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Abstract: With the aim of evaluating local and global dynamic mechanisms of a vast and historical
masonry building, a homogeneous structural model is proposed here. It is realized with the assembly
of othotropic plates and Timoshenko and pure shear beams as well. The identification of the
constitutive parameters is carried out after realizing refined finite element models of building portions,
and imposing energy or displacement equivalence with the corresponding homogeneous versions,
depending on the complexity of the involved schemes. The outcomes are compared with those
provided by experimental investigations, and help to give insight and interpretation on the dynamic
behavior of the building.
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1. Introduction

Detailed mechanical characterizations of lattice structures may sometimes conduce to heavy,
costly, and actually impracticable models. As valid substitutes, homogeneous structural models,
very often and suitably, serve to address the mechanical behavior of lattices, when a large scale
(macro) point of view is pursued. In fact, homogenization procedures lead to replace the original
structure by a continuum model, which equivalently represents that and, concurrently, is easier to
be analyzed [1]. For instance, structural mechanics of pantographic platelike can be conveniently
addressed by equivalent macro-mechanical models, as in [2], where anisotropy aspects are transferred
from the micro- to the macro-representation, and a consequent challenging onset of boundary layers
is triggered. As another common example, beamlike structures (see [3]) are used as equivalent
models to describe tall buildings, where the periodicity of the lattice is provided by the uniform
repetition of the modular cell, which is the single story, in the vertical direction. In this context,
the identification of the constitutive parameters of a homogeneous beamlike is described in [4],
which leads to perform buckling analysis [5,6] as well as to propose innovative analytical-numerical
tools to address mechanics [7]. Improvements on the same macro-mechanical model, voted to take into
account peculiar and substantial features of the micro-mechanical model, and specifically related to the
slab elastic deformation, are given in [8]. Both linear and nonlinear dynamics of the aforementioned
beamlike model are also addressed in [9] and [10], respectively, highlighting distinctive behavior
related to the special organization of the modal properties. Such homogeneous models are also used to
consider aeroelastic phenomena in tall towers [11–15], even in the case of linked and collaborating
pairs of buildings [16,17].
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Still dealing with beamlike structures, the Generalized Beam Theory (GBT, [18]) provides
a compelling method to describe the mechanics of thin-walled members by means of suitable
homogeneous models. There, cross-section analysis and member analysis represent the two main steps:
specifically about the first one, which consists of the crucial choice of a reduced basis to represent the
deformation of the cross-section of the thin-walled beam, the use of a finite number of dynamic normal
modes of a corresponding unconstrained frame, in the shape of the cross-section itself, is proposed
in [19]. Then, in [20,21], further enrichment of the basis, introduced in order to address the behavior in
case of large displacements as well as in specific situations, completes the definition of the so-called
Dynamic GBT (referred to as GBT-D). Under the same common thread, beams realized by composite
materials are able to perform cross-section change in shapes and are consistently substituted by
homogeneous models in [22–24].

In the last decade, many efforts have been spent to address the mechanical behavior of masonry
structures by multiscale approaches [25,26], as well, i.e., making use of homogeneous and suitable
replacements of the original structures. Specifically, different homogenization techniques are reviewed
in [27], where the focus is also given to some promising micromechanical models. A simple
homogenization procedure for the description of in-plane elastic deformation of masonry blocks
by means of manageable rheological models is proposed in [28]. A nonlinear homogeneous model to
describe in-plane behavior of masonry walls is proposed in [29], where a novel constitutive law for
mortar joints plays a crucial role in the definition of the procedure. In [30], it is shown how distinct
equivalent continuum models, namely a micropolar Cosserat continuum and a nonlocal Cauchy model,
may be derived from the proposed homogenization technique.

Actually, due to the complex behavior (see [31] for a comprehensive review) and to the difficulties
of consistently fulfilling detailed modeling of masonry structures, examples of simplified models are
proposed in the literature. For instance, the assessment of dissipation and deformation capacities of
frame-masonry shear-wall systems in post-cracking regime is carried out in [32,33], where continuum
damage models for masonry are used.

Clearly, especially when dealing with historical masonry structures, where irregular textures
are often present [34,35], theoretical prediction models require validation. This important step can
smoothly be accomplished comparing the predictions to the outcomes of experimental test [36–39],
and possibly re-calibrating the model parameters, accordingly.

This paper draws inspiration from a case study, constituted by a vast Italian building, realized
with historical masonry (about the 18th century), which has been subjected to several (and mostly
unknown) restoration works during its long life. The principal aim is to investigate the dynamic
behavior of the whole building, in order to: (a) evaluate the existence of local mechanisms and
(b) possibly identify any global behaviors. The complexity and extension of the building prevent the
possibility of realizing a comprehensive fine model, in the framework of the Finite Element Method.
Thus, an innovative approach is proposed, finalized to define a simplified model, which is composed
of homogenized orthotropic plates, and which makes use, in its development, of Timoskenko and
pure shear beam models, as well. The homogenization procedure is realized as a combination of pure
analytical modeling and numerical finer modeling of building portions. The results are validated
comparing the outcomes of both fine and homogeneous models with those provided by experimental
dynamic identifications, which, due to the large extension of the building, are actually carried out only
on some of its portions.

The paper is organized as follows. In Section 2, the case study is described. In Section 3, three
fine finite element models of a building portion, in which different structural elements are included,
are developed. In Section 4, three homogenized models of the same building portion are defined.
In Sections 5 and 6, the homogenized model parameters are identified. In Section 7, the homogenized
model of the whole building is defined. In Section 8, experimental dynamic identifications are
described and the modal analyses of all defined models are performed and the models validated.
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Finally, in Section 9, the main findings of the work are summarized. Two appendices are presented at
the end of this paper.

