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Abstract: Landslide sources and runout features of typical natural terrain landslides can be observed
from a geotechnical perspective. Landslide sources are the major area of occurrences, whereas runout
signatures reveal the subsequent phenomena caused by unstable gravity. Remotely sensed landslide
detection generally includes runout areas, unless these results have been excluded manually through
detailed comparison with stereo aerial photos and other auxiliary data. Areas detected using remotely
sensed landslide detection can be referred to as “landslide-affected” areas. The runout areas should
be separated from landslide-affected areas when upgrading landslide detections into a landslide
inventory to avoid unreliable results caused by impure samples. A supervised data mining procedure
was developed to separate landslide sources and runout areas based on four topographic attributes
derived from a 10–m digital elevation model with a random forest algorithm and cost-sensitive
analysis. This approach was compared with commonly used methods, namely support vector
machine (SVM) and logistic regression (LR). The Typhoon Morakot event in the Laonong River
watershed, southern Taiwan, was modeled. The developed models constructed using the limited
training data sets could separate landslide source and runout signatures verified using the polygon
and area constraint-based datasets. Furthermore, the performance of developed models outperformed
SVM and LR algorithms, achieving over 80% overall accuracy, area under the curve of the receiver
operating characteristic, user’s accuracy, and producer’s accuracy in most cases. The agreement of
quantitative evaluations between the area sizes of inventory polygons for training and the predicted
targets was also observed when applying the supervised modeling strategy.
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1. Introduction

Natural hazards occur frequently in Taiwan. Among them, landslides can be triggered by
heavy rainfall events, especially in mountainous areas. The precipitous terrain, complicated geology,
and dense population may increase vulnerability, causing a serious loss of life, property damage,
and economic loss. Furthermore, these events can affect water resource supply and cause other
livelihood problems. Therefore, landslide analysis and assessment have become critical in natural
hazard and disaster mitigation, prevention, and reconstruction in Taiwan. A growing number of
studies have investigated landslide-related topics on different scales, such as slope stability analysis
for a specific slope site [1,2]; regional landslide detection and mapping [3–7]; characterization of the
relationship between landslides and environmental or triggering factors [8–13]; susceptibility, hazard,
risk assessment, and management [14–19]; and modeling or estimating physical, environmental,
and rainfall-based parameters [20–24]. Landslide risk assessment and management are crucial,
systematic, and extensive frameworks in the related works. Dai et al. [14] divided this topic into
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several parts. In this framework, generating landslide inventory (inventory map and database are
used synonymously in this study) is essential to connect the following assignments.

A basic landslide inventory should record the landslide’s location, date (event-based) or
period (multitemporal), and types of movement [25]. The definition, assumptions, requirements,
production processes, and statistical properties of landslide inventories have been discussed in detail by
Guzzetti et al. [25], Harp et al. [26], Malamud et al. [27], and Shao et al. [28]. Furthermore, Galli et al. [29]
and Mondini et al. [11] have assessed the quality and completeness of landslide inventory maps
by comparing two maps of the same area. Numerous studies have indicated that the continuing
improvements in remote sensing and geographic information systems (GISs) have led to cooperation
with data mining and machine learning algorithms to produce a regional landslide inventory.
In particular, integrating GIS-based models with geo-spatial data [18,30] and generating event-based
landslide inventory [11,25,31] have garnered interest.

Three common features of typical natural terrain landslides have been observed from a geotechnical
perspective. These features were the landside source, trail, and deposition fan [32]. The surface of
the rupture, comprising the main scarp and the scarp floor, is defined as the source area. A landslide
trail may also occur predominantly as a result of the transport of the landslide mass. The majority of
the landslide mass is deposited (i.e., deposition fan). The term runout is generally used to indicate
the landslide trail and deposition fan [33]. Landslide detection performed using automatic and
semiautomatic methods with remotely sensed images usually includes runout areas unless these
results have been excluded manually through a detailed comparison with stereo aerial photos and
other auxiliary data. The areas detected using remotely sensed landslide detection can be referred
to as “landslide affected” areas. Mixing landslide source areas with runout regions may reduce the
reliability of a landslide analysis [34], such as susceptibility and hazard assessments. These runout
areas should be separate from landslide source areas because they have different mechanisms.
More precisely, producing landslide inventory requires further processing after the remote sensing of
landslide detections.

Data mining and machine learning-based algorithms have been used increasingly for landslide
modeling, especially in landslide susceptibility assessments, such as decision trees, deep learning
systems, evolution-based algorithms, fuzzy theory, neural networks, random forests (RF), and support
vector machines (SVM) [35–40]. Related studies have also considered various composites and
compared the effectiveness of strategies based on established methods in achieving a specific
purpose [41–43]. However, few studies have employed these approaches for detecting landslides and
producing inventories that consider the separation of runout areas from landslide affected regions.
The RF method [44] consists of data mining and machine learning algorithms that have displayed
excellent performance in the analysis of numerous remote sensing and landslide topics [45,46]. The RF
algorithm is based on the ensembles of various decision tree results and exhibit desirable properties,
such as high accuracy, robustness against overfitting the training data, and integrated measures of
variable importance [47]. Furthermore, Lai and Tsai [48] and Lai et al. [34] have demonstrated that
combining the RF algorithm with a cost-sensitive analysis [49] in landslide susceptibility assessments
can reduce extreme omission (missing) or commission (false alarm) predictions because it adjusts the
decision boundary.

