
applied
sciences

Article

Empirical Performance Analysis of Collective
Communication for Distributed Deep Learning
in a Many-Core CPU Environment

Junghoon Woo, Hyeonseong Choi and Jaehwan Lee *
School of Electronics and Information Engineering, Korea Aerospace University, 76, Hanggongdaehak-ro,
Deogyang-gu, Gyeonggi-do, Goyang-si 10540, Korea; starrystyle88@gmail.com (J.W.);
chyon794@gmail.com (H.C.)
* Correspondence: jlee@kau.ac.kr; Tel.: +82-2-300-0122

Received: 28 August 2020; Accepted: 21 September 2020; Published: 25 September 2020
����������
�������

Abstract: To accommodate lots of training data and complex training models, “distributed” deep
learning training has become employed more and more frequently. However, communication
bottlenecks between distributed systems lead to poor performance of distributed deep learning
training. In this study, we proposed a new collective communication method in a Python environment
by utilizing Multi-Channel Dynamic Random Access Memory (MCDRAM) in Intel Xeon Phi Knights
Landing processors. Major deep learning software platforms, such as TensorFlow and PyTorch,
offer Python as a main development language, so we developed an efficient communication library by
adapting Memkind library, which is a C-based library to utilize high-performance memory MCDRAM.
For performance evaluation, we tested the popular collective communication methods in distributed
deep learning, such as Broadcast, Gather, and AllReduce. We conducted experiments to analyze
the effect of high-performance memory and processor location on communication performance.
In addition, we analyze performance in a Docker environment for further relevance given the recent
major trend of Cloud computing. By extensive experiments in our testbed, we confirmed that the
communication in our proposed method showed performance improvement by up to 487%.

Keywords: Intel knights landing; distributed deep learning; python; collective communication; high
bandwidth memory; docker; MPI

1. Introduction

The performance of deep learning [1] has improved significantly, thanks to the advanced
neural network architecture, computer hardware (HW) performance improvement, and utilization of
large-scale datasets. To accommodate massive amounts of training data on large-scale neural network
models, most deep learning platforms, such as TensorFlow [2] and PyTorch [3], offer “distributed”
training methods to exploit multiple cores and machines. When executing distributed deep learning,
the computation of gradients is executed by hundreds of cores in worker nodes, and the computed
gradients should be shared with other nodes to keep the updated gradients. Since updating fresh
gradients across nodes should be done periodically, the collective communication performance can
be a major performance bottleneck point in the distributed deep learning process [4]. Li et al. show
a bottleneck of communication when training a deep learning model (AlexNet, ResNet-152 and
VGG-16) through distributed deep learning in five machine cluster. In this training, about 75% of the
total running time was communication time [4]. Therefore, efficient distributed deep learning requires
to reduce communication time by optimizing communication layers.

Data parallelization is a representative distributed deep learning method. Data parallelization
can be divided into a parameter server architecture and an AllReduce architecture according to the

Appl. Sci. 2020, 10, 6717; doi:10.3390/app10196717 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7992-2360
https://orcid.org/0000-0001-6248-9567
http://dx.doi.org/10.3390/app10196717
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6717?type=check_update&version=3

Appl. Sci. 2020, 10, 6717 2 of 24

communication method. In the parameter server architecture, there are parameter server processes and
worker processes. The parameter server manages model parameters, and workers compute gradients.
In deep learning systems, parameters are variables of the model to be trained. Gradients are values to
find the optimal parameters obtained after back-propagation. Therefore, to train the deep learning
model in the parameter server architecture, communication between the parameter server and the
worker is required. In contrast, the AllReduce architecture does not have a parameter server to manage
model parameters. The gradients computed by each worker are shared with each other through
peer-to-peer (P-to-P) communication. Therefore, when performing distributed deep learning, various
types of communication are performed, and an efficient communication method is required to improve
the performance of the distributed deep learning system.

Python is a library-rich and object-oriented language available on a variety of platforms [5]. It is
used in various fields along with computer science because it is easy to learn and use, especially for
deep learning applications. TensorFlow and PyTorch, which are typical frameworks for deep learning,
are also based on Python. For these reasons, Python should use multiple cores and simultaneous
communications to support distributed deep learning efficiently. In Python-based distributed deep
learning environments, we can use multi-processing or multi-threading methods. The major difference
between the two methods is the way to share memory; multi-threading can share memory more
efficiently compared to multi-processing. However, in Python environments, multi-threading has
the disadvantage of limiting the use of computing resources because of Python’s unique feature of
Global Interpreter Lock (GIL) [6,7]. These characteristics make Python easier to use but also present
obstacles to performance. Therefore, simply adopting multi-threading communications is not efficient
in distributed deep learning training workloads.

In this paper, we propose a novel method of efficiently exchanging data when performing
distributed deep learning in Python and many-core CPU environments, and we compare and analyze
the proposed method through extensive experiments in various environments.

The contributions of this paper are as follows:

• First, we propose a new method of exchanging distributed deep learning data using Message
Passing Interface (MPI) [8,9] that performs multi-processing instead of multi-threading,
which has a problem with the GIL feature in Python. We developed Application Programming
Interfaces (APIs) of Broadcast, Gather, and AllReduce collective communication [10], which are
frequently used as MPI data communication methods in distributed deep learning. In addition,
we compare and analyze Python’s two MPI communication methods, buffer communication,
and object communication.

• Second, we improve our Python-based MPI library by leveraging the advanced performance
of On-package memory Multi-Channel Dynamic Random Access Memory (MCDRAM) of the
Intel Xeon Phi Knights Landing processor [11], which is a typical many-core CPU used in
supercomputing centers. To utilize MCDRAM, we adopted the Memkind library, a C-based library
for memory allocation [12]. To use the Memkind library in a Python environment, Cython [13,14]
is used to implement wrapping in Python.

• Third, for comparative analysis in various environments, we compare and analyze MPI
communication performance by extensive experiments according to the Cluster mode and
Memory mode of the Intel Xeon Phi Knights Landing processor. In addition, considering the
practical distributed deep learning environments, we also conducted the experiment on the
open source virtualization platform Docker [15] to see the performance difference in a Cloud
computing environment.

The remainder of this paper is organized as follows. Section 2 presents related works. Section 3
explains the background of our study. Section 4 explains how we developed a Python-based MPI
library to exploit MCDRAM and how we bound it with Docker Container. Section 5 describes the

Appl. Sci. 2020, 10, 6717 3 of 24

experiment setup and compares the results to evaluate the proposed method with existing methods.
Section 6 summarizes the experiment results and discussions. Section 7 concludes this paper.

2. Related Work

There is a study to improve and evaluate the communication performance between nodes in
distributed deep learning. Ahn et al. [16] propose a new virtual shared memory framework called
Soft Memory Box (SMB) that can share the memory of remote nodes between distributed processes in
order to reduce the communication overhead of large-scale distributed deep learning. SMB proposed a
new communication technology other than MPI by constructing separate servers and virtual devices.
Our research and SMB have the same goal of improving data communication performance when deep
learning in a distributed environment. However, there is a difference in that we proposed performance
improvement based on the utilization of resources of high-performance computing and commonly
used Python and MPI communication technologies.

There are studies to analyze and evaluate the performance of High-Bandwidth Memory (HBM).
Peng et al. [17] compare the performance of HBM and DRAM and analyze the impact of HBM on
High Performance Computing (HPC) applications. The results of this study show that applications
using HBM achieve up to three times the performance of applications using only DRAM. We not
only compare HBM and DRAM but also compare and analyze the performance of two memories in a
Docker Container environment.

There is a study to evaluate communication performance in many-core CPU and high bandwidth
memory environment. Cho et al. [18] compare the MPI communication performance according to
the MVAPICH2 shared memory technology and the location of the many-core CPU processor. In the
experiment, intra-node communication and inter-node communication are compared. In addition,
this study evaluates experiments according to the location of the memory and processor. Unlike this
study, we propose to improve the MPI performance in the Python environment, and we experiment
and analyze according to the Cluster mode and Memory mode.

There is a study to evaluate the performance of the virtualization solution Container and
Hypervisor. Awan et al. [19] compare the performance overhead of virtualization in Container-based
and Hypervisor-based. The results of this study show that the average performance of Containers
is superior to that of virtual machines. Therefore, in our study, we evaluate the performance in the
Docker Container environment.

There are several studies evaluating communication performance using Containers in HPC
environment. Zhang et al. [20] evaluate the performance of MPI in Singularity-based Containers.
Experiments show that Singularity Container technology does not degrade MPI communication
performance when using different Memory Modes (Flat, Cache) on Intel Xeon and Intel Xeon Knights
Landing (KNL) platforms. However, our study evaluates and analyzes MPI performance in Docker
Container. In addition, Zhang et al. [21] propose communication through shared memory and
Cross Memory Attach (CMA) channels when executing MPI tasks in a multi-container environment.
According to this study, communication performance is improved in a large-scale Docker Container
environment. Our study compares and analyzes in multiple Docker Containers using Python
environment and high-performance memory.

Li et al. propose In-Network Computing to Exchange and Process Training Information Of Neural
Networks (INCEPTIONN) to optimize communication in distributed deep learning [4]. They propose
a compression algorithm to optimize communication and implement the algorithm through hardware.
In addition, through experiments, they show that INCEPTIONN can reduce communication time by
up to 80.7% and improve speed by up to 3.1 times compared to conventional training systems. Unlike
INCEPTIONN, in our study, we propose a software-based method to optimize communication in
distributed deep learning by utilizing KNL’s HBM and MPI.