2. The Case Study

The case study is an important ancient masonry building in Italy (headquarters of the Italian
Ministry of Economy and Finance—MEF, in Rome (Italy)). The building is located in a large rectangular
area, with sides 300 m and 120 m. The structure is a closed block with three internal courtyards,
one main central and the other two lateral, arranged symmetrically with respect to the central transverse
axis of the building. The covered surface is about 19,000 m2, while the area on which the building
stands is equal to 36,000 m2. The building is constituted by six levels, including a basement, a raised
ground floor, four floors above, the latter of which is partly covered by a practicable slab. The average
height is approximately 33 m overall.

Basically, the building can be thought as consisting of four transverse and six longitudinal arms
with a width between 18 and 22 m and a variable length between 70 and 85 m. At the corners of the
building, there are also four small towers with turrets placed at the top. Each arm consists of a package of
four parallel, longitudinal walls, two external (street side and courtyard side) and two internal (delimiting
a corridor), connected by the horizontal elements and by transverse localized and distributed walls.

Moreover, due to the extension of the building: (i) different types of masonry (mainly tuff blocks
and solid bricks and mortar) are present; (ii) the slabs are of various nature (as beams and vaults,
vaults and arches, beams and flooring block, cement); (iii) in some cases, the presence of horizontal
systems (made with steel plates or rods) for chaining the walls has been found.

Plan and sections of the described building are shown in Figure 1.

+ 9.50

+ 9.50

+ 9.50

+ 9.50

+ 9.50

B

C’

AA’

103.5 103.567

274

54118

32

32

D’

D

A
C

B’

(a)

Se C-C'ct.

5.9

5.3

7.05

5.85

5.05

7.05

Cortile

Se A-A'ct. Se B-B'ct.

PS 1

PT

P 1

P 2

P 3

P 4

Non rilevato

PS 1

PT

P 1

P 2

P 3

P 4

Non rilevato

3.
85

1.17

0.27

5.
00 5.

37

1.92

0.27

1.54

4.
76

4.
30

0.
80

0.45

0.50

4.
80

4.
68

3.
50

0.95

3.
85

1.12

0.93

3.
50

4.
68

4.
80

0.
80

0.50

0.43

4.
76

4.
30

1.70

5.
36

5.
13

1.90

Via

Cortile

Se 'ct. D-D

3.
08

0.48 0.48

3.
85

3.
42

0.50 0.55

PS 1

PT

P 1

P 2

P 3

P 4

0.50 0.48

3.
77

3.
77

4.
77

4.
87

3.
57

1.
02

0.922.
98

4.
72

4.
87

4.
05

5.
27 5.
48

1.10

1.20

4.
54

3.
75

0.55 0.55

3.
75 3.
98

0.96

1.49

4.
34

0.75 0.74

4.
73

6.
50

6.
59

4.
38

1.64

1.72

4.
62

0.79

3.
223.
55

3.
59

3.
36

3.
22 3.
55

0.78

4.
62

1.76

1.48

4.
34

0.60

2.
40

4.
93

6.
55

2.
40

0.60

4.
27

1.36

4.
73

U.T.A.

Serbatoio

acqua

15.78 1.50

5.
95

6.
97

6.
98

5.
77

3.
98

3.95

6.
73

4.21

4.
39

7.00
1.2021.80

0.93

21.47 1.44

1.30

1.30

21.45 1.54

1.70 21.22 1.70

1.78

0.00

-2.11

0.60

5.
10

3.2 5.3

(b)

Figure 1. (a) plan of the first level: (red) middle line and highlighted (gray filled area) longitudinal arm;
(b) sections. All the units are in meters.
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For reasons that will be clear below, particular attention is addressed on the longitudinal arm
highlighted in Figure 1a. A more detailed plan of the this latter, together with the perspectives of the
two external facades, is shown in Figure 2. Concerning this building portion:

• the longitudinal walls taper from the bottom upwards with thicknesses ranging from 1.5 to 0.5 m;
• the interstory heights are between 4 and 7 m;
• the slabs consist of cross vaults (with fixed geometry and an estimated thickness of about 10 cm) at

the first three levels, and of steel beams with I sections (normal NP profile 300× 125), distributed
with inter-axis of 1.3 m, at the last two levels;

• couples of transverse walls, both localized (thickness about 70 cm) and of uniformly distributed
(thickness about 15 cm) with an inter-axis of 3.9 m, stiffens the structure;

• the masonry is assumed everywhere of solid bricks and mortar;
• the presence of horizontal systems for chaining the walls is assumed at the first three levels.

5.3

3.2

3.9

82

5.3

(a)

(b)

Figure 2. Long longitudinal arm details: (a) plan of the first floor; (b) perspectives of the two
external facades. All the units are in meters.

3. Fine Model of a Building Portion

First, a fine finite element model of a building portion is developed to study some structural
mechanisms and, then, to calibrate some parameters of the homogenized model. The studied portion
consists of the long longitudinal arm described in the case study, believed to be the most vulnerable
seismically portion. Moreover, the long longitudinal arms are very similar to each other and the
modest local differences can be considered such as not to significantly change the dynamic behavior.
All the FEM models are implemented in the commercial software SAP 2000 [40].

The structural elements composing the studied arm are modeled as follows:

• The longitudinal and transverse walls and the vaults are modeled by homogeneous isotropic
shell elements, having both a membrane and flexural behavior. Any element is a Cauchy
continuum body in plane stress, defined in a 2D space, and obeys a hyperelastic isotropic linear
law according to the Young modulus Em = 2.2× 106 kN/m2 and the Poisson factor νm = 0.15 of
the block masonry.