The main purpose of this study was to explore the feasibility of separating landslide source and
runout areas based on landslide affected extents extracted from remotely sensed images in order to
upgrade landslide detections into a landslide inventory. The significance of topographic data in relation
to the flow velocity, geomorphology, runoff rate, soil water content, and differences between landslide
source and runout areas was demonstrated [34,50]. The term “signature” used in this study represents
the patterns of landslide source and runout areas in a feature space. Feature space means that the
dimension is the used factors with the samples based on a scatter plot form. Therefore, the developed
RF-based data mining models and topographic attributes, such as aspect, curvature, elevation, and slope,
constructed for the Typhoon Morakot event in 2009 were combined to compare the results with those
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obtained using SVM and logistic regression (LR) algorithms. SVM and LR algorithms are commonly
applied in the related domains. The performance of cost-sensitive analysis was also evaluated to
improve the constructed models by adjusting the decision boundary.

2. Materials and Methods

2.1. Study Site and Data

The study area was located in the Laonong River watershed in southern Taiwan and covered
approximately 117 km2, as illustrated in Figure 1a. The elevation in the study site ranged from
258 to 1666 m above sea level, measured using the digital elevation model (DEM) modified by
Chiang et al. [51]. The average elevation was 716 m. The slope range, average slope, and standard
deviation were 0–71.2◦, 25.84◦, and 11.98◦, respectively, which indicated that the terrain of the Laonong
River watershed is steep. Three geological formations and four soil types were identified in the study
area. The geological formations were Lushan, Sanhsia, and Toukoshan. The four soil types were
alluvium, colluviums, lithosol, and loam. Lai et al. [34] reported detailed information regarding
geological formations and soil types within the study site. The Laonong River watershed is located in the
tropical monsoon region, and the annual precipitation is approximately 3400 mm. Therefore, this area
is frequently struck by typhoons. For example, Typhoon Morakot caused extensive rainfall in 2009,
which resulted in numerous landslides and debris flow in southern Taiwan. An official report [52]
indicated that 769 casualties or missing people were directly or indirectly caused by these landslides.
Furthermore, Typhoon Morakot caused losses of approximately $526 million because of the damage to
agriculture, forestry, and fishery. In particular, a riverside village called Xiaolin (sometimes spelled
Shiaolin, Hsiaolin) was destroyed by the landslides and debris flows from a devastating landslide
nearby, which caused approximately 500 fatalities.

Figure 1. Location of the study site (a) and landslide inventory map (b).

A landslide inventory map of Typhoon Morakot revealed deep-seated landslides, as illustrated in
Figure 1b. The landslide source, runout, and channel classes were interpreted manually [34] based
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on stereo aerial photos and auxiliary data. This study assumed that the used landslide inventory
comprised the results of the detection of affected landslide areas extracted from the remotely sensed
images. The landslide inventory was also used for quantitative verifications. The 10–m DEM was
then analyzed to derive topographic attributes, including the aspect, curvature, elevation, and slope,
as illustrated in Figure 2. Furthermore, the landslide inventory map was converted into a grid format
of 10 m2 to match the topographic factors for constructing data mining-based models.

Figure 2. Topographic layers used in this study. (a) Aspect, (b) curvature, (c) elevation, and (d) slope.
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2.2. Procedure and Data Mining Algortithms

Figure 3 illustrates the conceptual procedure implemented in this study. The topographic attributes
were derived from the 10–m DEM, which connected the samples extracted from the landslide inventory
for modeling (Sections 2.2.1 and 2.2.2) and verification (Section 2.3). Two experiments were designed
for the demonstration of separating landslide source and runout signatures. First, the limited training
datasets were selected (the five largest area sizes of landslide source and runout classes in the landslide
inventory polygons) for polygon by polygon modeling. Second, each model was verified using other
four polygon-based samples. Third, these models were used to predict the polygon samples with an
area of ≥100,000 and 50,000–100,000 m2 to identify the optimal model. Previous results are presented in
Sections 3.2 and 3.3. Detailed information regarding the samples extracted from the landslide inventory
is presented in Table 1. Finally, the spatial patterns of landslide source and runout areas were produced
instance by instance based on the output labels of the optimal model, as demonstrated in Section 3.4.

Figure 3. The conceptual procedure used in this study to model and verify the separation between
landslide source and runout signatures.

Table 1. The training and verification samples extracted from the landslide inventory polygons.