Appl. Sci. 2020, 10, 6717 4 of 24

3. Background

In this section, we describe distributed deep learning, Python GIL, MPI, and Intel Knights Landing.

3.1. Distributed Deep Learning

To achieve high accuracy using deep learning, the size of datasets and training models is increasing.
For example, the ImageNet dataset, one of the most used datasets, consists of over 1.2 million images [22].
In addition, the amount of uploaded data from Social Networking Service (SNS) users is increasing
day by day [23]. In the case of deep learning model, the AmoebaNet model, which shows the highest
accuracy in recent years, consists of more than 550 M parameters [24]. Therefore, the computing power
and memory resources required to perform deep learning are increasing [25,26]. In order to solve the
increase in required resources, distributed deep learning using multiple workers is performed.

The purpose of a deep learning system is to find the value of the parameters that shows the highest
accuracy. In deep learning, the parameter is the weight of the features of the input data. Gradients are
the derivatives of the loss function based on model parameters. Therefore, training is the process to
find a parameter that can minimize the loss function. Therefore, it is necessary to minimize the loss by
applying gradients computed by distributed workers to the model parameters.

The distributed deep learning methods can be two-fold: data parallelization and model
parallelization. In the case of data parallelization, the deep learning model is replicated across
multiple workers [27,28]. Each worker trains a deep learning model with different input data. In the
case of model parallelization, one training model is divided into multiple workers. Each worker trains
part of a deep learning model with the same input data.

In data parallelization, workers compute gradients using different input data. Therefore, it is
necessary to aggregate the gradients computed by each worker and apply the aggregated gradients to
the model parameters of all workers. Data parallelization architecture can be divided according to
the way gradients aggregation is performed. Typical data parallelization architectures are parameter
servers and AllReduce [29,30]. In the parameter server architecture, processes are divided into
two types—parameter servers and workers. The parameter server updates model parameters using
gradients computed by workers and send the latest model parameters to workers. The worker computes
gradients to update the model parameters using the input data and model parameters received from
the parameter server, and after that, sends gradients to the parameter server. The parameter server
architecture can operate both synchronously and asynchronously. In a synchronous way, the parameter
server broadcasts model parameters to all workers and gathers computed gradients. In an asynchronous
way, the parameter server exchanges model parameters and gradients with each worker through
peer-to-peer communication.

In the case of the AllReduce architecture, there is no server that collects gradients computed
by each worker and manages model parameters. In the AllReduce architecture, each worker shares
gradients computed by each other through AllReduce based on P-to-P communication. Therefore,
overhead due to communication between parameter server and worker can be reduced. However,
the AllReduce architecture has a limitation that AllReduce architecture should operate only in a
synchronous way.

As described above, distributed deep learning can be performed through various communication
methods. Broadcast is a One-to-All communication method. In the synchronous parameter server
architecture, the parameter server broadcasts the latest model parameters to all workers. Gather is an
All-to-One communication. Gather is used when the parameter server collects the gradients computed
by workers. AllReduce is an All-to-All communication. In the AllReduce architecture, AllReduce
communication is used to share the gradients computed by each worker with other workers. In addition,
as the scale of the distributed deep learning system increases, the amount of communication increases.
Therefore, in order to mitigate the performance degradation due to communication when performing
distributed deep learning, an efficient communication method must be proposed.

Appl. Sci. 2020, 10, 6717 5 of 24

3.2. Python GIL

Python’s Global Interpreter Lock (GIL) is a mutex that restricts access to Python objects to only
one thread when multiple threads are used to execute Python code [6]. GIL is needed because
CPython’s memory management method is not thread-safe. CPython is the very first version of Python,
which was originally written in C [31]. CPython is the standard implementation of Python to have
basic functionality. In the early days of CPython’s development, there was no concept of threads. Later,
the thread concept was used by many developers as an easy and concise CPython language. Over time,
there was a problem due to the concept of a thread, and GIL was created as a prompt solution to
the problem. CPython needs to request access to the GIL to run multiple threads in one interpreter.
When using asynchronous and multi-threaded code, Python developers can avoid process crashes by
locking or deadlocking variables.

For this reason, GIL allows CPython to run only one thread when using multi-thread. It is not a
problem when implementing a single thread using Python, but there is a problem of wasting resources
when performing multi-thread in many-core CPU environments. There are various methods to solve
this problem. As a first method, when performing multi-threading using a CPU, a task that requires a
lot of computation is executed with C code out of GIL. The second method is to use multi-process
instead of multi-thread. Since CPython 2.6, the multi-processing module has been added as a standard
library. Multi-processing can share variables through queues or pipes, and it also has a lock object
that locks the objects of the master process for use in other processes. However, multi-process has one
important disadvantage; it has significant overhead in memory usage and execution time. Therefore,
in many-core environments, the multi-processed Python execution is not an effective solution, especially
when lots of data in memory should be shared with multi-processes.

3.3. MPI

Message Passing Interface (MPI) is a library for message passing and refers to the basic functions,
Application Programming Interface (API), required for data exchange in distributed and parallel
processing [9,10]. This standard supports both point-to-point and collective communication. The MPI
application consists of several processes that exchange data with each other. Each process starts in
parallel simultaneously when the MPI application is running and exchanges data with each other
during execution. The advantage of MPI is that it can exchange data and information easily between
multiple machines. Parallel MPI is used not only in parallel computers that exchange information
at high speed, such as shared memory or InfiniBand, but also in PC clusters. MPI has various open
libraries on different HW environments, such as MPICH, OpenMPI, and Intel MPI [32,33].

MPI allocates tasks based on process. Each process corresponds to a set called the communicator.
A communicator defines a group of processes that have the ability to communicate. In the same
communicator, messages can be exchanged with different processes. In the communicator, processes
are identified by rank. There are two types of communication methods in MPI: point-to-point
communication and collective communication. MPI_Send and MPI_Recv are common point-to-point
communication methods of MPI. Group communication is communication in which all processes,
which are communicators, participate together. MPI_Bcast, MPI_Gather, MPI_Allgather, MPI_Reduce,
and MPI_AllReduce are all representative collective communications. Figure 1 shows the procedure for
collective communication. The experiment presented in this study performs MPI_Bcast, MPI_Gather,
and MPI_AllReduce communication. MPI_Bcast is a Broadcast communication that sends data of
the root process to all other processes in the same communicator. MPI_Gather gathers data from
multiple processes in the Communicator to the root process. MPI_AllReduce combines the values of
all processes in the communicator and redistributes the results to all processes.

Appl. Sci. 2020, 10, 6717 6 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 25

Figure 1. Message Passing Interface (MPI) collective communication.

3.4. Many-Core CPU: Knights Landing

The Intel Xeon Phi Knights Landing (KNL) processor is a many-core processor developed by
Intel for use in supercomputers, high performance servers and advanced workstations [11]. Figure 2
shows the KNL diagram. A socket of KNL can have up to 36 active tiles, and each tile consists of two
cores [34–36]. Thus, a Knights Landing socket can have up to 72 cores. The two cores in each tile
communicate through the 2D Mesh Interconnect Architecture based on the Ring Architecture. The
communication mesh is composed of four parallel networks. Each network provides different types
of packet information, such as commands, data, and responses. It is optimized for Knight Landing
traffic flows and protocols.

Figure 2. Diagram of Knights Landing (KNL) process architecture. Redrawn from [36], Sandia
National Lab. (SNL-NM), 2017.

KNL has three main Cluster modes. Cluster mode defines various methods in which memory
requests generated by the core are executed by the memory controller. To maintain cache coherency,
KNL has a Distributed Tag Directory (DTD) [37]. The DTD consists of a set of Tag Directories (TDs)
for each tile that identifies the state and location of the chips in the cache line. For every memory
address, the hardware can identify the TD of that address as a hash function. There are three Cluster

Figure 1. Message Passing Interface (MPI) collective communication.

3.4. Many-Core CPU: Knights Landing

The Intel Xeon Phi Knights Landing (KNL) processor is a many-core processor developed by
Intel for use in supercomputers, high performance servers and advanced workstations [11]. Figure 2
shows the KNL diagram. A socket of KNL can have up to 36 active tiles, and each tile consists of
two cores [34–36]. Thus, a Knights Landing socket can have up to 72 cores. The two cores in each
tile communicate through the 2D Mesh Interconnect Architecture based on the Ring Architecture.
The communication mesh is composed of four parallel networks. Each network provides different
types of packet information, such as commands, data, and responses. It is optimized for Knight
Landing traffic flows and protocols.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 25

Figure 1. Message Passing Interface (MPI) collective communication.

3.4. Many-Core CPU: Knights Landing

The Intel Xeon Phi Knights Landing (KNL) processor is a many-core processor developed by
Intel for use in supercomputers, high performance servers and advanced workstations [11]. Figure 2
shows the KNL diagram. A socket of KNL can have up to 36 active tiles, and each tile consists of two
cores [34–36]. Thus, a Knights Landing socket can have up to 72 cores. The two cores in each tile
communicate through the 2D Mesh Interconnect Architecture based on the Ring Architecture. The
communication mesh is composed of four parallel networks. Each network provides different types
of packet information, such as commands, data, and responses. It is optimized for Knight Landing
traffic flows and protocols.