• The slab beams are modeled by one-dimensional Timoshenko beam elements, axially, bending and
shearing deformable. They obey to a hyperelastic isotropic linear law according the Young
modulus Es = 2× 108 kN/m2 and the Poisson factor νs = 0.3 of the steel.
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An equivalent averaged mass density ρ f = 3000 kg/m3 (1.6 times that of the masonry) is assigned
to the only longitudinal shell elements; all the other elements are mass-free. The equivalent mass is
obtained by allocating the total mass (deriving by the own weight of the vertical elements, according
the masonry mass density 1900 kg/m3, and the slab-bearing load equal to 11–15 kN/m2) to the only
longitudinal walls.

The geometric and mechanical characteristics of the vertical and horizontal elements have been
assigned on the basis of information obtained from knowledge campaigns. Details about the geometry
can be found in Section 2. The soil–structure interaction was not taken into account, so that external
fixed constraints were applied to all the base nodes. The interaction with the other building arms is
modeled by hinge constraints applied to the nodes of the vertical sides of each facade.

In order to investigate the influence of the localized and distributed transverse walls, three finite
element models are defined:

• the Longitudinal Wall (LW) fine model, composed only by a package of four parallel longitudinal
walls and horizontal slabs;

• the Longitudinal and Transverse Wall (LTW) fine model, composed by a package of four parallel
longitudinal walls, horizontal slabs, and transverse distributed walls;

• the Stiffened Longitudinal and Transverse Wall (SLTW) fine model, composed by package of four
parallel longitudinal walls, horizontal slabs; and distributed and localized transverse walls.

In Figure 3a, a perspective view of the SLTW finite element model, made up of 39,353 nodes and
40,183 elements, is shown. Different colors are used to distinguish different thicknesses of the shell
elements, modeling: The longitudinal walls, in green scale, according the wall tapering; the vaults in
red; the localized and distributed transverse walls, respectively, in dark and light blue. The model
includes all the levels, with the exception of the last one, considered only as mass. Figure 3b shows
some details about slabs and transverse walls.

(a)

(b)

Figure 3. Fine finite element model: (a) overview; (b) details of slabs and transverse walls.
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4. Homogenized Model of a Building Portion

Here, the homogenized model of the longitudinal arm of the building, consisting of a package of
four parallel longitudinal walls, connected transversely by horizontal and vertical elements, is defined.
The following assumptions are considered, as a reasonable consequence of the features of the structure:

• in membrane behavior, the longitudinal walls always undergo the same extensional and shear
strain in the two orthogonal directions;

• the slabs are infinitely rigid in their plane, so that the four longitudinal walls actually work
in parallel;

The idea is to substitute an ‘equivalent’ homogeneous plate for the fine model of the arm, having
it unitary thickness, the same in plane trace of the block middle line, as well as corresponding
stiffness and mass. The plate is fixed at the base and laterally hinged (see the homogenization scheme
in Figure 4).

Figure 4. Homogenization scheme.

In particular, for each of the fine models described in Section 3, a corresponding homogenized
model is defined:

• the LW homogenized model, composed by an equivalent plate, incorporating the structural
characteristics of longitudinal walls and slabs (see the homogenization scheme in the plane y− z
in Figure 5a);

• the LTW homogenized model, composed by an equivalent plate, incorporating the structural
characteristics of both longitudinal and transverse walls and slabs;

• the SLTW homogenized model, composed by the equivalent plate of the LTW homogenized
model plus equivalent beams, integral with the plate: The number and position of the beams are
the same of the transverse walls, as they contribute to simulating the effect of such walls on the
structure (see the homogenization scheme in the plane y− z in Figure 5b).
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Figure 5. Homogenization scheme in the plane y− z of: (a) the LW model; (b) a couple of localized
transverse walls.

The equivalent plates are orthotropic Mindlin–Reissner plates [41], having the following elastic
constitutive laws in the decoupled form:

Mx = Dxkx

My = Dyky

Mxy = Dxykxy

Tx = Sxγx

Ty = Syγy

Nx = Bxεx

Ny = Byεy

Nxy = Bxyγxy

(1)

where:

• Mx, My, Mxy are the bending and twist moments; Tx, Ty the shear forces; Nx, Ny, Nxy the
membrane forces;

• kx = −w,xx, ky = −w,yy, kxy = −2w,xy are the bending and twist curvature, with w the orthogonal
displacement of the plate; γx, γy are the out of plane sliding; εx, εy, γxy the membrane strains
(unit extensions εx, εy and shear sliding γxy).

• Dx, Dy, Dxy are the bending and twist stiffness; Sx, Sy the out-of-plane shear stiffness; Bx, By, Bxy

the membrane stiffness.

Note that, contrary to standard constitutive equations constructed by homogenization, as shown
e.g., in [42], here the off-diagonal terms are neglected, by assuming the Poisson factor to be zero.
This assumption: (i) is reasonable in the context of the approximations of the problem, in which
the Poisson effect plays a certainly minor role; and (ii) remarkably simplifies the homogenization
procedures, by allowing to identify separately the plate elastic constants relative to different directions.