Dataset
Landslide Source Runout

Area (m2) No. of Samples Area (m2) No. of Samples

No. 1 250,493 2508 385,381 3839
No. 2 154,709 1545 239,199 2386
No. 3 141,574 1412 206,055 2060
No. 4 132,005 1313 197,162 1980
No. 5 126,636 1265 190,338 1905

≥10,000 m2 * 155,333 (avg) 9318 162,768 (avg) 27,640
50,000—100,000 m2 68,670 (avg) 15,798 63,792 (avg) 8937

*Areas and number of samples in the table include the training polygon samples, but these samples were eliminated
during the verified process.

2.2.1. Developed Models

The random forests (RF) algorithm [44] is a data mining method used for constructing a
classification-based model that employs a supervised strategy. RF is an extension of the tree-based
algorithms. The RF employs the information gain (IG) measure or Gini index to determine the degree
of impurity of factors or variables, applying the bootstrap and vote operators to improve the results
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derived from the tree-based rules. The bootstrap method “randomly” selects subtraining data to
generate several trees (termed “forests”) to avoid the overfitting results. The vote component is used
to determine the optimal results according to the developed trees, thus improving the RF classifier.
A topographic factor with a larger IG or Gini value had to be selected because higher values indicate
a higher priority for constructing a tree node, which should be ignored in the next computation.
A sequence of tree-based rules was constructed after several iterations. The rules were then used to
classify other instances. Nominal (or discrete) and numeric (or continuous) formats are commonly
used in the field. Entropy theory was applied to calculate the IG in the nominal case, as displayed in
Equations (1)–(3). In these equations, E(A) represents the entropy of all training data; S and R represent
the numbers of landslide sources and runout samples, respectively; E’(a) and v are the entropy and
number of subsets of a specific topographic factor, respectively; E(aj) is the entropy of the subset
in a specific topographic factor, calculated using Equation (1); IG(a) represents the IG of a specific
topographic factor. The Gini index was applied to determine the IG in the numeric cases, as displayed
in Equations (4) and (5), where C represents a segmented point for a specific topographic factor used
to divide continuous data into two parts, and N1 and N2 represent the numbers of a ≤ C and a > C,
respectively. The steps were detailed by Guo et al. [53].

E(A) = −
S

S + R
log2

S
S + R

−
R

S + R
log2

R
S + R

(1)

E′(a) =
v∑

i=1

Si + Ri

S + R
E(ai) (2)

IG(a) = E(A) − E′(a) (3)

Gini(a ≤ C or a > C) = 1−
m∑

i = 1

ni

N
(4)

IG(a, C) =
N1

N
Gini(a ≤ C) +

N2

N
Gini(a > C) (5)

The strategy of adjusting the decision boundary used in the study is termed as the cost-sensitive
analysis. The cost-sensitive analysis is a postclassification method based on the cost matrix that
reclassifies the instances and balances the accuracies of certain classes when missing or false alarm
errors are unreliable [49,54,55]. The dimension of the cost matrix is equal to that of the confusion matrix.
The confusion matrix used in this study is presented in Table 2. True negative (TN), false negative (FN),
false positive (FP), and true positive (TP) were used to represent an agreement between the classified
and reference labels in counts tabulated in a confusion matrix. The cost in this study indicated a
weighting without the unit. The diagonal costs in the table represent correct results for the TN and
TP, and the remaining costs indicate misclassification costs between the FN and FP. The diagonal
costs and other elements are usually set to 0 and 1, indicating unadjusted and adjusted conditions of
the decision boundary. A large amount of missing or false alarm errors are severe FP or FN errors,
respectively. Adjusting the decision boundary by increasing the cost (weighting) of the FP or FN leads
to the inclusion of more samples, thereby balancing the classification result of a certain class. Equation
(6) displays the optimal prediction (R) of sample x in class i, where P(j|x) is the likelihood of estimating
a classification of a sample into all classes (j), and C represents the costs. In binary cases, the optimal
prediction is the landslide source label (class 1 or positive) if the expected cost of this prediction is less
than or equal to the expected cost of predicting the runout label (class 0 or negative), as displayed
in Equation (7). Given p = P(1|x) and CTN = CTP = 0, Equation (7) can be simplified, as displayed in
Equation (8). An adjusted threshold (p*) of the decision boundary, presented in Equation (10), can be
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derived from Equation (9) to classify a sample x as the landslide source label when P(1|x) is larger than
or equal to the threshold [56]:

R(i|x) =
∑

j

P(j
∣∣∣x)Cji (6)

P(0 |x )CFP + P(1 |x )CTP ≤ P(0 |x )CTN + P(1 |x )CFN (7)

(1− p)CFP ≤ p CFN (8)

(1− p∗)CFP ≤ p∗CFN (9)

p∗ =
CFP

CFP + CFN
(10)

Table 2. The confusion matrix used in this study.