Figure 2. Diagram of Knights Landing (KNL) process architecture. Redrawn from [36], Sandia
National Lab. (SNL-NM), 2017.

KNL has three main Cluster modes. Cluster mode defines various methods in which memory
requests generated by the core are executed by the memory controller. To maintain cache coherency,
KNL has a Distributed Tag Directory (DTD) [37]. The DTD consists of a set of Tag Directories (TDs)
for each tile that identifies the state and location of the chips in the cache line. For every memory
address, the hardware can identify the TD of that address as a hash function. There are three Cluster

Figure 2. Diagram of Knights Landing (KNL) process architecture. Redrawn from [36], Sandia National
Lab. (SNL-NM), 2017.

KNL has three main Cluster modes. Cluster mode defines various methods in which memory
requests generated by the core are executed by the memory controller. To maintain cache coherency,
KNL has a Distributed Tag Directory (DTD) [37]. The DTD consists of a set of Tag Directories (TDs) for

Appl. Sci. 2020, 10, 6717 7 of 24

each tile that identifies the state and location of the chips in the cache line. For every memory address,
the hardware can identify the TD of that address as a hash function. There are three Cluster modes in
KNL; All-to-All, Quadrant, and Sub-NUMA Clustering-4 (SNC-4) modes. In All-to-All mode, memory
addresses are evenly distributed across all TDs of a chip, and this may result in a long waiting time
due to cache hits and cache misses. Quadrant mode divides the tile into four parts called quadrants.
The chip is divided into quadrants but mapped to a single Non-Uniform Memory Access (NUMA) node.
Memory addresses served by a memory controller in a quadrant are guaranteed to be mapped only to
TDs contained in that quadrant. SNC-4 mode divides the chip into quadrants, and each quadrant is
mapped to a different NUMA node. In this mode, NUMA-aware software can pin software threads
to the same quadrant that contains the TD and accesses NUMA-local memory. SNC-4 mode has a
memory controller and TD in the same area and has a shorter path than Quadrant mode. Because
Memory controller are physically close to each other, this mode has the lowest latency provided that
communication stays within a NUMA domain. It is recommended that users set the Cluster mode
according to the characteristics of the application. An appropriate mode should be set for the lowest
latency with the cache and the largest communication bandwidth.

KNL has two types of memory, MCDRAM and Double Data Rate 4 (DDR4) [38]. Multi-Channel
Dynamic Random-Access Memory (MCDRAM) is an On-package High-Bandwidth Memory.
MCDRAM has about five times the bandwidth of reading and writing than DDR4. MCDRAM
has three Memory modes: Cache, Flat, and Hybrid. In Cache mode, the entire MCDRAM is used as
a cache. In Flat mode, both MCDRAM and DDR4 memory are mapped to the same system address
space. Hybrid mode is divided so that a part of MCDRAM is used as a cache, and the rest is used like
Flat mode.

4. Python-Based MPI Collective Communication Library

This section describes how we build the Python-based MPI collective communication library
considering features of many-core architecture and MCDRAM. We used the Memkind library and
the Cython Wrapping method to use high-performance memory MCDRAM in Python environment.
In addition, we discuss how to bind Docker Container to core and memory when performing
experiments in Docker environment.

4.1. Memkind Library for Using MCDRAM

In order to use MCDRAM, a high-performance memory in the Intel Xeon Phi Knights Landing
processor, we use the Memkind library, which is a user extensible heap manager built on top of
jemalloc [12]. The Memkind library can control memory characteristics and partition the heap between
memory types. Memkind is implemented in user space. It allows the user to manage new memory,
such as MCDRAM, without modifying the application software or operating system.

The Memkind library can be generalized to any NUMA architecture, but in the case of Knights
Landing processors, it is mainly used to manually allocate to MCDRAM using special assignments for
C/C++. Figure 3 presents how Memkind library allocates memory through two different interfaces,
hbwmalloc and memkind. Both interfaces use the same backend. The memkind interface is used as a
general interface, and the hbwmalloc interface is used for high bandwidth memory like MCDRAM.
The memkind interface uses the memkind.h file, and the hbwmalloc interface uses the hbwmalloc.h
file. In this paper, the hbwmalloc interface is used as an experiment using MCDRAM.

Appl. Sci. 2020, 10, 6717 8 of 24
Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 25

Figure 3. Architecture difference between general memory allocation and Multi-Channel Dynamic
Random Access Memory (MCDRAM) memory allocation using Memkind.

In general, when dynamically allocating memory in C and C++ languages, it is allocated using
functions, such as malloc, realloc, and calloc. In addition, the free function is used to deallocate dynamic
memory. For dynamic memory allocation using the hbwmalloc interface of the Memkind library, memory
can be allocated in MCDRAM using the hbw_malloc, hbw_realloc, and hbw_calloc functions. Using the
hbw_free function can deallocate allocated memory. To implement code in C and C++ languages using
the hbwmalloc interface in a Linux environment, we use gcc with -lmemkind option when compiling the
codes.

4.2. Wrapping Memkind

This subsection describes how we use the KNL processor’s MCDRAM in a Python environment.
Numpy [39–41] and Memkind libraries are used to perform Python MPI communication using
MCDRAM. Numpy is a Python library for mathematical and scientific operations that makes it easy
to process matrices or large multidimensional arrays. Wrapping is implemented in Python using
Cython [13,14] to use Memkind library in Python environments. Figure 4 shows the Wrapping
method with Cython is written in the following four steps.

• Step 1. Implement C code that allocates memory using Memkind.
• Step 2. The Cython file has .pyx extension. Wrap the C code implemented in Step 1 using Cython

code.
• Step 3. The Cython code must be compiled differently from Python. Implement a setup file to

perform compilation.
• Step 4. Import the C module defined in Cython.pyx and setup.py into the Python MPI code.

Figure 3. Architecture difference between general memory allocation and Multi-Channel Dynamic
Random Access Memory (MCDRAM) memory allocation using Memkind.

In general, when dynamically allocating memory in C and C++ languages, it is allocated using
functions, such as malloc, realloc, and calloc. In addition, the free function is used to deallocate
dynamic memory. For dynamic memory allocation using the hbwmalloc interface of the Memkind
library, memory can be allocated in MCDRAM using the hbw_malloc, hbw_realloc, and hbw_calloc
functions. Using the hbw_free function can deallocate allocated memory. To implement code in C and
C++ languages using the hbwmalloc interface in a Linux environment, we use gcc with -lmemkind
option when compiling the codes.

4.2. Wrapping Memkind

This subsection describes how we use the KNL processor’s MCDRAM in a Python environment.
Numpy [39–41] and Memkind libraries are used to perform Python MPI communication using
MCDRAM. Numpy is a Python library for mathematical and scientific operations that makes it easy
to process matrices or large multidimensional arrays. Wrapping is implemented in Python using
Cython [13,14] to use Memkind library in Python environments. Figure 4 shows the Wrapping method
with Cython is written in the following four steps.

• Step 1. Implement C code that allocates memory using Memkind.
• Step 2. The Cython file has .pyx extension. Wrap the C code implemented in Step 1 using

Cython code.
• Step 3. The Cython code must be compiled differently from Python. Implement a setup file to

perform compilation.
• Step 4. Import the C module defined in Cython.pyx and setup.py into the Python MPI code.

In the first step, hbw_malloc.c implements the code that allocates memory using the hbw_malloc
function from the Memkind library. In the second step, Cython.pyx is defined to wrap the array
allocated memory with the hbw_malloc function in the first step into an array of Numpy. To receive C
code from a Python object, Cython.pyx needs to get a pointer to the PyObject structure. This step defines
the arrays used to exchange data. We use PyArrayObject when defining an array. PyArrayObject is a
C API provided by Numpy. Numpy provides a C API to access array objects for system extensions
and use in other routines. PyArrayObject contains all the information necessary for a C structured
array. We use the PyArray_SimpleNewFromData function on PyArrayObject and create a Python
array wrapper for C [42]. In the third step, the Python code setup.py is implemented using the distutils
package provided by Cython to compile the Cython.pyx file. The distutils package supports building
and installing additional modules in Python. To compile the Cython.pyx file, setup.py contains all
compile-related information. The setup.py uses Cython compiler to compile Cython.pyx file into C
extension file. After that, the C extension file is converted to the .so or .pyd extension file by the C

Appl. Sci. 2020, 10, 6717 9 of 24

compiler, and .so file is used as a Python module. Finally, the fourth step is to implement the Python
MPI code to exchange the actual data. Implementing the MPI code defines the Numpy used for data
communication. In defining Numpy, the hbw_malloc module defined in Cython.pyx is used for the
array data part of Numpy. MPI communication is performed with Python wrapped with Memkind
and Numpy. Therefore, through this process, data exchange is performed using MCDRAM.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 25

Figure 4. Memkind Cython Wrapping implementation architecture.