The identification of the equivalent in-plane and out-of-plane elastic constants represents an
important goal of the work. In particular, since the geometry varies in height (due to wall tapering
and different kinds of slabs), each homogenized model is actually composed by five equivalent plates,
having the corresponding interstory height, numbered from bottom to top as in Figure 6. Each of the
five plates has to be identified. The problem is stated as follows: the geometry of the assembly being
known as well as the elastic properties of the elements, determining the elastic stiffness coefficients
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Dx, Dy, Dxy, Sx, Sy, Bx, By, Bxy of each equivalent plate. This is made, in part, from a pure analytical
modeling and, in part, through numerical finer modeling.

x

y

1

2

3

4

5

Figure 6. Scheme of the equivalent plates of the homogenized model.

Concerning the equivalent mass of the homogeneous plates, an average mass density
ρh = 8700 kg/m3 is determined by dividing the total load of the longitudinal arm for the plate volume.
All the other elements are considered mass-free.

5. LW Homogenized Model Identification

Preliminary analyses, carried out on the LW fine model, showed that the out-of-plane behavior
is substantially equivalent to that of a pure shear plate. Therefore, the equivalent bending and twist
stiffness coefficients are assumed Dx = Dy = Dxy = ∞, and the identification procedure is limited to
determine the six elastic membrane and shear stiffness coefficients (Sx, Sy, Bx, By, Bxy), for each of the
five equivalent plates. Different approaches are used:

• the in-plane behavior is characterized by energy equivalences on the basis of exclusively
analytical models;

• the out-of-plane behavior is characterized by displacement equivalences on the basis of fine
numerical models: This more involved approach is due to the physics of the problem where mainly
during out-of-plane displacements, interaction between vertical and horizontal structures occurs.

5.1. In-Plane (Membrane) Behavior

Assuming each wall of the fine model to behave as a homogeneous and isotropic Cauchy
continuum, of elastic Young modulus and Poisson factor Em, νm, respectively, the membrane elastic
constants Bx,By,Bxy are determined for the equivalent plates at the different stories as follows.

On any of the stories, the longitudinal walls are characterized by almost identical windows,
periodically repeated along the length. Therefore, it is easy to identify Representative Volume Elements
(RVE), whose assembly reproduces the walls: A rectangular cell of dimensions ax × ay, where ax is the
center distance of the windows, ay the interstory height, x and y the horizontal and vertical directions,
respectively, is used as RVE; see details in Figure 7a. In each of the four longitudinal wall, the rectangle
cell circumscribes a I region, centered on the cell and derived by the intersection between a male wall
and part of two horizontal bands. The four I regions are distinguished by the different wall thickness
hi (with i = 1, ..., 4) and by different void dimensions that are 2bx × 2by1 in the two external facades
and 2bx × 2by2 in the two internal facades; see Table 1. Note that, whereas the dimensions along x are
constant, those along y vary.
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x

y

ax

ay

bx bx

by

(a) (b)

Figure 7. (a) cell geometry; (b) modified I domain under extensional strains: subtraction of the regions
at almost zero-strain.

Table 1. Cell geometry; numerical values in meters.

Homogeneous Plate ax ay bx by1 by2 h1 h2 h3 h4

1 3.8 5.90 0.76 2.72 2.72 1.49 0.62 0.62 1.66
2 3.8 7.05 0.76 2.73 5.61 1.3 0.57 0.57 1.4
3 3.8 7.05 0.76 2.78 2.40 1.26 0.57 0.57 1.1
4 3.8 5.85 0.76 2.53 3.75 0.94 0.52 0.52 0.98
5 3.8 5.05 0.76 1.28 3.77 0.52 0.49 0.49 0.52

The identification of the membrane elastic stiffness coefficients of each plate is made by equating
the strain energy of the four I cells and of the equivalent rectangular cell, of dimensions ax × ay and
unitary out-of-plane thickness, once the same in-plane strain is applied, assumed constant on the
cell domain. Longitudinal strain along x- and y-directions are applied to determine the extensional
elastic coefficients:

Bx = Em

4

∑
i=1

hi

[
1−

2bxbyi

axay
−
(ax − 2bx)

(
ax − 2bx − 2byi

)
2axay

]

By = Em

4

∑
i=1

hi

(
1−

2bxbyi

axay
− 2b2

x
axay

)
,

(2)

and shear strain is applied to determine the membrane shear stiffness coefficient:

Bxy = Gm

4

∑
i=1

hi

(
1−

2bxibyi

axay

)
(3)

where by3 = by2 and by4 = by1. It is worth noticing that these identified coefficients are proportional to
the full-void difference of the cell, namely:

1−
2bxibyi

axay
(4)

As a further comment to get Equation (2), the regions at almost zero-strain (according the real
strain distributions) are subtracted to the domain of the I region, as shown in Figure 7b.
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Validation of the identification procedure comes from good agreement in comparing the outcomes
of finite element models, when both the fine and homogeneous structures are subjected to the same
in-plane solicitations. The numerical results are reported in Table 2.

5.2. Out-of-Plane (Shear) Behavior

The identification of out-of-plane behavior implies a higher complexity due to the influence of the
collaborating slabs. Therefore, to this aim, the LW fine finite element model described in Section 3,
under suitable load and constraint conditions, is used. Here, the geometry of the assembly being
known as well as the elastic properties of the elements, the out-of-plane shear elastic constants (Sx,Sy)
of each homogenized plate are determined as follows.

First, coefficient Sx is identified. To this aim, the LW fine model, released to the base
(but still hinged at the sides) and subjected to a horizontal, uniformly distributed load of intensity
p = 1000 N/m2 on the surface of the most external facade, is analyzed. The deformed configuration
of the fine model is shown in Figure 8 in (a) the 3D space and (b) the x− z plane. It is observed that
(a) the out-of-plane deformation is strongly influenced by the stiffness difference along y and (b) the
slab beams rigidly move forward, as the cross-sections of a pure shear beam fixed at the ends.