Confusion Matrix
Ground Truth

Runout Landslide Source

Prediction
Run-out True Negative (TN) False Negative (FN)

Landslide source False Positive (FP) True Positive (TP)

2.2.2. Algorithms for Comparison

Two commonly used data mining methods were used for comparison with the developed models.
The support vector machines (SVM) method has been wieldy applied in remote sensing studies [57]
to classify land cover or use targets, extract biophysical parameters in different spatial resolutions,
and perform landslide analyses [40,41]. The core role of the SVM classifier is to determine the
largest margin of the classifier based on factor transformations with linear and nonlinear functions.
These transformations are known as the kernel function. Equation (11) describes a concept of the
SVM-based classification with a “sign” operator for the binary classification, where l, y, and k(xi,xj)
indicate the number of used factors (support vectors), the outputted label, and a kernel function,
respectively, and a and b represent the coefficients of the margin. The kernel functions used in this
study were linear, polynomial, and radial basis functions.

f(x) = sign

 l∑
i=1

aiyik
(
xi, xj

)
+ b

 (11)

Logistic regression (LR) is a typical and traditional statistical method used to model landslide
events [20,58]. The computation describes the relationship between the dependent and independent
variables as defined in Equation (12), where p refers to the likelihood or probability, a is a constant, b is
the regression coefficient, and x represents independent variables or used factors:

p =
exp(a + b1x1 + b2x2 + . . .+ bnxn)

1 + exp(a + b1x1 + b2x2 + . . .+ bnxn)
(12)

2.3. Accuracy Assessment

The quantitative results of comparing the output and ground truth labels, identified based on
the threshold, were derived from the confusion matrix to verify the constructed models. An instance
was categorized into the landslide (positive) class in most cases when the likelihood of occurrence
was ≥0.5; otherwise, the instance was assigned the nonoccurrence (negative or non-landslide) label.
Similar to previous classifications, the positive and negative labels in this study were changed from
landslide and non-landslide to landslide source and runout classes, respectively. The threshold of 0.5
for classification could also be adjusted by the cost-sensitive analysis (p*).
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Four commonly used quantitative indices derived from a confusion matrix, namely overall
accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and area under the receiver
operating characteristic (ROC) curve (AUC), were used to quantitatively evaluate the developed
models. OA represents the ratio of samples correctly classified as TN and TP, as illustrated in
Equation (13). UA and PA reflect the errors for each class (landslide source and runout) as presented
in Equations (14)–(17), where R and S represent the runout and landslide source classes. The false
alarm (commission errors) and missing (omission errors) assignments can be calculated as 1–UA and
1–PA, respectively. The AUC is commonly used to assess data mining-based models. The binary
classification threshold is used for reclassifying instances, calculating the rates of FPs and TPs to draw
the ROC curve. In general, the AUC ranges from 0.5–1, and results larger than 0.7 are acceptable,
and larger than 0.8 are excellent [59].

OA =
TN + TP

TN + FN + FP + TP
(13)

UA(R) =
TN

TN + FN
(14)

UA(S) =
TP

FP + TP
(15)

PA(R) =
TN

TN + FP
. (16)

PA(S) =
TP

FN + TP
(17)

3. Results

The data mining modeling and accuracy assessments used in this study were developed using the
WEKA environment (http://www.cs.waikato.ac.nz/mL/weka/), which is a free and open-source platform.
A four-stage step was designed to explore the separability between landslide sources and runout
signatures. The first stage, as reported in Section 3.1, compared the topographic attributes between the
landslide source and runout samples extracted from different sizes of landslide inventory polygons
that had an area of ≥100,000 or 50,000–100,000 m2. In the second stage, the RF and cost-sensitive
analysis-based data mining algorithms were used to construct the models polygon by polygon,
with the limited training datasets (the five largest area sizes in the landslide inventory polygons were
considered), as reported in Section 3.2. The major parameter in the RF-based computation was the
number of trees (Ntree). Du et al. [60] determined that 10–200 Ntree did not have any effect on the
results, but an increase in Ntree increased the computation loading. Therefore, 100 trees were adopted
in this study, as suggested by WEKA, to develop the RF-based models. In the third stage (Section 3.3),
the constructed models were applied to predict other landslide source and runout samples extracted
from the polygons with an area of ≥100,000 and 50,000–100,000 m2, respectively. The developed models
were compared with the commonly used methods, namely SVM and LR. The fourth stage consisted of
visualizing the spatial distributions of predicting the landslide source and runout areas to assess the
performance of the constructed model, as reported in Section 3.4.

3.1. Signatures of Topographic Attributes

The constraints on the area size of the inventory polygons were compared in the pairs of the
topographic attributes to preliminarily examine differences between landslide source and runout
signatures. The samples were extracted based on area sizes of ≥100,000 and 50,000–100,000 m2.
Furthermore, the value domain of the aspect, curvature, elevation, and slope layers was normalized
into the range of 0–1 for the visualization of data distribution and separation. The patterns obtained by
comparing the topographic datasets and area constraints are illustrated in Figures 4 and 5, respectively.

http://www.cs.waikato.ac.nz/mL/weka/
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A larger area size enabled a larger separation of landslide source and runout features. The disagreement
was not observed in the smaller landslide inventory polygons. This trend is similar to findings reported
by Lai et al. [34]. This trend may reflect that the complete mechanisms of landslide source and
runout areas appear in the larger landslide sizes. Moreover, the elevation is a critical factor in this
study. These data distributions reveal the feasibility of distinguishing the landslide source and runout
signatures when the sizes of landslide-affected areas were sufficient to reveal their mechanisms.