In the first step, hbw_malloc.c implements the code that allocates memory using the hbw_malloc
function from the Memkind library. In the second step, Cython.pyx is defined to wrap the array
allocated memory with the hbw_malloc function in the first step into an array of Numpy. To receive
C code from a Python object, Cython.pyx needs to get a pointer to the PyObject structure. This step
defines the arrays used to exchange data. We use PyArrayObject when defining an array.
PyArrayObject is a C API provided by Numpy. Numpy provides a C API to access array objects for
system extensions and use in other routines. PyArrayObject contains all the information necessary
for a C structured array. We use the PyArray_SimpleNewFromData function on PyArrayObject and
create a Python array wrapper for C [42]. In the third step, the Python code setup.py is implemented
using the distutils package provided by Cython to compile the Cython.pyx file. The distutils package
supports building and installing additional modules in Python. To compile the Cython.pyx file,
setup.py contains all compile-related information. The setup.py uses Cython compiler to compile
Cython.pyx file into C extension file. After that, the C extension file is converted to the .so or .pyd
extension file by the C compiler, and .so file is used as a Python module. Finally, the fourth step is to
implement the Python MPI code to exchange the actual data. Implementing the MPI code defines the
Numpy used for data communication. In defining Numpy, the hbw_malloc module defined in
Cython.pyx is used for the array data part of Numpy. MPI communication is performed with Python
wrapped with Memkind and Numpy. Therefore, through this process, data exchange is performed
using MCDRAM.

4.3. Binding Memory and Core to Docker

This subsection describes how we conduct experiments in a Docker environment considering a
distributed environment. Docker is an open source that automates the task of placing Linux
applications into software called Containers. A Container is a standard software unit that packages
code and all dependencies. This allows applications to run quickly and reliably from one computing
environment to another.

In the experiment of this study, to analyze the optimal MPI communication performance in KNL,
we experiment according to Memory mode and Cluster mode. In the experiment, Memory mode uses
Flat mode and Cache mode, and Cluster mode uses Quadrant mode and SNC-4 mode. In Quadrant
mode the chip is divided into four virtual quadrants but is exposed to the operating system as a single
NUMA node [33]. In Quadrant mode, unlike SNC-4 mode, the chip is not divided into multiple

Figure 4. Memkind Cython Wrapping implementation architecture.

4.3. Binding Memory and Core to Docker

This subsection describes how we conduct experiments in a Docker environment considering a
distributed environment. Docker is an open source that automates the task of placing Linux applications
into software called Containers. A Container is a standard software unit that packages code and all
dependencies. This allows applications to run quickly and reliably from one computing environment
to another.

In the experiment of this study, to analyze the optimal MPI communication performance in KNL,
we experiment according to Memory mode and Cluster mode. In the experiment, Memory mode uses
Flat mode and Cache mode, and Cluster mode uses Quadrant mode and SNC-4 mode. In Quadrant
mode the chip is divided into four virtual quadrants but is exposed to the operating system as a single
NUMA node [33]. In Quadrant mode, unlike SNC-4 mode, the chip is not divided into multiple NUMA
nodes. In Flat mode, MCDRAM is used as an operating system’s managed addressable memory.
Therefore, MCDRAM is exposed as a separate NUMA node. As shown in Figure 5, DDR4 and Core are
NUMA node 0, and MCDRAM is NUMA node 1. Therefore, when Flat mode is selected in Quadrant
mode, there are two NUMA domains. Thus, in Quadrant Mode, there is no need to allocate NUMA
Nodes to two Docker Containers or four Docker Containers.

On the other hand, in the SNC-4 mode, each quadrant of the chip is exposed as a separate NUMA
node to the operating system. SNC-4 mode looks like 4 sockets in succession because each quadrant
appears as a separate NUMA domain to the operating system. Each node divides the core and DDR4
into quarters and appears grouped into four nodes. In addition, each node divides the MCDRAM
into quarters and adds four NUMA nodes. Therefore, a total of 8 NUMA nodes are exposed to the
operating system. The divided NUMA nodes have a distance between nodes. For example, in Figure 6,
node 0 is closer to node 4 than other MCDRAM nodes (node5, node6, node7).

Appl. Sci. 2020, 10, 6717 10 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 25

NUMA nodes. In Flat mode, MCDRAM is used as an operating system’s managed addressable
memory. Therefore, MCDRAM is exposed as a separate NUMA node. As shown in Figure 5, DDR4
and Core are NUMA node 0, and MCDRAM is NUMA node 1. Therefore, when Flat mode is selected
in Quadrant mode, there are two NUMA domains. Thus, in Quadrant Mode, there is no need to
allocate NUMA Nodes to two Docker Containers or four Docker Containers.

Figure 5. Non-Uniform Memory Access (NUMA) configuration in Quadrant mode with High-
Bandwidth Memory (HBM) in Flat mode.

On the other hand, in the SNC-4 mode, each quadrant of the chip is exposed as a separate NUMA
node to the operating system. SNC-4 mode looks like 4 sockets in succession because each quadrant
appears as a separate NUMA domain to the operating system. Each node divides the core and DDR4
into quarters and appears grouped into four nodes. In addition, each node divides the MCDRAM
into quarters and adds four NUMA nodes. Therefore, a total of 8 NUMA nodes are exposed to the
operating system. The divided NUMA nodes have a distance between nodes. For example, in Figure
6, node 0 is closer to node 4 than other MCDRAM nodes (node5, node6, node7).

Figure 6. NUMA configuration in Sub-NUMA Clustering-4 (SNC-4) mode with HBM in Flat mode.

In order to obtain optimized performance in SNC-4 mode, code modification or NUMA
environment control is required. In SNC-4 mode, when the path between the MCDRAM node and
DDR4 + Core node is shortly allocated, the waiting time is reduced, and the performance is improved.
Therefore, we assign a Container to two adjacent nodes like the architecture in Figure 7. The first
Container binds to node 0 (core, DDR4) and node 4 (MCDRAM). The second Container binds node 1
and node 5, the third Container binds node 2 and node 6, and the fourth Container binds node 3 and

Figure 5. Non-Uniform Memory Access (NUMA) configuration in Quadrant mode with
High-Bandwidth Memory (HBM) in Flat mode.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 25

NUMA nodes. In Flat mode, MCDRAM is used as an operating system’s managed addressable
memory. Therefore, MCDRAM is exposed as a separate NUMA node. As shown in Figure 5, DDR4
and Core are NUMA node 0, and MCDRAM is NUMA node 1. Therefore, when Flat mode is selected
in Quadrant mode, there are two NUMA domains. Thus, in Quadrant Mode, there is no need to
allocate NUMA Nodes to two Docker Containers or four Docker Containers.

Figure 5. Non-Uniform Memory Access (NUMA) configuration in Quadrant mode with High-
Bandwidth Memory (HBM) in Flat mode.

On the other hand, in the SNC-4 mode, each quadrant of the chip is exposed as a separate NUMA
node to the operating system. SNC-4 mode looks like 4 sockets in succession because each quadrant
appears as a separate NUMA domain to the operating system. Each node divides the core and DDR4
into quarters and appears grouped into four nodes. In addition, each node divides the MCDRAM
into quarters and adds four NUMA nodes. Therefore, a total of 8 NUMA nodes are exposed to the
operating system. The divided NUMA nodes have a distance between nodes. For example, in Figure
6, node 0 is closer to node 4 than other MCDRAM nodes (node5, node6, node7).

Figure 6. NUMA configuration in Sub-NUMA Clustering-4 (SNC-4) mode with HBM in Flat mode.

In order to obtain optimized performance in SNC-4 mode, code modification or NUMA
environment control is required. In SNC-4 mode, when the path between the MCDRAM node and
DDR4 + Core node is shortly allocated, the waiting time is reduced, and the performance is improved.
Therefore, we assign a Container to two adjacent nodes like the architecture in Figure 7. The first
Container binds to node 0 (core, DDR4) and node 4 (MCDRAM). The second Container binds node 1
and node 5, the third Container binds node 2 and node 6, and the fourth Container binds node 3 and

Figure 6. NUMA configuration in Sub-NUMA Clustering-4 (SNC-4) mode with HBM in Flat mode.

In order to obtain optimized performance in SNC-4 mode, code modification or NUMA
environment control is required. In SNC-4 mode, when the path between the MCDRAM node
and DDR4 + Core node is shortly allocated, the waiting time is reduced, and the performance is
improved. Therefore, we assign a Container to two adjacent nodes like the architecture in Figure 7.
The first Container binds to node 0 (core, DDR4) and node 4 (MCDRAM). The second Container binds
node 1 and node 5, the third Container binds node 2 and node 6, and the fourth Container binds node 3
and node 7. When creating a Docker Container, we declare the privileged option so that the Containers
can access the Host’s device. We set up a port to communicate between each Container. For the Host
environment, we use the same binding policy of core and memory in SNC-4 mode.

Appl. Sci. 2020, 10, 6717 11 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 25

node 7. When creating a Docker Container, we declare the privileged option so that the Containers
can access the Host’s device. We set up a port to communicate between each Container. For the Host
environment, we use the same binding policy of core and memory in SNC-4 mode.

Figure 7. Four Docker Containers Architecture bound to NUMA node in SNC-4 mode.

5. Performance Evaluation

In this section, we compare and analyze MPI communication performance in high-performance
memory and Python environment through experiments. The server used in the experiment consists
of a KNL processor with 68 cores, 16 GB of MCDRAM, and 96 GB of DDR4. For software (SW)
environment, we used Linux (Kernel Version 5.2.8) and Intel MPI (Version 2017 Update 3). Due to
the GIL feature of Python, experiments were conducted by exchanging data using MPI, which is a
multi-processing method instead of multi-threading. We tested collective communication of
Broadcast, Gather, and AllReduce methods, which are widely used as MPI communication methods
in parallel and distributed deep learning. Python’s MPI communication has two methods: Object and
Buffer communication [43]. Object communication provides Pickle-based communication to
conveniently communicate objects in Python. Object communication uses all lowercase methods, like
bcast(), gather(), and allreduce(). Buffer communication is an efficient communication method for
array data communication, such as NumPy. Buffer communication uses uppercase, like Bcast(),
Gather(), and AllReduce(). The Pickle base of object communication converts object data into byte
streams and byte streams back into object data [44]. On the other hand, buffer communication allows
direct access to object data using the buffer interface [45]. The objects supported by the buffer
interface are byte and array objects. In this study, buffer communication can be used because the
Numpy array is used in the experiment. Object communication is simple to use but has an overhead
compared to buffer communication, which does not require a conversion process.