(a) (b)

Figure 8. Sx identification. Deformed configuration of the fine model in the: (a) 3D space; (b) x− z plane.

Therefore, the idea is to consider five equivalent pure shear beams, i.e., one for each story, with the
axis-line along x, and calibrate the relevant stiffness coefficients GAi (for i = 1, ..., 5). The shear beams
have a length of L = 82 m, i.e., the arm length, are fixed at the ends and are subjected to a uniform load
payi, with ayi the interstory height (Table 1); see the scheme in Figure 9a. The identification is made by
a displacement equivalence between numerical and analytical models: The out-of-plane displacements

of the fine model, evaluated at x =
L
2

and at half height of each interstory, are equated to the mid-span

displacement of the equivalent shear beam, namely wi

(
L
2

)
= pL2

8GAi
, which come from the analytical

solving of the relevant differential boundary value problem:

GAiw′′i (x) = −p

wi(0) = 0 for i = 1, ..., 5

wi(L) = 0

(5)

The unknown stiffness coefficient GAi is thus obtained and, from them, the equivalent plate

coefficient comes as Sxi =
GAi
ayi

; numerical values are in Table 2. In Figure 9b, a comparison between
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the equivalent beam (i = 5) and fine model deformed configurations in the x− z plane is shown, and a
very good agreement is observed.

p ayi

w xi( )

x

L

G Ai

0 20 40 60 80

0.000

0.005

0.010

0.015

0.020

x

w

(a) (b)

Figure 9. (a) scheme of the shear beam equivalent to the i-plate; (b) comparison between analytical
(pink line) and numerical (black line) deformations in the x− z plane for the plate 5; quantities in meters.

As a further step, the out-of-plane shear stiffness coefficient Sy is identified. To this aim, a central
vertical strip of width ax is extracted from the LW fine model. A distribution of horizontal forces,

equivalent to the triangular load
p

H5
y with p = 2000 N/m and H5 = 31 m, which is the total height

of the wall, is applied to the external facade; the interaction with the adjacent strips is neglected.
The out-of-plane displacement of the fine model is shown in Figure 10a, in the 3D space, and in
Figure 10b, in the y− z plane. It is observed that the deformation is substantially similar to that of a
shear-type frame with total height H5, deriving by a pure shear behavior of the interstory walls.

(a) (b)

Figure 10. Sy identification. Deformed configuration of the fine model in the: (a) 3D space; (b) y− z plane.

Therefore, for the aforementioned purpose, five equivalent pure shear beams, arranged in series
and having axis-line along y and length ayi, are considered. The shear beams are fixed at the base and

subjected to the triangular load
p

H5
y; see the scheme in Figure 11a. The identification of the relevant

shear stiffness coefficients GAi (i = 1, ..., 5) is carried out, as for the previous case, by a displacement
equivalence between numerical and analytical models: The out-of-plane displacement of the fine
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model, evaluated at floor level y = Hi and at half width of the strip, is equated to the analytical
expressions wi (Hi). The latter come from solving the following differential boundary value problem,
composed by field equations, continuity conditions at y = Hi and the geometric and mechanical
conditions at the boundary:

GAiw′′i (y) = −
p

H5
y for i = 1, ..., 5

w1(0) = 0

wi(Hi) = wi+1(Hi)

GAiw′i(Hi) = GAi+1w′i+1(Hi)

}
for i = 1, ..., 4

GA5w′5(H5) = 0

(6)

The unknown equivalent stiffness coefficients GAi are consistently obtained and, accordingly,

the plate stiffness coefficients are Syi =
GAi
ax

; their numerical values are shown in Table 2. In Figure 11b

a comparison between the deformed configurations of analytical and numerical models in the y− z
plane are shown, indicating a very good agreement.
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Figure 11. (a) scheme of the equivalent shear beam system with axis y; (b) comparison between
analytical (pink line) and numerical (black line) deformations in the y− z plane; quantities in meters.

5.3. Summary of the Identified Equivalent Parameters

In accordance with the homogenization procedures described above, the numerical values of the
identified stiffness coefficients (in N/m) for the LW homogenized model are collected in Table 2 for
each plate.

Table 2. Identified equivalent stiffness coefficients (in N/m) for the LW homogenized model.

Homogeneous Plate Dx = Dy = Dxy Sx Sy Bx By Bxy

1 ∞ 7.3× 107 3.3× 107 9.4× 109 7.4× 109 3.9× 109

2 ∞ 6.1× 107 1.1× 107 8.5× 109 6.4× 109 3.4× 109

3 ∞ 5.2× 107 6.5× 106 7.5× 109 6.2× 109 3.3× 109

4 ∞ 4× 107 4.6× 106 6.3× 109 4.8× 109 2.6× 109

5 ∞ 3.5× 107 2.3× 106 4.3× 109 3.3× 109 1.8× 109
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6. LTW and SLTW Homogenized Models Identification

The LW homogenized model is enriched by adding first the distributed, and then both distributed
and localized transverse walls, thus obtaining the LTW and SLTW homogenized models, respectively.
In particular, in the LTW model, the transverse walls are distributed along the total length L of the arm,
with an inter-axis ax, and affect in- and out-of-plane stiffness coefficients By and Sy of the equivalent
plate. Furthermore, in the SLTW model, the localized transverse walls are modeled as equivalent
beams, integral with the LTW plate.

6.1. In-Plane (Membrane) Behavior

The transverse walls are assumed to influence the in-plane behavior of the equivalent plate
in the y-direction. They are modeled as beams with axis-line along y, having axial stiffness 2Em A,
where A = 0.8 m2 is the cross-section area for the case of distributed walls, and A = 3.7 m2 for
localized walls, respectively.