Figure 4. Patterns for comparing aspect, curvature, elevation, and slope layers with the samples
extracted from the inventory polygon with an area of ≥100,000 m2, where red and blue dots represent
the landslide source and runout classes, respectively. (a): Aspect vs. curvature.; (b): curvature vs.
elevation; (c): aspect vs. elevation; (d): curvature vs. slope; (e): aspect vs. slope; (f): elevation vs. slope.

3.2. Construction of Random Forests Based Data Mining Models

The RF-based data mining models were constructed using the top five polygons of area sizes in the
landslide inventory polygons to further explore the feasibility of separating the landslide source and
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runout areas. Each polygon was transformed into a grid format of 10 m2. These samples could be used
to extract the corresponding topographic attributes and produce the training and verification datasets.
The quantitative evaluations of OA, AUC, PA, and UA are presented in Figure 6. The accuracies
exceeded 80% in most cases. Model No. 3 provided the most accurate predictions. However, the results
of predicting (a) the No. 3 and No. 5 polygon samples by using the No. 1 and No. 2 models, (b) the
No. 5 polygon samples by using the No. 3 and No. 4 models, and (c) the No. 1 and No. 2 polygon
samples by using the No. 5 model revealed a disagreement between the training and verification
datasets. Possible reasons for this disagreement include (a) imbalanced sample ratios between landslide
source and runout classes, (b) dissimilar data distributions between different inventory polygons,
(c) lack of other critical factors, and (d) limited training data.

Figure 5. Patterns for comparing aspect, curvature, elevation, and slope layers with the samples
extracted from the inventory polygon with an area of 50,000–100,000 m2, where red and blue dots
represent the landslide source and runout classes, respectively. (a): Aspect vs. curvature.; (b): curvature
vs. elevation; (c): aspect vs. elevation; (d): curvature vs. slope; (e): aspect vs. slope; (f): elevation
vs. slope.
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Figure 6. Accuracies of the random forest (RF)-based models using the top five polygon samples to
predict each other, where OA, AUC, PA, UA, S, and R represent overall accuracy, the area under the
ROC curve, producer’s accuracy, user’s accuracy, landslide source, and runout, respectively. (a) No. 1,
(b) No. 2, (c) No. 3, (d) No. 4, and (e) No. 5 polygon samples for modeling.

To address this problem, cost-sensitive analysis procedures, similar to the procedure presented
by Lai and Tsai [48], were employed to adjust the decision boundary during RF-based modeling.
The results of the cost-sensitive analysis for different costs are illustrated in Figure 7. The developed
model without the cost-sensitive analysis (i.e., the cost is equal to 1) had a high missing error for
detecting landslide source regions, as displayed in Figure 7a–f, and runout areas, as displayed
in Figure 7g,h, because of the assignment of higher FN and FP, respectively. The variations and
improvements of accuracies could be observed after increasing the costs of FN and FP for the cases
presented in Figures 7a–f and 7g,h, respectively. Based on Figures 6 and 7, Table 3 lists the representative
models applying the RF algorithm and cost-sensitive analysis with different inventory polygon samples
for further verification, as presented in Section 3.3.
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Figure 7. Accuracies (Y-axis) of the RF-based models with different costs (X-axis) and polygon samples
for predictions, where OA, AUC, PA, UA, S, and R represent the overall accuracy, area under the ROC
curve, producer’s accuracy, user’s accuracy, landslide source, and runout, respectively. (a) No. 1 model
predicting No. 3 polygon samples, (b) No. 1 model predicting No. 5 polygon samples, (c) No. 2 model
predicting No. 3 polygon samples, (d) No. 2 model predicting No. 5 polygon samples, (e) No. 3 model
predicting No. 5 polygon samples, (f) No. 4 model predicting No. 5 polygon samples, (g) No. 5 model
predicting No. 1 polygon samples, and (h) No. 5 model predicting No. 2 polygon samples.
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Table 3. The representative models using the random forests (RF) algorithm with the costs for
verifications based on pervious comparisons. For example, RF_3000 indicates that the RF algorithm
with a cost of 3000 was used.

Model No. 1 No. 2 No. 3 No. 4 No. 5

Algorithm_Cost

RF
RF_3000
RF_4000
RF_5000
RF_6000
RF_7000

RF
RF_3000
RF_4000
RF_5000

RF
RF_1000

RF
RF_2000
RF_3000
RF_4000

RF
RF_2000

3.3. Model Performances and Comparisons

Based on settings presented in Table 3, the constructed models were used to predict the
samples extracted from other inventory polygons with an area of ≥100,000 or 50,000–100,000 m2,
namely the larger and smaller inventory polygons, presented in Sections 3.3.1 and 3.3.2, respectively.
Furthermore, the performances between the developed models and the approaches of SVM and LR
were compared.