In Sections 5.1–5.3, to evaluate the proposed scheme, the Cluster mode of the KNL processor
was tested in Quadrant mode. Memory mode was set in Flat mode and Cache mode for comparison.
Different combinations of DDR4 and MCDRAM were compared by changing the number of
processes in C and Python environments. In addition, to see the Python communication performance
characteristic, we used the Buffer and Object communication methods. In order to consider the
distributed environment, we conducted an experiment on distributed communication in Docker’s
virtual environment. In Section 5.4, we compare Quadrant mode and SNC-4 mode among Cluster
modes of KNL processor.

5.1. Broadcast

In the Broadcast experiment, the data type was Integer and the size of the transferred data was
256 MB. Figure 8 graph shows the result of Broadcast communication time. In the experiment graph

Figure 7. Four Docker Containers Architecture bound to NUMA node in SNC-4 mode.

5. Performance Evaluation

In this section, we compare and analyze MPI communication performance in high-performance
memory and Python environment through experiments. The server used in the experiment consists of a
KNL processor with 68 cores, 16 GB of MCDRAM, and 96 GB of DDR4. For software (SW) environment,
we used Linux (Kernel Version 5.2.8) and Intel MPI (Version 2017 Update 3). Due to the GIL feature of
Python, experiments were conducted by exchanging data using MPI, which is a multi-processing method
instead of multi-threading. We tested collective communication of Broadcast, Gather, and AllReduce
methods, which are widely used as MPI communication methods in parallel and distributed deep
learning. Python’s MPI communication has two methods: Object and Buffer communication [43].
Object communication provides Pickle-based communication to conveniently communicate objects
in Python. Object communication uses all lowercase methods, like bcast(), gather(), and allreduce().
Buffer communication is an efficient communication method for array data communication, such as
NumPy. Buffer communication uses uppercase, like Bcast(), Gather(), and AllReduce(). The Pickle
base of object communication converts object data into byte streams and byte streams back into object
data [44]. On the other hand, buffer communication allows direct access to object data using the
buffer interface [45]. The objects supported by the buffer interface are byte and array objects. In this
study, buffer communication can be used because the Numpy array is used in the experiment. Object
communication is simple to use but has an overhead compared to buffer communication, which does
not require a conversion process.

In Sections 5.1–5.3, to evaluate the proposed scheme, the Cluster mode of the KNL processor
was tested in Quadrant mode. Memory mode was set in Flat mode and Cache mode for comparison.
Different combinations of DDR4 and MCDRAM were compared by changing the number of processes
in C and Python environments. In addition, to see the Python communication performance
characteristic, we used the Buffer and Object communication methods. In order to consider the
distributed environment, we conducted an experiment on distributed communication in Docker’s
virtual environment. In Section 5.4, we compare Quadrant mode and SNC-4 mode among Cluster
modes of KNL processor.

5.1. Broadcast

In the Broadcast experiment, the data type was Integer and the size of the transferred data
was 256 MB. Figure 8 graph shows the result of Broadcast communication time. In the experiment
graph of Figure 8, C represents MPI communication in C environment, Bcast_B represents MPI

Appl. Sci. 2020, 10, 6717 12 of 24

buffer communication in Python environment, and Bcast_O represents MPI object communication in
Python environment.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 25

of Figure 8, C represents MPI communication in C environment, Bcast_B represents MPI buffer
communication in Python environment, and Bcast_O represents MPI object communication in
Python environment.

(a)

(b)

(c)

Figure 8. Cont.

Appl. Sci. 2020, 10, 6717 13 of 24Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 25

(d)

Figure 8. Broadcast communication time results according to the experiment environment: (a) Host;
(b) one Docker Container; (c) two Docker Containers; (d) four Docker Containers.

Figure 8 shows the result of executing Broadcast. Figure 8a is the Host environment, Figure 8b
is the one Docker Container environment, Figure 8c is the two Docker Containers environment, and
Figure 8d is the four Docker Containers environment. In all environments, communication using
MCDRAM in Flat mode showed the fastest communication time. The case of using DDR4 in Cache
mode was second fastest. Finally, the slowest communication time was shown when DDR4 was used
in Flat mode. The method proposed in this paper is Bcast_B, which performs Python buffer
communication when using MCDRAM in Flat mode. When using only DDR4 in Flat mode, Bcast_B
showed slower time than C. However, in the experiment environment of Host and one Container,
the communication time of Bcast_B and C was similar in MCDRAM of Flat mode. Bcast_B
communication in MCDRAM of Flat mode was confirmed to improve performance of up to 487%
compared to Bcast_B communication in DDR4 of Flat mode. This best case was shown when 16
processes were used in one Docker Container. In addition, the performances of the Host (Figure 8a)
and one Container (Figure 8b) environments were similar. This result confirmed Docker’s claim that
the performance difference between the main Host and Docker’s Container is not significant because
Docker directly uses the Host’s resources. However, as the number of Containers increased in
MCDRAM of Flat mode, Bcast_B showed slower communication performance compared to C.
Through this result, we confirmed that multiple Docker Containers are relatively less efficient than
communication in the Host environment.

As mentioned in the background of the previous section, in Cache mode, MCDRAM is used as
a cache. MCDRAM cache is treated as a Last Level Cache (LLC), which is located between L2 cache
and addressable memory in the memory hierarchy of Knights Landing processors. Therefore, it can
be seen that the Bcast_B communication in Cache mode is up to 88% faster than the Bcast_B
communication in DDR4 of Flat mode.

5.2. Gather

In the Gather experiment, the data type was Integer and the size of transferred data was 16 MB.
Figure 9 shows the results of Gather communication times. Like the Broadcast experiment, in the
Figure 9 graphs, C represents MPI communication in C environment, Gather_B represents MPI buffer
communication in Python environment, and Gather_O represents MPI object communication in
Python environment.

Figure 8. Broadcast communication time results according to the experiment environment: (a) Host;
(b) one Docker Container; (c) two Docker Containers; (d) four Docker Containers.

Figure 8 shows the result of executing Broadcast. Figure 8a is the Host environment, Figure 8b is the
one Docker Container environment, Figure 8c is the two Docker Containers environment, and Figure 8d
is the four Docker Containers environment. In all environments, communication using MCDRAM
in Flat mode showed the fastest communication time. The case of using DDR4 in Cache mode was
second fastest. Finally, the slowest communication time was shown when DDR4 was used in Flat mode.
The method proposed in this paper is Bcast_B, which performs Python buffer communication when
using MCDRAM in Flat mode. When using only DDR4 in Flat mode, Bcast_B showed slower time
than C. However, in the experiment environment of Host and one Container, the communication time
of Bcast_B and C was similar in MCDRAM of Flat mode. Bcast_B communication in MCDRAM of Flat
mode was confirmed to improve performance of up to 487% compared to Bcast_B communication in
DDR4 of Flat mode. This best case was shown when 16 processes were used in one Docker Container.
In addition, the performances of the Host (Figure 8a) and one Container (Figure 8b) environments
were similar. This result confirmed Docker’s claim that the performance difference between the main
Host and Docker’s Container is not significant because Docker directly uses the Host’s resources.
However, as the number of Containers increased in MCDRAM of Flat mode, Bcast_B showed slower
communication performance compared to C. Through this result, we confirmed that multiple Docker
Containers are relatively less efficient than communication in the Host environment.

As mentioned in the background of the previous section, in Cache mode, MCDRAM is used as a
cache. MCDRAM cache is treated as a Last Level Cache (LLC), which is located between L2 cache and
addressable memory in the memory hierarchy of Knights Landing processors. Therefore, it can be seen
that the Bcast_B communication in Cache mode is up to 88% faster than the Bcast_B communication in
DDR4 of Flat mode.

5.2. Gather

In the Gather experiment, the data type was Integer and the size of transferred data was 16 MB.
Figure 9 shows the results of Gather communication times. Like the Broadcast experiment, in the
Figure 9 graphs, C represents MPI communication in C environment, Gather_B represents MPI buffer
communication in Python environment, and Gather_O represents MPI object communication in
Python environment.

Appl. Sci. 2020, 10, 6717 14 of 24
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 25

(a)

(b)

(c)

Figure 9. Cont.

Appl. Sci. 2020, 10, 6717 15 of 24Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 25

(d)

Figure 9. Gather communication time results according to the experiment environment: (a) Host; (b)
one Docker Container; (c) two Docker Containers; (d) four Docker Containers.

Figure 9 is the result of performing Gather communication. Figure 9a is the Host environment,
Figure 9b is the one Docker Container environment, Figure 9c is the two Docker Containers
environment, and Figure 9d is the four Docker Containers environment. Similar to the Broadcast
experiment in Figure 8, communication in MCDRAM of Flat mode was the fastest and DDR4 of Flat
mode was the slowest. In the Gather experiment, the data size is smaller than that of Broadcast and
AllReduce. Gather communication collects data from many processes in a single process. This feature
of Gather communication generates Out Of Memory when the data size is large. The reason that the
performance comparison between experiments seems small is that the data size is small. The feature
of this experiment is that the case of Gather_B in MCDRAM of Flat mode shows faster communication
performance than C.