Therefore, in defining the LTW homogenized model, the contribution of the distributed beams on
the equivalent plate turns out to be an increase of the elastic coefficient By of the LW model, given in

Equation (2), of the value
2Em A

ax
= 9.26× 108 N/m.

For the SLTW homogenized model, a further stiffening of the LTW model is due to the localized
beams, which are integral with the plate and provide axial stiffness 2Em A = 1.55× 1010 (in which the
contribution of the partitions, incorporated in the plate, is subtracted).

6.2. Out-of-Plane (Shear) Behavior

In order to evaluate the out-of-plane behavior, each couple of transverse wall is modeled as a
Timoshenko beam having an axis-line along y. Its bending and shear stiffness coefficients are piece-wise
uniform along each story, and are evaluated as 2Em Ii and 2Gm Ati (for i = 1, ..., 5), respectively,
where principal inertia moment Ii and area Ati include the thickness of the two external and internal
longitudinal walls to the cross-section of each transverse wall. However, since the beams are included
or attached to the pure shear plates of the homogenized model, they are forced to behave as pure
shear beams as well. For this reason, a “reduced” equivalent shear stiffness GA∗i (for i = 1, ..., 5),
also including the bending of the Timoshenko beams, is identified. This is made by a complementary
energy equivalence between the Timoshenko beam (bending and shear stiffness coefficients 2Em Ii,
2Gm Ati, respectively) and a pure shear beam (shear stiffness GA∗i ), of length ayi, fixed at the base
and subjected to a horizontal load at the top (details are given in Appendix A). The equivalent shear
stiffness is found to be:

GA∗i =
6Em IiGm Ati

3Em Ii + Gm Atia2
yi

(7)

In defining the LTW homogenized model, the contribution of the distributed walls is finally

included in the equivalent plates as Syi =
GA∗i

ax
(reported in Table 3).

Then, the SLTW homogenized model is defined, by stiffening the LTW model by localized beams,
integral with the plate and having shear stiffness GA∗i reported in Table 3 (the contribution of the
partitions, incorporated in the plate, is subtracted).
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Table 3. Shear stiffness coefficients of LTW model (in N/m) and equivalent beams in the SLTW model (in N).

Homogeneous Plate Sy GA∗

1 2.54× 108 3.63× 109

2 1.93× 108 2.76× 109

3 1.91× 108 2.73× 109

4 2.12× 108 3.03× 109

5 2.14× 108 3.07× 109

Note that the shear stiffness of the LTW model is much higher than that of the LW model.

7. Global Homogenized Model

The case study consists of a very large building and this makes the finite element fine
modeling very heavy and somehow impractical for the characterization of a possible global behavior.
Therefore, the definition of a simplified homogenized model, with a reduced number of d.o.f., appears
as a convenient choice, when one is interested to address a large scale point of view. The purpose
is indeed accomplished by substituting each arm of the building with five (one for each story)
homogeneous plates. In this way, the building is thought of as a vertical tube, with a multi-cellular
section. In order to obtain a minimal and descriptive model of the dynamic behavior, despite the
heterogeneity of the building, the same mechanical characteristics are assigned to the plates composing
the different arms. The latter are defined by the LW, LTW, or SLTW homogenized models of the long
longitudinal arm, as defined in the previous sections.

A perspective view of the finite element global homogenized model is shown in Figure 12.
It consists of 4848 nodes and 4150 elements. The walls are modeled by in-series homogeneous
orthotropic shell elements, of unitary out-of-plane thickness and having the length of the arm and
interstory height. Any element is a Cauchy continuum body in plane stress, defined in a 2D space.
Different colors are used to distinguish the mechanical properties of each plate, defined by the
LW or LTW homogenized models; localized massless beam elements are attached to the plates,
when the SLTW homogenized model is considered. For details about the geometry, see Figure 1 The
soil–structure interaction is not taken into account; therefore, external fixed constraints are applied to
the base nodes.

Figure 12. Overview of the finite element global homogenized model.
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8. Modal Analysis

First, experimental dynamic identification, carried out on building portions by R. Alaggio and
E. Antonacci of the Structural Dynamic Laboratory of the University of L’Aquila (Technical Report not
yet published at the time this paper is submitted, see Acknowledgments), is described. Then, modal
analyses of the fine models of a building portion are performed to study the influence of the transverse
walls; these models are also validated on the base of the experimental results. Modal analyses of
the homogenized models of the same building portion are also performed and the models validated.
Finally, the dynamic behavior of the global homogenized model is studied to address possible local
and global mechanisms.

8.1. Experimental Dynamic Identification

The experimentation was carried out to assess the dynamic behavior of the building, according to
the Output Only identification techniques, having the merit of reducing interference with the activities
carried out routinely in the building. The processing of the acquired data is carried out according to
methods defined in the time (SSI, Stochastic SubSpace Identification) and frequencies (EFDD, Enhanced
Frequency Domain Decomposition) domain, in order to produce a mutual validation of the modal
parameters (frequencies, forms, and modal damping). The dynamic investigations are developed
in two phases: (i) a first phase of design and execution of the dynamic tests; (ii) a second phase of
identification of the modal parameters. Similar techniques were used also in [38,39].

Two test campaigns, involving a portion of the building, were carried out at two different times:

1. The test campaign 1 was carried out on the building portion highlighted in Figure 13a, at the
only second floor. The measuring instruments were arranged to measure the components of the
motion at twelve points and, for each point, in two directions.