3.3.1. The Case of Larger Inventory Polygons

The prediction results of No. 1 models obtained using the RF and cost-sensitive analysis are
presented in Figure 8a. The examination of this figure reveals that a cost of 5000 provided more
favorable results, with the accuracy reaching over 80% in most indices. However, the evaluations of
SVM-based approaches in consideration of linear, the first- to third-order polynomial, and radial basis
functions are displayed in Figure 8b. Overall, the second-order polynomial function outperformed
others. Compared with previous LR results, Figure 8c indicates that the developed model in Section 3.2
obtained the highest accuracies, although the UA of the landslide source was slightly lower.

Figure 8. Performances (Y-axis) of No. 1 model, where OA, AUC, PA, UA, S, and R represent the
overall accuracy, area under the ROC curve, producer’s accuracy, user’s accuracy, landslide source,
and runout, respectively. (a) Using the algorithm with the costs; (b) using the support vector machine
(SVM) with linear, the first- to third-order polynomial, and radial basis (RBF) functions; (c) comparing
the optimal results of (a) and (b) by using logistic (Logis) regression.
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Similar procedures to those used to verify the No. 2 model were applied to assess the algorithms
of RF with the cost-sensitive analysis, SVM, and LR. Figure 9a further compares the RF with costs,
as displayed in the third column in Table 3. Based on this figure, the RF algorithm appeared to
outperform the other models without increasing costs. As illustrated in Figure 9b, the accuracies of all
the functions of SVM modeling were similar, with higher missing errors for detecting landslide sources.
The RF and the second-order polynomial function of SVM were compared with LR, as illustrated in
Figure 9c, which revealed that the AUC of the LR was the highest. The accuracies of the three other
approaches were similar.

Figure 9. Performance (Y-axis) of the No. 2 model, where OA, AUC, PA, UA, S, and R represent the
overall accuracy, area under the ROC curve, producer’s accuracy, user’s accuracy, landslide source,
and runout, respectively. (a) Using the RF algorithm with the costs; (b) using SVM with linear, the first-
to third-order polynomial, and radial basis (RBF) functions; (c) comparing the optimal results of (a) and
(b) by using logistic (Logis) regression.

For the No. 3 model, Table 4 presents the comparison of the RF algorithm and cost-sensitive
analysis. The results indicate that the original RF algorithms provided higher accuracy, whereas the
RF method with a cost of 1000 had lower PA and UA for the runout and landslide source classes,
respectively. In the SVM case, Figure 10a reveals that the RBF obtained the least accurate results,
especially PA and UA for the runout and landslide source signatures. The performances of linear and
the first-order polynomial functions were similar. A further comparison of these models, illustrated in
Figure 10b, revealed that the results produced by the RF method were more favorable in most cases,
especially UA for the landslide source class.

Table 4. The performances of the No. 3 model by using the RF method with the cost of 1000, where OA,
AUC, PA, UA, S, and R represent overall accuracy, the area under ROC curve, producer’s accuracy,
user’s accuracy, landslide source, and runout, respectively.

Method UA(R) PA(R) UA(S) PA(S) AUC OA

RF 0.96 0.86 0.66 0.87 0.89 86.42%
RF_1000 1 0.56 0.41 0.99 0.92 66.39%
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Figure 10. Performances (Y-axis) of the No. 3 model, where OA, AUC, PA, UA, S, and R represent the
overall accuracy, area under the ROC curve, producer’s accuracy, user’s accuracy, landslide source,
and runout, respectively. (a) Using SVM with linear, the first- to third-order polynomial, and radial basis
(RBF) functions; (b) comparing the optimal results of Table 4 and (a) by using logistic (Logis) regression.

The No. 4 models were also examined as illustrated in Figure 11. The RF method without costs
also provided the most accurate results, as presented in Figure 11a. Similarly, the performances of the
linear and first-order polynomial functions outperformed the RBF method in SVM-based computation,
as illustrated in Figure 11b. The comparison based on the aforementioned methods is illustrated in
Figure 11c. The findings indicated that the AUC result of SVM was slightly higher than the other
indices of the RF, SVM, and LR, which were similar.

Figure 11. Performance (Y-axis) of the No. 4 model, where OA, AUC, PA, UA, S, and R represent
overall accuracy, area under the ROC curve, producer’s accuracy, user’s accuracy, landslide source,
and runout, respectively. (a) Using the RF algorithm with the costs; (b) using SVM with linear, the first-
to third-order polynomial, and radial basis (RBF) functions; (c) comparing the optimal results of (a) and
(b) with logistic (Logis) regression.