It was confirmed that the Gather_B communication in MCDRAM of Flat mode has a
performance improvement of up to 65% compared to the C communication in MCDRAM of Flat
mode. In addition, the Gather_B communication in MCDRAM of Flat mode was able to confirm up
to 74% performance improvement over the Gather_B communication in DDR4 of Flat mode. It can
be seen that Gather_B communication in Cache mode is up to 13% faster than Gather_B
communication in DDR4 of Flat mode. Like Broadcast, the Host environment (Figure 9a) and the one
Container environment (Figure 9b) showed similar performance. In addition, poor communication
performance was confirmed in the increase of the number of Containers.

5.3. AllReduce

In the AllReduce experiment, the data type was Integer and the size of transferred data was
256MB. Figure 10 graph shows the result of AllReduce communication time. Like the previous
experiments, in the graphs of Figure 10, C indicates MPI communication in C environment, All_B
indicates MPI buffer communication in Python environment, and All_O indicates MPI object
communication in Python environment.

Figure 9. Gather communication time results according to the experiment environment: (a) Host;
(b) one Docker Container; (c) two Docker Containers; (d) four Docker Containers.

Figure 9 is the result of performing Gather communication. Figure 9a is the Host environment,
Figure 9b is the one Docker Container environment, Figure 9c is the two Docker Containers environment,
and Figure 9d is the four Docker Containers environment. Similar to the Broadcast experiment in
Figure 8, communication in MCDRAM of Flat mode was the fastest and DDR4 of Flat mode was the
slowest. In the Gather experiment, the data size is smaller than that of Broadcast and AllReduce.
Gather communication collects data from many processes in a single process. This feature of Gather
communication generates Out Of Memory when the data size is large. The reason that the performance
comparison between experiments seems small is that the data size is small. The feature of this
experiment is that the case of Gather_B in MCDRAM of Flat mode shows faster communication
performance than C.

It was confirmed that the Gather_B communication in MCDRAM of Flat mode has a performance
improvement of up to 65% compared to the C communication in MCDRAM of Flat mode. In addition,
the Gather_B communication in MCDRAM of Flat mode was able to confirm up to 74% performance
improvement over the Gather_B communication in DDR4 of Flat mode. It can be seen that Gather_B
communication in Cache mode is up to 13% faster than Gather_B communication in DDR4 of
Flat mode. Like Broadcast, the Host environment (Figure 9a) and the one Container environment
(Figure 9b) showed similar performance. In addition, poor communication performance was confirmed
in the increase of the number of Containers.

5.3. AllReduce

In the AllReduce experiment, the data type was Integer and the size of transferred data was 256MB.
Figure 10 graph shows the result of AllReduce communication time. Like the previous experiments,
in the graphs of Figure 10, C indicates MPI communication in C environment, All_B indicates MPI
buffer communication in Python environment, and All_O indicates MPI object communication in
Python environment.

Appl. Sci. 2020, 10, 6717 16 of 24
Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 25

(a)

(b)

(c)

Figure 10. Cont.

Appl. Sci. 2020, 10, 6717 17 of 24Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 25

(d)

Figure 10. AllReduce communication time results according to the experiment environment: (a) Host;
(b) one Docker Container; (c) two Docker Containers; (d) four Docker Containers.

Figure 10 is the result of executing AllReduce. Figure 10a is the Host environment, Figure 10b is
the one Docker Container environment, Figure 10c is the two Docker Containers environment, and
Figure 10d is the four Docker Containers environment. In the experiment, the communication result
between the experimental environments is the same as the previous experiments. With DDR4 in Flat
mode, All_B showed slower performance than C. However, in MCDRAM of Flat mode, the
communication performance of All_B and C was similar. A special feature of the AllReduce
experiment is seen in Python’s object communication. Most of the previous communication
experiments showed the fastest performance in MCDRAM of Flat mode. In AllReduce, object
communication All_O in Cache mode showed faster performance than object communication All_O
in MCDRAM of Flat mode. This result seems to be due to the feature of AllReduce, which combines
values from all processes and distributes the results to all processes. Unlike the previous experiments,
AllReduce has a data operation task. It seems that the utilization of cache has increased for
computation. Therefore, it was confirmed that object communication All_O in Cache mode improved
the performance by up to 76% compared to object communication All_O in MCDRAM of Flat mode.

The All_B communication in MCDRAM of Flat mode showed up to 162% performance
improvement over All_B communication in DDR4 of Flat mode. In Cache mode, All_B
communication is up to 110% faster than DDR4 communication in Flat mode. The Host environment
(Figure 10a) and one Container environment (Figure 10b) showed almost similar performance. Like
the previous experiments, when the number of Containers increased, the poor communication
performance was confirmed.

5.4. Cluster Mode

In this subsection, we compare and analyze the performance according to the Cluster mode. The
previous experiments were performed in the environment where Cluster mode is Quadrant mode.
In this subsection, experiments are performed in SNC-4 mode. Then, we compared and analyzed the
performance differences according to Cluster mode. The data type in the experiment was Integer,
and the data size of Broadcast and AllReduce was 256 MB, but the data size of Gather was 16 MB. In
the experiment graph of Figure 11, C represents MPI communication in C environment; Bcast_B,
Gather_B, and All_B represent MPI buffer communication in Python environment; and Bcast_O,
Gather_O, and All_O represent MPI object communication in Python environment. The comparison
method is the same as in the previous sections; however, the Memory mode experimented with is
DDR4 in Flat mode and MCDRAM in Flat mode. This section differs from previous ones in that we
compare just two environment types, Host and four Docker Containers.

Figure 10. AllReduce communication time results according to the experiment environment: (a) Host;
(b) one Docker Container; (c) two Docker Containers; (d) four Docker Containers.

Figure 10 is the result of executing AllReduce. Figure 10a is the Host environment, Figure 10b
is the one Docker Container environment, Figure 10c is the two Docker Containers environment,
and Figure 10d is the four Docker Containers environment. In the experiment, the communication
result between the experimental environments is the same as the previous experiments. With DDR4
in Flat mode, All_B showed slower performance than C. However, in MCDRAM of Flat mode, the
communication performance of All_B and C was similar. A special feature of the AllReduce experiment
is seen in Python’s object communication. Most of the previous communication experiments showed
the fastest performance in MCDRAM of Flat mode. In AllReduce, object communication All_O in
Cache mode showed faster performance than object communication All_O in MCDRAM of Flat mode.
This result seems to be due to the feature of AllReduce, which combines values from all processes
and distributes the results to all processes. Unlike the previous experiments, AllReduce has a data
operation task. It seems that the utilization of cache has increased for computation. Therefore, it was
confirmed that object communication All_O in Cache mode improved the performance by up to 76%
compared to object communication All_O in MCDRAM of Flat mode.

The All_B communication in MCDRAM of Flat mode showed up to 162% performance
improvement over All_B communication in DDR4 of Flat mode. In Cache mode, All_B communication
is up to 110% faster than DDR4 communication in Flat mode. The Host environment (Figure 10a) and
one Container environment (Figure 10b) showed almost similar performance. Like the previous
experiments, when the number of Containers increased, the poor communication performance
was confirmed.

5.4. Cluster Mode

In this subsection, we compare and analyze the performance according to the Cluster mode.
The previous experiments were performed in the environment where Cluster mode is Quadrant mode.
In this subsection, experiments are performed in SNC-4 mode. Then, we compared and analyzed
the performance differences according to Cluster mode. The data type in the experiment was Integer,
and the data size of Broadcast and AllReduce was 256 MB, but the data size of Gather was 16 MB. In the
experiment graph of Figure 11, C represents MPI communication in C environment; Bcast_B, Gather_B,
and All_B represent MPI buffer communication in Python environment; and Bcast_O, Gather_O,
and All_O represent MPI object communication in Python environment. The comparison method is
the same as in the previous sections; however, the Memory mode experimented with is DDR4 in Flat

Appl. Sci. 2020, 10, 6717 18 of 24

mode and MCDRAM in Flat mode. This section differs from previous ones in that we compare just
two environment types, Host and four Docker Containers.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 25

(a)

(b)

(c)

Figure 11. Cont.

Appl. Sci. 2020, 10, 6717 19 of 24Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 25

(d)

(e)

(f)

Figure 11. BroadCast, Gather, and AllReduce communication time result in SNC-4 Cluster mode
environment: (a) Broadcast Host; (b) Broadcast four Docker Containers; (c) Gather Host; (d) Gather
four Docker Containers; (e) AllReduce Host; (f) AllReduce four Docker Containers.

Figure 11. BroadCast, Gather, and AllReduce communication time result in SNC-4 Cluster mode
environment: (a) Broadcast Host; (b) Broadcast four Docker Containers; (c) Gather Host; (d) Gather
four Docker Containers; (e) AllReduce Host; (f) AllReduce four Docker Containers.