2. The test campaign 2 was carried out on the building portion highlighted in Figure 14b at the first,
second, third, and fourth floor. Four measuring instruments were arranged at each floors in order
to measure the motion components in sixteen points.

Excerpts of the natural frequency and modal shapes of the first vibrating mode, obtained in
both the campaigns, are shown in Figures 13 and 14. It is observed that the first vibrating mode
mainly involves the out-of-plane behavior of the longitudinal arm, with the decidedly high natural
frequency f = 1.54 Hz.

(a) (b)

Figure 13. (a) building portion affected by the dynamic tests of the campaign 1—second floor.
First vibrating mode: natural frequency f = 1.54 and (b) modal shape in the x− z plane.
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(a) (b)

(c) (d)

Figure 14. (a) building portion affected by the dynamic tests of the campaign 2—first, second, third,
fourth floor. First vibrating mode: natural frequency f = 1.54 and modal shapes in the (b) 3D space,
(c) x− z plane, and (d) y− z plane. .

8.2. Modal Analysis of the Fine Models of a Building Portion

The modal analysis of the LW, LTW, and SLTW fine models of the long longitudinal arm is
performed, in order to investigate the actual influence of the transverse walls on the dynamic behavior.
The corresponding natural frequencies and modal shapes of the first natural mode are shown in
Figures 15–17.

(a) (b) (c)

Figure 15. First natural mode of the LW fine model. Natural frequency f = 0.54 Hz. Modal shape in
the: (a) 3D space; (b) x− z plane; (c) y− z plane.

(a) (b) (c)

Figure 16. First natural mode of the LTW fine model. Natural frequency f = 1.38 Hz. Modal shape in
the: (a) 3D space; (b) x− z plane; (c) y− z plane.



Appl. Sci. 2020, 10, 6687 17 of 24

(a) (b) (c)

Figure 17. First natural mode of the SLTW fine model. Natural frequency f = 1.42 Hz. Modal shape in
the: (a) 3D space; (b) x− z plane; (c) y− z plane.

First, it is seen that the first vibrating mode mainly involves the out-of-plane behavior of the
structure. The LW model is the less stiff, with a natural frequency f = 0.54 Hz. Moreover, pure shear
modal shapes are observed in the x− z and y− z planes. Concerning this aspect, some considerations
about the significant influence of the slabs are reported in Appendix B. However, when the distributed
transverse walls are introduced, a significant increasing of the natural frequency reasonably occurs
(the natural frequency of the LTW model is f = 1.38 Hz), together with a qualitative change of the
modal shape in the y− z plane, in which also a bending behavior of the transverse walls is observed.
Finally, the adding of the localized transverse walls further increases the frequency (the natural
frequency of the SLTW model is f = 1.42 Hz) and, mainly, modifies the modal shape in the x− z plane,
in which localized stiffening effects are evident.

By comparing the numerical results with the experimental ones of Section 8.1, it is evident how
decisive appears the contribution of the transverse walls. The SLTW fine model captures quite well
the experimental results, with a percent error in frequency of about 7.8%. However, an evident error
is related to the hinge constraints at the lateral sides of the longitudinal walls of the fine model,
which could be conveniently substituted by horizontal springs (appropriately calibrated, possibly in
further investigations).

8.3. Modal Analysis of the Homogenized Models of a Building Portion

The modal analyses of the LW, LTW, and SLTW homogenized models of the same longitudinal
arm are performed, with the purpose of validating the (rough) homogenized models by means of the
corresponding fine ones, as well as evaluating how the natural frequency provides a “global” measure
of the accuracy of the homogenization procedure. Natural frequencies and modal shapes of the first
natural mode are shown in Figures 18–20.

(a) (b) (c)

Figure 18. First natural mode of the LW homogenized model. Natural frequency f = 0.46 Hz. Modal
shape in the: (a) 3D space; (b) x− z plane; (c) y− z plane.
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(a) (b) (c)

Figure 19. First natural mode of the LTW homogenized model. Natural frequency f = 1.23 Hz.
Modal shape in the: (a) 3D space; (b) x− z plane; (c) y− z plane.

(a) (b) (c)

Figure 20. First natural mode of the SLTW homogenized model. Natural frequency f = 1.44 Hz.
Modal shape in the: (a) 3D space; (b) x− z plane; (c) y− z plane.

8.4. Modal Analysis of the Global Homogenized Model

Finally, the modal analysis of the global homogenized model is carried out. The aim is
to investigate the occurrence of a global dynamic behavior rather than local mechanisms of
macro-elements. It is worth noticing that such an analysis, if performed with a fine model of the whole
structure, is impractical.

First, the global LTW homogenized model is studied. It is found that the dynamic behavior
is characterized mainly by out-of-plane movements of macro-elements, composed by the building
arms. Frequency and modal shape of the most qualitatively significanty natural modes, namely 1,5,7,
are shown in Figure 21. In particular, the natural modes 1–4 involve the long longitudinal arms
with frequencies of about f = 1.2 Hz, the natural modes 5–6 involve the short longitudinal arms
with frequencies of about f = 1.25 Hz and the natural modes 7–10 involve the transverse arms with
frequencies of about f = 1.3 Hz.
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Mode Frequency Modal shape

1 f = 1.2 Hz

5 f = 1.25 Hz

7 f = 1.3 Hz
(a) (b)

Figure 21. Natural modes of the global LTW homogenized model. Modal shape in the (a) 3D space;
(b) x− z plane.

Moreover, as a confirmation of the occurrence of local dynamic mechanisms, it is observed
also that the first mode is about the same as that of the homogenized model representing the only
longitudinal arm (see Figure 16). This specific aspect is mainly due to the geometry of the building,
and allows one to directly address the study to the single arms, eventually developing finer models.