In the No. 5 model, the results produced by the RF algorithm with a cost of 2000 displayed
high accuracy, as illustrated in Table 5. For SVM-based modeling, Figure 12a indicated that the RBF
method had unbalanced predictions with a significant missing error for the landslide source and the
highest PA for the runout. However, the results of the linear and polynomial functions were similar.
The second-order polynomial SVM and LRs, illustrated in Figure 12b, displayed accuracies similar to
the RF_2000.
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Table 5. Performance of the No. 5 model using the RF method with a cost of 2000, where OA, AUC,
PA, UA, S, and R represent the overall accuracy, area under the ROC curve, producer’s accuracy,
user’s accuracy, landslide source, and runout, respectively.

Method UA(R) PA(R) UA(S) PA(S) AUC OA

RF 1 0.49 0.38 1 0.76 61.44%
RF_2000 1 0.76 0.56 1 0.91 81.46%

Figure 12. Performances (Y- axis) of the No. 5 model, where OA, AUC, PA, UA, S, and R represent the
overall accuracy, area under ROC curve, producer’s accuracy, user’s accuracy, landslide source,
and runout-out, respectively. (a) Using SVM with linear, the first- to third-order polynomial,
and radial basis (RBF) functions, (b) comparing the optimal best results of Table 5 and (a) with
logistic (Logis) regression.

Significant improvements were observed in the No. 1 and No. 3 models. Moreover, the RF
algorithm and cost-sensitive analysis provided favorable results in most cases. To identify the optimal
model in which the samples extracted from different size areas of the inventory polygons, Figure 13a
compares the RF method for the No. 2, 3, and 4 models, with costs of 5000 and 2000 for No. 1 and 5
models, respectively. Figure 13 indicates that the accuracies produced by the No. 1, 3, and 4 models
were similar, whereas the No. 2 and 5 models displayed less favorable results for the detection of
a landslide source class. Figure 13b indicated that the AUC of the No. 1 and 3 models were the
most favorable. These evaluations indicated that the No. 1 and 3 models provided more reliable
prediction results.

Figure 13. Comparison of the representative results using the RF method for the No. 2, 3, and 4
models, with costs of 5000 and 2000 for No. 1 and 5 models, respectively. (a) User’s accuracy (UA),
producer’s accuracy (PA), and overall accuracy (OA); (b) area under the ROC curve (AUC) for landslide
source (S) and runout (R) detections.

3.3.2. The Case of Smaller Inventory Polygons

The performances of the No. 1 model based on the RF method with a cost of 5000 and
the No. 3 model with the RF algorithm were assessed, as presented in Table 6, to predict the
samples extracted from the polygon areas equal to or larger than 50,000 and smaller than 100,000 m2.
The accuracies were lower than those displayed in Figure 13a, especially for the runout UA and PA of
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the No. 1 model. Furthermore, the No. 3 model with the RF method outperformed the No. 1 model,
indicating accurate results. The topographic roughness index (TRI) is commonly used for assessing
landslide susceptibilities [61]. TRI was further used to improve this case as also listed in Table 6.
However, the significant topographic attributes [62–64] and various indices [65] for separating landslide
source and runout signatures need to be further explored. These results reveal the uncertainty between
the training data and prediction targets. More precisely, the area size of the training inventory polygon
affected the capability and applicability of the constructed models. In practice, manually interpreting
the larger targets of landslide source and runout from remotely sensed images to produce the training
data was easier than selecting smaller objects, which was a clear limitation of using the supervised
strategy with four topographic variables in this study. Addressing this problem requires further
consideration regarding the tradeoff between the cost of producing training data and the applicability
of the developed models. The developed models were suggested for different area sizes of the
inventory polygons.

Table 6. Performances of the No. 1 model using the RF method with a cost of 5000 and No. 3 model
with the RF algorithm, where OA, AUC, PA, UA, S, and R represent the overall accuracy, area under
the ROC curve, producer’s accuracy, user’s accuracy, landslide source, and runout, respectively.

Model Method UA(R) PA(R) UA(S) PA(S) AUC OA

No. 1 RF_5000 0 0 0.64 1 0.67 63.87%
No. 3 RF 0.59 0.93 0.94 0.63 0.85 73.94%
No. 3* RF 0.63 0.91 0.93 0.70 0.85 77.54%

* With the topographic roughness index.

3.4. Visualization of Landslide Detection

To visualize the separated results of the case in Section 3.3.1, the predicted patterns of the No. 3
models for distinguishing landslide source and runout targets were generated, as illustrated in Figure 14.
The black and red and blue colors in this figure represent the ground truth and prediction results,
respectively. As illustrated in Figure 14a, the developed models displayed suitable detection of the
landslide sources (high PA(S)) with some false alarm errors (low UA(S)). Figure 14b also illustrated
that the model provided reliable results for detecting runout areas with higher UA(R) and PA(R).
These patterns accorded with the results of the No. 3 model in Figure 10b.