Figure 11 is the experiment result in SNC-4 Cluster mode environment. Figure 11a is Broadcast
in Host environment, Figure 11b is Broadcast in four Docker Containers environment, Figure 11c is
Gather in Host environment, Figure 11d is Gather in four Docker Containers environment, Figure 11e

Appl. Sci. 2020, 10, 6717 20 of 24

is Host environment In AllReduce, and Figure 11f is AllReduce in four Docker Containers environment.
As explained in the background of the previous section, SNC-4 mode divides the chip into quadrants,
and each quadrant is mapped to a NUMA node. In this mode, SNC-4 mode has a memory controller
and TD in the same area and has a shorter path than Quadrant mode. For this reason, it was
expected that SNC-4 mode might perform better than Quadrant mode. However, the experimental
results showed little difference in performance between SNC-4 mode and Quadrant mode. Due to
the characteristics of the algorithms of Broadcast, Gather, and AllReduce performed in this paper,
it seems that the characteristics of SNC-4 Cluster mode cannot be utilized. In SNC-4 mode, MCDRAM
NUMA node and DDR4+Core node are physically close. SNC-4 mode shows the lowest latency when
communication is maintained within the NUMA domain. But, if in SNC-4 mode cache traffic crosses
NUMA boundaries, this path is longer than in the Quadrant mode. In this experiment, MPI collective
communication creates a graph topology with a distributed method, and each node defines a neighbor.
Therefore, due to this MPI communication characteristic, it seems difficult to utilize the advantages
of SNC-4 mode when the process to be communicated is not in the same domain. According to our
experiment, MPI communication in Quadrant mode is effective, which can maintain transparency
without code modification.

6. Summary of Experimental Results

In this section, the results of the experiments performed in this paper are summarized. Tables 1–4
compare the performance improvement rate of Python communication and C communication in the
Host and four Docker Containers environments. Table 1 shows the ratio of DDR4 and MCDRAM
communication times when performing Python buffer communication in Flat mode. Table 2 is a table
comparing the performance of C communication in Flat mode. Tables 3 and 4 are tables comparing the
experimental results in the four Docker Containers environment. Table 5 compares the communication
time according to the Host environment and the increase of Docker Containers. Tables 6 and 7 compare
the communication performance according to the Cluster mode. All experiments in the previous
section increase the number of processes. However, in this summary, the communication time is
compared in the number of processes with the best performance improvement.

Table 1. Comparison of Python buffer communication time between Double Data Rate 4 (DDR4) and
MCDRAM in Host environment (Flat mode).

DDR4/MCDRAM (%) Number of Processes

Broadcast 545 16
Gather 159 64

AllReduce 262 68

Table 2. Comparison of C communication time between DDR4 and MCDRAM in Host environment (Flat mode).

DDR4/MCDRAM (%) Number of Processes

Broadcast 271 16
Gather 103 16

AllReduce 201 32

Table 3. Comparison of Python buffer communication time between DDR4 and MCDRAM in four
Docker Containers environment (Flat mode).

DDR4/MCDRAM (%) Number of Processes

Broadcast 202 68
Gather 131 64

AllReduce 217 64

Appl. Sci. 2020, 10, 6717 21 of 24

Table 4. Comparison of C communication time between DDR4 and MCDRAM in four Docker
Containers environment (Flat mode).

DDR4/MCDRAM (%) Number of Processes

Broadcast 105 68
Gather 108 64

AllReduce 102 32

Table 5. Communication time according to the increase in the number of Docker Containers.

Broadcast (s) Gather (s) AllReduce (s)

Host 0.285 0.194 1.261
One Container 0.288 0.199 1.271
Two Containers 1.991 0.508 4.447
Four Containers 2.231 0.628 4.677

Table 6. Communication time between Quadrant mode and SNC-4 mode in Host environment.

Quadrant (s) SNC-4 (s)

Broadcast 0.525 0.553
Gather 0.301 0.297

AllReduce 2.168 2.421

Table 7. Communication time of Quadrant mode and SNC-4 mode in four Docker Containers environment.

Quadrant (s) SNC-4 (s)

Broadcast 2.398 2.456
Gather 1.538 1.531

AllReduce 5.342 5.361

In Table 1, when Broadcast performed MPI collective communication with 16 processes, it was
confirmed that MCDRAM performance improved 445% over DDR4. In addition, Gather improved
the performance by 59% in 64 processes, and AllReduce confirmed performance improvement by
162% in 68 processes. As can be seen in Table 2, Broadcast showed 171% performance improvement in
16 processes, Gather showed 3% performance improvement in 16 processes, and, finally, AllReduce
showed 101% performance improvement in 32 processes. From Tables 1 and 2, it can be confirmed
that the rate of performance improvement in the same Host experiment environment is greater in
Python buffer communication than in C communication. Similarly, in Tables 3 and 4, the Python buffer
communication in the four Containers environment showed a higher performance improvement rate
than with C communication.

Table 5 shows the communication time results of Python buffer communication in 32 processes
and MCDRAM in Flat mode. In Table 5, the Host environment and one Container show almost the
same communication time. In addition, when the number of Containers increases, it can be seen that
all collective communication time increases. In Table 5, it was confirmed that there was little difference
in performance between Host and one Docker, as claimed by Docker. However, multiple Containers
show relatively less efficient communication than communication in the Host environment.

The experimental results in Tables 6 and 7 are the communication time results of the Python buffer
communication in 68 processes and MCDRAM in Flat mode. In Tables 6 and 7, Quadrant mode and
SNC-4 mode are similar, or SNC-4 mode shows slow communication time. This experimental result
shows that the advantages of SNC-4 mode cannot be utilized. Due to the MPI communication feature,
it seems that the advantages of SNC-4 mode cannot be utilized when the communication process is
not in the same domain. As a result, in MPI communication, the Quadrant mode that can maintain
transparency may be more efficient than the SNC-4 mode.

Appl. Sci. 2020, 10, 6717 22 of 24

Our performance evaluation can be summarized by the following three points:

• The combination of MCDRAM usage and Python buffer communication has greatly improved the
performance of Python’s MPI collective communication. This result shows that MCDRAM was
efficiently used in the Python environment by wrapping Memkind library. And it was confirmed
that Python’s buffer communication is more efficient than Python’s object communication.
In addition, in Memory mode of Knights Landing Process, the use of MCDRAM in Flat mode
showed better performance than Cache mode using MCDRAM as a cache (Tables 1–4).

• C communication is still fast in a distributed Docker environment. All experiments showed
similar communication performance on the Host and one Docker Container environments. In this
result, we confirmed Docker’s claim that the performance difference between the main Host and
Docker’s Container is not significant because Docker’s Container directly uses the Host’s resources.
However, multiple Containers show relatively less efficient communication than communication
in the Host environment (Table 5).

• The Quadrant mode showed more efficient experimental results than the SNC-4 mode. SNC-4
mode has a low latency when communication is maintained within the NUMA node. Therefore,
it is difficult to efficiently utilize the SNC-4 mode when its process of communication is not in the
same domain. Due to the characteristic of MPI communication, the advantages of SNC-4 mode
cannot be utilized. In Cluster mode, Quadrant mode, which ensures transparency, is an efficient
method for MPI communication (Tables 6 and 7).

7. Conclusions

In this paper, we proposed a method of efficiently exchanging data when performing distributed
deep learning in Python and many-core CPU environments, and we compared and analyzed the
proposed method through extensive experiments in various environments. For performance evaluation,
we compared performance according to KNL’s Memory mode and Cluster mode and also compared
performance according to the Python MPI communication method. In addition, to consider a distributed
environment, we experimented in a Docker environment.

The combination of MCDRAM usage and Python buffer communication has greatly improved the
performance of Python’s MPI collective communication. C communication is still fast in the distributed
Docker environment, but similar communication performance was also seen in the Host and one
Docker Container environments. In addition, it was confirmed that multiple Docker Containers are
relatively less efficient than communication in the Host environment. In the Cluster mode experiment,
the Quadrant mode showed more efficient experimental results than the SNC-4 mode. Due to the
characteristic of MPI communication, the advantages of SNC-4 mode cannot be utilized. In Cluster
mode, Quadrant mode, which ensures transparency, is an efficient method for MPI communication.

In the future, we plan to apply to deep learning frameworks, such as Google’s TensorFlow and
Facebook’s PyTorch, using our proposed MPI library, and further explore performance improvements.

Author Contributions: Conceptualization, J.W. and J.L.; methodology, J.W. and J.L.; software, J.W. and H.C.;
writing—original draft preparation, J.W.; writing—review and editing, J.W., H.C. and J.L.; supervision, J.L.;
project administration, J.L.; funding acquisition, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by Next-Generation Information Computing Development Program
(2015M3C4A7065646) and Basic Research Program (2020R1F1A1072696) through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT, GRRC program of Gyeong-gi province
(No. GRRC-KAU-2020-B01, “Study on the Video and Space Convergence Platform for 360VR Services”),
ITRC (Information Technology Research Center) support program (IITP-2020-2018-0-01423), the Korea Institute of
Science and Technology Information (Grant No.K-20-L02-C08), and the National Supercomputing Center with
supercomputing resources including technical support (KSC-2019-CRE-0101).

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 6717 23 of 24

References

1. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
2. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.

Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016;
pp. 265–283.

3. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;
Lerer, A. Automatic differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

4. Li, Y.; Park, J.; Alian, M.; Yuan, Y.; Qu, Z.; Pan, P.; Wang, R.; Schwing, A.; Esmaeilzadeh, H.; Kim, N.S.
A network-centric hardware/algorithm co-design to accelerate distributed training of deep neural networks.
In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2018),
Fukuoka, Japan, 20–24 October 2018; pp. 175–188.