When the localized transverse walls are added and the global SLTW homogenized model is
studied, the dynamic behavior continues to be characterized mainly by out-of-plane local movements
of macro-elements, consisting of the building arms. Frequency and modal shape of the natural modes 1,
5 are shown in Figure 22. The natural modes 1–4 involve the transverse arms with frequencies of
about f = 1.3 Hz and the natural modes 5–8 involve the long longitudinal arms with frequencies of
about f = 1.33 Hz; the other modes are the higher modes of the long longitudinal arms and, therefore,
are not reported.
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Mode Frequency Modal shape

1 f = 1.3 Hz

5 f = 1.33 Hz
(a) (b)

Figure 22. Natural modes of the global SLTW homogenized model. Modal shape in the (a) 3D space;
(b) x− z plane.

It is interesting to note that the addition of localized beams, as defined in the SLTW model,
causes a reversal of the modes order. This is a consequence of the effect of the localized walls,
which increase the out-of-plane modal stiffness of the arms in a different way, depending on the mode
number. Indeed, compared to the frequency of the modes 1, 5, 7 of the LTW model, where localized
transverse walls are absent, for the SLTW, it is increased of 10.8%, 39% and 0%, respectively. As a
further observation, the natural frequencies of the global SLTW homogenized model are very close to
each other, so as to result in being very sensitive to the definition of the localized elements. This aspect
could induce, for some configurations, the occurrence of simultaneous modes, which might be worthy
of investigation.

9. Conclusions

In order to have a clear insight into the dynamic behavior of a vast historical building,
a homogeneous mechanical model has been addressed here. This specific approach has been motivated
by the structural characteristics of the building, constituting of a complex assembly of masonry walls,
vaults, arches, slabs, which make in fact impractical the realization of a refined finite element model.
The homogeneous model is made of linear orthotropic plates, which change their elastic properties at
any story; furthermore, in the definition of the material response function, it has been taken advantage
of the feasible individuation of a Representative Volume Element, from the periodic repetition of male
walls and windows.

Three possible versions have been formulated, referred to as LW, LTW, and SLTW, respectively,
where the equivalent plate has been progressively enriched with the contributions of distributed
and localized beams, so as to account for the effects of the transverse walls. Specifically, structural
models of Mindlin–Reissner plates, alternatively combined either with Timoshenko or pure shear
beams, have been used depending on the representation of in-plane or out-of-plane behavior.
The corresponding constitutive parameters have been then calibrated with the use of fine FE models of
portions of the building.

It has been seen how the obtained homogeneous models are handy and, as a major result,
well capture the first modal properties of the building, as compared to outcomes of experimental
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dynamic identification which are carried out for practical reasons only on a portion of the structure.
Moreover, the homogeneous model allows one to analyze the global behavior of the building, providing
a significant interpretation of the relationship intercurring between global and local mechanisms.
Notably, it has been found that dynamics are mainly characterized by out-of-plane movements of
the macro-elements composed of the building arms, thus addressing how the local mechanisms
concur in delineating the global behavior of the structure. This aspect is a consequence of the specific
geometry of the building, and justifies the possibility of directly addressing the study to the single
arms, eventually developing finer models.

With reference to the LTW model, it turns out that the natural modes 1–4 involve out-of-plane
motions of the long longitudinal arms, with frequencies of about f = 1.2 Hz, while modes 5–6 involve
the short longitudinal arms, with frequencies of about f = 1.25 Hz, and modes 7–10 the transverse
arms with frequencies of about f = 1.3 Hz. Further improvement of the model, specifically referring
to the SLTW configuration, causes a reversal of the modal order, possibly due to the closeness of the
different natural frequencies and the high sensitivity of the model.
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Appendix A. Complementary Energy Equivalence

The elastic complementary energies of a Timoshenko beam, with bending and shear stiffness
coefficients 2Em Ii and 2Gm Ati, and of a pure shear beam, with equivalent shear stiffness coefficient
GA∗i , both having axis-line along y and length ayi, are respectively:

Vt =
1
2

∫ ayi

0

(
T2

2GAti
+

M2

2EIi

)
dy

Vs =
1
2

∫ ayi

0

(
T2

GA∗i

)
dy

(A1)

where the bending moment and the shear force, when the beams are fixed at the base and subjected to
a horizontal load F at the top, are:

T = F

M = Fayi − Fy
(A2)

By the energy equivalence Vt = Vs, the explicit expression of the shear stiffness coefficient in
Equation (7) is obtained.

Appendix B. Some Considerations about the Slab Influence on the Out-of-Plane Behavior

Preliminary numerical analyses, performed on the LW fine model, showed that the addition
of collaborating slabs significantly changes the out-of-plane behavior, both in qualitative and
quantitative terms.

Natural frequencies and modal shapes of the first vibrating mode of the LW fine model without
slabs are shown in Figure A1. These have to be compared with Figure 15.
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(a) (b) (c)

Figure A1. First natural mode of the LW fine model without slabs. Natural frequency f = 0.24 Hz.
Modal shape in the: (a) 3D space; (b) x− z plane; (c) y− z plane.

A significant decreasing of the natural frequency is observed, together with a qualitative change of
the modal shape. In particular, the collaboration of the slabs (i) increases the frequency of 2.24 times and
(ii) modifies the deformed configuration in the y− z plane, passing from a bending-type deformation
to a shear-type frame deformation, with an actual span length H equal to the facade height (note that
the stiffness ratio between the two analytical models is 4).
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