The detected distributions with the topographic situation in a three-dimensional (3D) space were
further examined. Figure 15 displays the patterns of the No. 3 model for predicting the No. 1 and No.
2 landslide source and runout inventory polygons. In this figure, red and yellow represent the correct
and incorrect predictions, respectively. Figure 15a,b displays accurate detections for the landslide
sources. The results presented in Figure 15c indicate that the lower part of a runout area can be
detected, whereas the upper region may be miscategorized as a landslide source. This finding reveals
that elevation is a critical factor for the separation of landslide source and runout areas. This finding
also accords with the result of the factor analysis presented in Section 3.1. Future studies can determine
the elevation-based threshold to improve the capability of the developed models.
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Figure 14. Prediction results of the No. 3 model using the RF algorithm to separate landslide source
and runout signatures with the areas of inventory polygons of ≥100,000 m2. Cases of (a) landslide
source and (b) runout polygons.

Figure 15. Three-dimensional (3D) view of the No. 3 model for predictions of separating landslide
source and runout areas. The landslide source areas of the (a) No. 1 and (b) No. 2 polygons in the
landslide inventory (located region A and B in Figure 14), and (c) the runout regions of the No. 1
and No. 2 inventory polygons (located region C in Figure 14). Red and yellow represent correct and
incorrect results, respectively.
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4. Discussion

The major finding in this study was that detecting landslides is not fully equal to inventory
generation. The detected targets require further examination. Lai et al. [34] suggested that the runout
area and topological relationship could be considered independent classes in landslide records when
producing a landslide inventory. Therefore, this study focused on the separation of landslide source
and runout classes caused by different mechanisms. The feasibility of distinguishing between landslide
source and runout signatures to improve landslide detections was assessed. The limited training
samples extracted from the top five polygons in the landslide inventory map were used to construct
supervised data mining models in order to classify other instances. The top five polygon samples
were used for training because manually recognizing the larger targets from a regional scale-based
remote sensing image is relatively easier than interpreting smaller objects. Based on this scenario,
the developed models with RFs and cost analysis and mapping results demonstrated the stability of
the proposed procedure. The hierarchical analysis was designed in this study. Section 3.2 explored the
feasible models as listed in Table 3. Section 3.3 demonstrated the performances of developed models
verified by the samples of larger and smaller inventory polygons, comparing them with the SVM and
LR methods as shown in Figures 8–13 and Tables 4–6. The quantitative evaluations of the optimal
results as shown in Figure 13 were determined to be higher than 80% in most cases. The results further
demonstrated that the developed models outperform the SVM and LR algorithms in most accuracies.

The primary limitation of this study was that the developed models were more favorable for
larger area sizes but may be difficult to apply to smaller areas. The capability of the models based
on the supervised strategy was related to the characteristics of the training datasets. The tradeoff

between the cost of producing the training data and the area sizes of targets for predictions should be
considered. Perhaps a multi-scale model trained by different area sizes of the inventory polygons is
a possible solution. This method could also be improved by including more topographic attributes,
as described by Sallem et al. [61].

Producing a high-quality landslide inventory is time consuming and expensive. Landslide inventories
are crucial for landslide analyses, such as for performing tasks in the framework of landslide risk
assessment and management [14]. The potential for reducing the degree of manual interpretation is
demonstrated in mapping results. Based on the spatial patterns of predictions, the misclassification for
detecting runout areas appeared in the top region. Two possible strategies may solve this problem.
First, a threshold based on the elevation attribute could be designed. Second, studies could investigate
only extracted landslide sources from the affected areas, and the remainder are assigned the runout
label. These runout patterns may be adequate to further assess the related parameters, such as runout
distance and damage corridor width [14].

5. Conclusions

A novel data analysis based on the scenario of separating landslide source and runout areas with
the topographic attributes was presented in this paper to improve landslide detections. To explore the
feasibility of the proposed approach, four hierarchical experiments were designed. First, elevation was
a critical variable according to the factor analysis. Second, the candidate models were constructed
using the RF and cost-sensitive analysis and the limited training samples extracted from the top five
largest areas of the inventory polygons. The polygon-based cross-validation was also used for the
verification. Third, the candidate models verified using different polygon-based samples indicated that
the No. 1 model using the RF method with a cost of 5000 and the No. 3 model based on the RF were the
most favorable for predicting the larger polygon (area ≥ 100,000 m2) samples. For the smaller polygon
(area of 50,000–100,000 m2) samples, the No. 3 model provided acceptable results. The accuracies of
developed models were above 0.8 in most cases, outperforming the performances of the SVM and LR.
Finally, mapping the predicted distributions revealed that the detection of landslide sources provided
accurate results with lower missing rates. The extraction for the runout areas revealed excellent user’s
and producer’s accuracies.
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The gap in recognizing landslides has existed in terms of remote sensing and geotechnical
engineering. More precisely, the landslide detections extracted from remotely sensed images without
additional interpretations to eliminate the runout areas should be termed the landslide affected area
and should not be directly treated as a landslide inventory or database for further analyses. This study
provided a systematic procedure following a supervised data mining–based approach to separate
landslide source and runout signatures. The tradeoff between the size areas of the training data
and the predicted range of the developed models was emphasized in the results. More research is
warranted regarding the effect of the elevation-based threshold and the binary classification based on
the detections of landslide sources only to produce fully automatic landslide inventory productions.
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