5. Oliphant, T.E. Python for scientific computing. Comput. Sci. Eng. 2007, 9, 10–20. [CrossRef]
6. Beazley, D. Understanding the python gil. In Proceedings of the 2010 PyCON Python Conference,

Atlanta, GA, USA, 25–26 September 2010.
7. Global Interpreter Lock. Available online: https://wiki.python.org/moin/GlobalInterpreterLock/ (accessed on

20 May 2020).
8. MPI Forum. Available online: https://www.mpi-forum.org/ (accessed on 20 May 2020).
9. Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. A high-performance, portable implementation of the MPI message

passing interface standard. Parallel Comput. 1996, 22, 789–828. [CrossRef]
10. MPI Tutorial. Available online: https://mpitutorial.com/ (accessed on 20 May 2020).
11. Sodani, A. Knights landing (knl): 2nd generation intel® xeon phi processor. In Proceedings of the 2015 IEEE

Hot Chips 27 Symposium (HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–24.
12. Memkind Library. Available online: https://github.com/memkind/memkind/ (accessed on 20 May 2020).
13. Cython. Available online: https://cython.org/ (accessed on 20 May 2020).
14. Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D.S.; Smith, K. Cython: The best of both worlds.

Comput. Sci. Eng. 2011, 13, 31–39. [CrossRef]
15. Docker. Available online: https://www.docker.com/ (accessed on 20 May 2020).
16. Ahn, S.; Kim, J.; Lim, E.; Kang, S. Soft memory box: A virtual shared memory framework for fast deep neural

network training in distributed high performance computing. IEEE Access 2018, 6, 26493–26504. [CrossRef]
17. Peng, I.B.; Gioiosa, R.; Kestor, G.; Vetter, J.S.; Cicotti, P.; Laure, E.; Markidis, S. Characterizing the performance

benefit of hybrid memory system for HPC applications. Parallel Comput. 2018, 76, 57–69. [CrossRef]
18. Cho, J.Y.; Jin, H.W.; Nam, D. Exploring the Performance Impact of Emerging Many-Core Architectures on

MPI Communication. J. Comput. Sci. Eng. 2018, 12, 170–179. [CrossRef]
19. Li, Z.; Kihl, M.; Lu, Q.; Andersson, J.A. Performance overhead comparison between hypervisor and container

based virtualization. In Proceedings of the 31st IEEE International Conference on Advanced Information
Networking and Applications (AINA 2017), Taipei, Taiwan, 27–29 March 2017; pp. 955–962.

20. Zhang, J.; Lu, X.; Panda, D.K. Is singularity-based container technology ready for running MPI applications
on HPC clouds? In Proceedings of the 10th International Conference on Utility and Cloud Computing
(UCC 2017), Austin, TX, USA, 5–8 December 2017; pp. 151–160.

21. Zhang, J.; Lu, X.; Panda, D.K. High performance MPI library for container-based HPC cloud on
InfiniBand clusters. In Proceedings of the 45th International Conference on Parallel Processing (ICPP 2016),
Philadelphia, PA, USA, 16–19 August 2016; pp. 268–277.

22. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

23. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.;
Yang, K.; et al. Large scale distributed deep networks. In Proceedings of the 26th Conference on Neural
Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1223–1231.

http://dx.doi.org/10.1109/MCSE.2007.58
https://wiki.python.org/moin/GlobalInterpreterLock/
https://www.mpi-forum.org/
http://dx.doi.org/10.1016/0167-8191(96)00024-5
https://mpitutorial.com/
https://github.com/memkind/memkind/
https://cython.org/
http://dx.doi.org/10.1109/MCSE.2010.118
https://www.docker.com/
http://dx.doi.org/10.1109/ACCESS.2018.2834146
http://dx.doi.org/10.1016/j.parco.2018.04.007
http://dx.doi.org/10.5626/JCSE.2018.12.4.170

Appl. Sci. 2020, 10, 6717 24 of 24

24. Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen, M.; Lee, H.; Ngiam, J.; Le, Q.V.; Wu, Y.
Gpipe: Efficient training of giant neural networks using pipeline parallelism. In Proceedings of the
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada,
8–14 December 2019; pp. 103–112.

25. Kim, Y.; Lee, J.; Kim, J.S.; Jei, H.; Roh, H. Efficient multi-GPU memory management for deep learning
acceleration. In Proceedings of the 2018 IEEE 3rd International Workshops on Foundations and Applications
of Self* Systems (FAS* W), Trento, Italy, 3–7 September 2018; pp. 37–43.

26. Kim, Y.; Lee, J.; Kim, J.S.; Jei, H.; Roh, H. Comprehensive techniques of multi-GPU memory optimization for
deep learning acceleration. Clust. Comput. 2019, 23, 2193–2204. [CrossRef]

27. Kim, Y.; Choi, H.; Lee, J.; Kim, J.S.; Jei, H.; Roh, H. Efficient Large-Scale Deep Learning Framework for
Heterogeneous Multi-GPU Cluster. In Proceedings of the 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS* W), Umeå, Sweden, 16–20 June 2019; pp. 176–181.

28. Kim, Y.; Choi, H.; Lee, J.; Kim, J.S.; Jei, H.; Roh, H. Towards an optimized distributed deep learning framework
for a heterogeneous multi-GPU cluster. Clust. Comput. 2020, 23, 2287–2300. [CrossRef]

29. Heigold, G.; McDermott, E.; Vanhoucke, V.; Senior, A.; Bacchiani, M. Asynchronous stochastic optimization
for sequence training of deep neural networks. In Proceedings of the 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 5587–5591.

30. Sergeev, A.; Del Balso, M. Horovod: Fast and easy distributed deep learning in TensorFlow. arXiv
2018, arXiv:1802.05799.

31. CPython. Available online: https://docs.python.org/3/ (accessed on 20 May 2020).
32. Zhang, C.; Yuan, X.; Srinivasan, A. Processor affinity and MPI performance on SMP-CMP clusters.

In Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23 April 2010; pp. 1–8.

33. Neuwirth, S.; Frey, D.; Bruening, U. Communication models for distributed intel xeon phi coprocessors.
In Proceedings of the 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS),
Melbourne, Australia, 14–17 December 2015; pp. 499–506.

34. Lee, C.; Lee, J.; Koo, D.; Kim, C.; Bang, J.; Byun, E.; Eom, H. Empirical Analysis of the I/O Characteristics
of a Highly Integrated Many-Core Processor. In Proceedings of the 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), Washington, DC, USA,
17–21 August 2020; pp. 1–6.

35. Sodani, A.; Gramunt, R.; Corbal, J.; Kim, H.S.; Vinod, K.; Chinthamani, S.; Hutsell, S.; Agarwal, R.; Liu, Y.C.
Knights landing: Second-generation intel xeon phi product. IEEE Micro 2016, 36, 34–46. [CrossRef]

36. Agelastos, A.M.; Rajan, M.; Wichmann, N.; Baker, R.; Domino, S.P.; Draeger, E.W.; Anderson, S.; Balma, J.;
Behling, S.; Berry, M.; et al. Performance on Trinity Phase 2 (a Cray XC40 Utilizing Intel Xeon Phi Processors) with
Acceptance Applications and Benchmarks; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2017.

37. Vladimirov, A.; Asai, R. Clustering Modes in Knights Landing Processors: Developer’s Guide; Colfax International:
Santa Clara, CA, USA, 2016.

38. Jeffers, J.; Reinders, J.; Sodani, A. Intel Xeon Phi Processor High Performance Programming: Knights Landing
Edition; Morgan Kaufmann: Burlington, MA, USA, 2016.

39. Numpy. Available online: https://numpy.org/ (accessed on 20 May 2020).
40. Oliphant, T.E. A Guide to NumPy. Available online: https://web.mit.edu/dvp/Public/numpybook.pdf

(accessed on 23 September 2020).
41. Walt, S.V.D.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation.

Comput. Sci. Eng. 2011, 13, 22–30. [CrossRef]
42. SciPy. Available online: https://scipy.org/ (accessed on 20 May 2020).
43. MPI for Python. Available online: https://mpi4py.readthedocs.io/en/stable/ (accessed on 20 May 2020).
44. Pickle-Python Object Serialization. Available online: https://docs.python.org/3/library/pickle.html/

(accessed on 20 May 2020).
45. Buffer Protocol. Available online: https://docs.python.org/3/c-api/buffer.html/ (accessed on 20 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10586-019-02974-6
http://dx.doi.org/10.1007/s10586-020-03144-9
https://docs.python.org/3/
http://dx.doi.org/10.1109/MM.2016.25
https://numpy.org/
https://web.mit.edu/dvp/Public/numpybook.pdf
http://dx.doi.org/10.1109/MCSE.2011.37
https://scipy.org/
https://mpi4py.readthedocs.io/en/stable/
https://docs.python.org/3/library/pickle.html/
https://docs.python.org/3/c-api/buffer.html/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background
	Distributed Deep Learning
	Python GIL
	MPI
	Many-Core CPU: Knights Landing

	Python-Based MPI Collective Communication Library
	Memkind Library for Using MCDRAM
	Wrapping Memkind
	Binding Memory and Core to Docker

	Performance Evaluation
	Broadcast
	Gather
	AllReduce
	Cluster Mode

	Summary of Experimental Results
	Conclusions
	References

