3 5.75 6 6.5 5.78825 6.0826 6.5826
4 9 9 10 7.9198 7.9198 9.12414
5 7.25 8 9 6.89727 7.4193 8.62364
6 5 5 6 5.8326 6.0826 6.91593
7 6.5 7 8.25 6.5107 7.0012 8.18271
8 5 5 6 6.2507 6.5007 7.70504
9 6.5 7 8.25 6.5107 7.0012 8.18271

10 5.75 6 6.5 5.78825 6.0826 6.5826
11 7.25 8 9 6.8137 7.0012 8.20554
12 5.75 6 6.5 5.70585 6.0002 6.5002
13 9 9 10 6.57378 7.0012 8.20554
14 7.25 8 9 6.8137 7.0012 8.20554
15 6.5 7 8.25 6.16199 6.5007 7.68221
16 6.5 7 8.25 6.16199 6.5007 7.68221
17 5.75 6 6.5 5.78825 6.0826 6.5826
18 6.5 7 8.25 6.8762 7.0012 8.18271
19 7.25 8 9 5.97867 6.5007 7.70504
20 6.5 7 8.25 7.3767 7.5017 8.68321
21 6.5 7 8.25 6.5107 7.0012 8.18271
22 5.75 6 6.5 6.9387 7.0012 8.11421
23 6.5 7 8.25 7.3767 7.5017 8.68321
24 7.25 8 9 6.11764 6.5007 7.70504
25 5.75 6 6.5 6.20635 6.5007 7.61371
26 5.75 6 6.5 6.20635 6.5007 7.61371
27 6.5 7 8.25 6.16199 6.5007 7.68221
28 6.5 7 8.25 6.5107 7.0012 8.18271
29 6.5 7 8.25 6.16199 6.5007 7.68221
30 5.75 6 6.5 5.78825 6.0826 6.5826

Table 5. The comparison of performance measures for Example 1.

Diamond Method [7] Chachi Method [4] Proposed Method

D(Y, Ŷ) 1.7442 1.9495 1.607425
I(Y, Ŷ) 0.2668 0.3785 0.368251

Table 6. Data for the satisfaction in Example 2.

Level of Satisfaction

Xi1 Xi2 Xi3 Xi4 Yi Ŷi

1 (67.5, 2.5)T (77.5, 2.5)T (75.5, 4.5)T (70.0, 0.0)T (77.5, 2.5)T (76.0, 2.5)T
2 (85.5, 4.5)T (87.5, 2.5)T (90.0, 0.0)T (77.5, 2.5)T (75.5, 4.5)T (88.0, 5.0)T
...

...
...

...
...

...
...

105 (90.0, 0.0)T (90.0, 0.0)T (77.5, 2.5)T (90.0, 2.5)T (85.5, 4.5)T (86.5, 5.0)T
106 (100, 0.00)T (90.0, 1.0)T (80.0, 4.0)T (80.0, 3.5)T (67.5, 2.5)T (84.5, 2.5)T

The life satisfaction estimated using fuzzy partition, discriminant analysis, and LAD estimation
is given in Table 6. The results of the performance measure for life satisfaction Yi is presented in
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Table 7. The performance of the proposed hybrid estimation algorithm is compared with the Diamond
method [7] and Chachi and Taheri method [4], as shown in Example 1. Table 7 shows that if the values
of spread are repeatedly expressed with the same values, it may be more efficient to use F-transform
and discriminating analysis.

Table 7. The comparison of performance measures for Example 2.

Dianmond Method [7] Chachi Method [4] Proposed Method

D(Y, Ŷ) 7.1002 6.9835 6.8701
I(Y, Ŷ) 0.1083 0.1078 0.1330

Examples 1 and 2 show that the proposed hybrid estimation algorithm may be more efficient if
the spread of a given dependent variable is expressed as a repeated number. That is, when the number
of spreads of the dependent variable is smaller than the sample size, the proposed hybrid estimation
algorithm is effective.

5. Conclusions

In this paper, we have confirmed that the response function for the center and spread of the
dependent variable in the fuzzy regression model may not match, and proposed the hybrid estimation
algorithm for independently estimating the response function for the center and the response function
for the spread. The proposed hybrid estimation algorithm is a modified and extended new version of
the algorithm introduced in Jung et al. [16]. We also applied the discriminant analysis for categorical
data to construct the fuzzy regression model when the size of the set of spreads of the dependent
variable is very small than the number of samples. In addition, F-transform was used to categorize the
spread of the dependent variable. Then, we combined the LAD estimation method for the center of the
dependent variable with F-transform and discriminant analysis for the spread of dependent variable
to estimate the value of the dependent variable.

Two examples have confirmed that the proposed fuzzy regression model estimated using the
F-transform, Fisher discriminant function, and LAD estimation method can be more efficient than
the existing other methods. This means that when the number of spreads of the dependent variable
is much less than the sample size or the number of centers of the dependent variable, the proposed
hybrid estimation algorithm can provide more efficient estimation results.

In future studies, we plan to check whether the proposed hybrid algorithm is robust to the number
of basic functions and the type of membership function. In addition, we will apply our algorithm to
fuzzy regression model with fuzzy coefficients.
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